
Optimal Clock Period for Synthesized Data Paths

Abstract

The choice of a clock period in designs with multicycle operations have a major inuence

on operator allocation as well as execution time. For technologies with signi�cant inter-

connection delays, optimal clock period selection before/during high-level synthesis is not

practical. In our approach, we start with a synthesized RTL data path structure, perform

place and route and back-annotate the interconnection delays. First a bound ow graph is

constructed by reecting the allocation and binding information on the data ow graph. All

potentially critical paths in this bound ow graph are identi�ed. Execution time is computed

by evaluating these path lengths and thus avoiding rescheduling. Based on execution times,

a set of potentially optimal clock periods is chosen. An optimal clock period is one which

results in the minimum execution time while meeting a controller cost constraint. Finally,

the controller costs at these clock periods along with the execution times decide the optimal

clock period.

Extensive experimental results on data paths synthesized from high-level synthesis bench-

marks establish both the utility as well as the e�ciency of our approach. These results clearly

show that choosing a clock period to minimize the "dead time" of the multicycle operators

can improve the circuit performance by upto 10% or even more. Apart from presenting

a methodology to decide the clock period, the report introduces a novel way of represent-

ing and interpreting binding information (operation-operator and value-register) which may

have other interesting applications.
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1 Introduction and motivation

Most of the early high-level synthesis (HLS) systems restricted all operations to single cycle

and assumed that the clock period is decided post-synthesis by �nding the critical delay

path [1, 2]. More recent HLS approaches permit allocation of multicycle operators [3, 4, 5].

The critical path approach, though suitable for data paths with a single function unit(fu), is

wasteful if there are a variety of fus with distinct delay values. As all fus would be clocked

at the rate of the slowest fu, there is a lot of "dead time" (the time when the fu is not used)

in all but the slowest of fus. This has prompted researchers to look into the problem of clock

period selection as a pre-synthesis task [6], as a task integrated with component allocation

[7] and a post-synthesis task [8, 9]. Naturally, the interconnection delays are considered

only by those techniques which optimize clocks after synthesis.

Narayan & Gajski [6] estimate the optimal clock period by minimizing the average "dead

time" of the operators. This technique ignores the actual allocation or schedule and gives

equal weight to all operations as it �nds the average on the basis of the number of operations

of each type in the behavior. Further, it assumes only one type of operator is available in

the library for each operation type. In the work of Gebotys [7], to limit the increase in

complexity of the IP model due to variable clock period, a number of simpli�cations have

been made. The possible clocks are limited to a few rather distant frequencies and even

their selection is directly tied to the allocation of some operator through constraints. On

the other hand, most of the post-synthesis work relates to estimating the critical path in

the structure to get the minimum clock time while permitting operators to take multiple

clocks. Mintz [8] estimate the clock cycle time using the structure, schedule as well as the

interconnect delays. They use the schedule essentially to eliminate the false critical paths,

i.e. paths though present in the structure but not really used by the schedule. As we also

use the behavior along with the RTL structure, false paths are automatically eliminated.

In a recent work, Sri Parameswaran et al. [9] approach the problem of �nding an optimal

clock without changing the data path. Their work has some similarity to our work and it

relies on rescheduling and resynthesizing the controller to identify the optimal clock period.

They assert that the clock period which minimizes the execution time would always be an

integer submultiple of state delays. They do not address the issue of computing the execu-

tion time (instead of rescheduling) with data path kept intact. Further, the approach seems

to be limited to nonpipelined components.
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Figure 1: A simple example DFG for illustration

A simple example illustrating the signi�cant inuence of the clock period on the execution

time would provide motivation for our work. Fig. 1(a) shows a simple data ow graph which

is synthesized using an operator library tabulated in �g. 1(b). Permitting operations to be

performed in multiple clock cycles, Table 1 shows the number of clocks as well as execution

time for clock period ranging from 20 to 35 ns. All execution times are based on an operator

allocation of f1 ADD, 1 SUB, 1 MULg. Fig. 2 (a to d) shows the schedules for the clock

periods 20,24,28 and 35 ns respectively. It is interesting to note that even for this narrow

range of clock periods, the execution times can vary by as much as 16% for the same op-

erator allocation. Signi�cantly, the approach based on clock slack minimization [6] (which

is independent of the data path structure) selects 24 ns as the clock period instead of the

optimal 28 ns.

Clock period 20 21 22 23 24 25 26 27

No. of clocks 12 11 11 11 10 10 10 10

Exe. time 240 231 242 253 240 250 260 270

Clock period 28 29 30 31 32 33 34 35

No. of clocks 8 8 8 8 8 7 7 7

Exe. time 224 232 240 248 256 231 238 245

Table 1: Execution time as a function of clock period
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Based on an analysis of these results, it is easy to conclude that :

� Performance of the design measured by the total time taken (i.e no. of clocks � clock

period) is not monotonic with clock period. A higher clock frequency does not mean

a better performance.

� Optimal clock period depends on the source behavior and synthesized RTL structure,

as well as the bindings (of operations to operators).
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Figure 2: Schedule for di�erent clock periods

In this report we present a novel approach to compute the optimal clock period for a

synthesized data path. The di�erence in our approach is that the optimal clock period is

tackled as a question of getting the best performance out of a synthesized structure. Similar

to other post-synthesis clock estimators, we neither change the resource allocation nor the
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bindings. But the major di�erence is that we do consider the change in the number of c steps

required by various operators with change in the clock period, which in turn, would a�ect

the schedule (and execution time). The computed clock period is optimum as it takes care

of the interconnection delays, either as an estimate from a model or from an actual layout

tool. We also consider the controller cost which strongly depends on the number of states

or c steps in the schedule. The rest of the report is organized as follows. Section 2 describes

the overall approach while section 3 lists some extensions for handling a range of data path

structures and design styles. Results of experiments involving data paths synthesized from

high-level synthesis benchmarks are tabulated in section 4. Section 5 discusses some other

possible applications of the ow graph structure introduced in this report while section 6

presents some conclusions.
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2 Overall approach

Before presenting our approach, some clari�cations on the input as well as the design as-

sumptions that are made are presented.

2.1 Input

The RTL structure generated by the synthesizer along with the input DFG and the binding

information forms the input to our program. It would be preferable to perform the initial

synthesis with as small a control step size as is feasible. A control step size closer to the gcd

of "most" operator delays are expected to generate e�cient structures as the dead time due

to clock "quantization" is minimized. This control step period is only notional and need not

be technologically realizable as a realizable clock period is chosen later. Our approach would

work irrespective of the assumed control step size during the synthesis process but obviously

cannot change non-optimal allocation and binding decisions made at that stage; it will still

try to get an optimal clock period for the given structure.

2.2 Design assumptions

The following assumptions are made only for the sake of simplicity of presentation. Section

3 discusses modi�cations/extensions required to handle these situations/design styles and

all assumptions, except the last one regarding synchronous nature of the design, would be

relaxed.

� The operator modules are not pipelined.

� Register allocation and binding is ignored.

� Interconnections and storage elements are assumed to have a constant delay.

� No operation chaining is permitted.

� The design behavior consists of a single straight line code.

� It would be possible to synthesize the control part meeting the constraint of the selected

clock period.
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� The generated RTL structure is synchronous and operates on a single clock.

2.3 Computing clock period

The approach is based on computing the execution time required by a DFG for each of the

feasible clock periods. Actually, the constraints imposed by the initial allocation and binding

allow us to compute the execution time rather fast. Though this approach essentially deals

with data path structure and operations performed on them, the control part plays a crucial

role in deciding the optimal clock period. The range of clock periods is de�ned based on

the feasibilty of synthesizing the control part with the speci�ed clock period constraint. The

evaluated or estimated control cost is used to make the �nal choice of the optimal clock

period along with execution time.

We start with a DFG which is a directed acyclic graph with each edge from node u to

node v representing the data dependency of node v on node u. We augment the ow graph

with a start node � and an end node �. The start node � is connected to all nodes without

predecessors and the end node � is connected to all nodes without successors (Fig. 3). The

minimum possible schedule time of � is the execution time of the graph.

Each of the nodes is bound to an operator with its own delay. The maximum path length

from � to any node u determines the earliest time at which u can be scheduled. But these

paths ignore the binding information. For instance, in �g. 2(a), operation 3 could not be

scheduled earlier than control step 4 not because of data dependency but due to resource

constraints. As we intend to maintain the resource allocation and binding, we create addi-

tional edges in the DFG to indicate such dependencies. There is an operator dependency

edge from node u to node v if both nodes are bound to the same operator and node u is the

last operation scheduled on the operator before node v is scheduled (in the initial schedule).

It should be clear from this discussion that we maintain the sequence of operations scheduled

on the operator unchanged. Fig. 3(a) shows the new graph with both data dependency as

well as operator dependency edges.

Each path consists of a set of nodes and each node is bound to one of the operators k

with delay dk. Thus, every path pi is characterised by integer coe�cients aik indicating nodes

with delay dk in the path. These coe�cients would be referred to as delay coe�cients. We

assume there are K distinct delays indexed by k. We can enumerate all the paths from the

start node � to the end node �. The minimum execution time for the graph is the maximum
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Figure 3: Resource dependency edges appended to the DFG

of all such paths to the end node �.

exe tim = max
X

p� is a path to �

a�k � dk (1)

Now the clock is brought into the picture. The role of the clock is to quantize each of the

delays dk as an integral multiple of it. Thus for a clock with period l, the execution time is

given by

exe timl = max
X

p� is a path to �

a�k �
ldk
l

m
� l (2)

The optimal clock is the one which minimizes this time.

opt exe tim =
min

all feasible clocks l
fmax

X
p� is a path to �

a�k �
ldk
l

m
� lg (3)
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2.4 Dominated paths

As we are traversing the graph and enumerating the paths at each node, it is obvious that

some paths are "dominated" by others i.e. they de�nitely cannot contribute to the maximum

path length. To conserve memory, it is best to drop such dominated paths at each node.

A path pi with delay coe�cients aik dominating over path pj with delay coe�cients ajk is

denoted by pi � pj .

pi � pj if aik � ajk 8 k = 1::K (4)

The above condition is too stringent and we formulate another condition which covers the

previous one. Without loss of generality, we can assume that the delays are arranged in the

descending order implying dk1 � dk2 if k1 < k2.

pi � pj if
kX
l=1

(ail � ajl) � 0 8 k = 1::K (5)

The proof of this simply follows from the monotonicity of the ceiling operator i.e.

ldk1
l

m
�
ldk2

l

m
if k1 � k2: (6)

From this, it should be clear that we are interested only in di�erentiating delays which

are distinct.

For the case shown in �g 3(a), the edges from node 2 to 3 and from 3 to 4 indicate that

all three addition operations are performed on the same adder and in that sequence. The

path delays for the two non-dominated paths are:

dp1 = fdMUL + dSUBg and dp2 = fdSUB + 3 � dADDg

Fig. 4 shows the number of clock cycles required by the two paths for the clock period in

the range of 20 nsec to 60 nsec. It is clear that in certain ranges p1 dominates (i.e. decides

the minimum execution time) whereas in certain other ranges p2 dominates.

A di�erent allocation and binding could produce di�erent results. If we allocate two adders

instead of one and bind op2 and op3 to di�erent adders, the two non-dominated path delays

would be:

dp1 = fdMUL + dSUBg and dp2 = fdSUB + 2 � dADDg
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In this case, over the entire range of clock periods considered (i.e. 20 ns to 60 ns), p1

dominates over p2 and the optimal clock period is again 28 ns with 8 clock cycles. This im-

plies that two adders do not produce a faster design if the clock period is optimally chosen.

Thus, this approach can also have implications on operator allocation but this aspect is not

explored in this report.

2.5 Algorithm

The major steps of the algorithm are listed in �g. 5. First the allocation and binding

information is reected on the DFG (step 1). This is followed by back-annotating the in-

terconnection delays (step 2) and then identifying the non-dominated paths (step 3). The

optimal clock period is identi�ed in two steps (steps 4 and 5). Initially a set of potentially

optimal clock periods corresponding to local minimas in the execution time vs. clock period

graph are found. For each clock period in this set, control cost is evaluated (/estimated).

The optimal clock period is selected based on both the control cost and the execution time.
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Due to the �xed data path, the variation in the cost of the overall design comes only from

the control part.

One of the key features of our approach is that execution time can be computed by eval-

uting the non-dominated path lengths and does not require any rescheduling (in step 4).

Rescheduling is required only in step 5 for each of the selected clock periods to de�ne the

control signals 1. Due to the presence of binding edges, rescheduling just involves a breadth

�rst traversal from the start to the end node putting the operations into clock slots corres-

ponding to the longest bound path. The time required for performing the core optimal clock

period computation steps (1, 3 and 4) is fairly low in relation to steps 2 (place and route) and

5 (control cost evaluation). On the other hand, it is possible that the memory requirements

grow exponentially in step 3 for keeping track of all the non-dominated paths. But as is clear

from the experimental results, the pruning of dominated paths is very e�ective in reducing

the memory requirements.

1Even this may be avoided with a re�ned control cost estimator.
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ALGORITHM

� INPUT : DFG, RTL Data Path Structure, Schedule, Binding

� Step 1:Create a bound data ow graph by

{ Adding start and end nodes with their edges

{ Add the resource dependency edges

� Step 2:Back-annotate interconnection delays

{ Perform place and route and extract interconnection delays

{ Associate delays with each node taking into account interconnection delays

� Step 3:Traverse the bound DFG in breadth �rst manner and at each node

{ Enumerate all paths

{ Delete all dominated paths using conditions given by eq. 5

� Step 4:Compute the set of potentially optimal clock periods by

{ Evaluating eq. 2 over all feasible clocks for all the non-dominated paths

{ Choosing the clock periods with the locally minimal execution times

� Step 5:Compute the optimal clock period by

{ Evaluating (/estimating) the control costs for the clock periods selected in step 4

{ Choosing the clock period with the appropriate execution time-control cost tradeo�

Figure 5: Optimal clock computation algorithm

3 Relaxing design restrictions

3.1 Pipelined operators

The use of pipelined operators in the design result in the following two changes in the

methodology presented in the previous section.

� Normally all delays associated with operator binding edges for operator k are taken

to be dk. In case k is a pipelined operator, this delay is taken as p � l where p is the

initiation interval and l is the clock period (to be calculated).

� The operator itself may restrict the minimum feasible clock period due to the critical

path delay within any of its stages.
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3.2 Storage elements and binding

Our approach is equivalent to rescheduling for each clock period while maintaining the ini-

tial allocation and binding. In case storage elements are ignored, it is possible that the

rescheduled graph may require extra storage elements and thus invalidate the original stor-

age allocation and binding. One option is to model the storage elements as resources with

Write/Read operations on them. A simpler approach involves adding storage dependency

edges which carry only the necessary binding information. Further, most structures have

fewer variations in the delays of storage operations (i.e. setup and hold times) and thus

there is no need to distinguish di�erent storage elements. In case such variations in delays

do exist (like a mix of registers and register arrays), it is taken into account by lumping it

with interconnection delays as described in the next subsection.

Consider two operations u and v 2 whose results are stored in the same register R. If u

precedes v in the original schedule, it is expected that all the operations using the result of

u from R would have �nished using this value before v stores its own result in R. This is

reected by creating storage binding edges from all nodes dependent on u to v. Fig. 3(b)

shows a storage binding edge created as both u2 and u5, outputs of op2 and op5 respectively,

share the same register R. The edge from u4 to u5 is expected to ensure that op5 does not

get scheduled so early that op4 has not as yet �nished using its input. Of course, many of

these edges are redundant (and could be removed by transitive closure) and generate only

dominated paths.

The delays associated with these storage dependency edges are more complex and consist

of two components :

� One is from the source node i.e where the edge originates

� The other is from the destination i.e. where the edge terminates

At the destination, the associated delay is always one clock period (irrespective of the des-

tination operator) because we only want to ensure that the destination operation should not

�nish earlier than one cycle until after the source operation has �nished using the register.

Now as far as the delay on the source side is concerned, it depends on the type of operator

2In this case we have to consider the primary inputs as well if they share storage with results of other

operations
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as one is concerned with when it �nishes using its operand values. The delay values for

di�erent operator types are summarized in Table 2.

Source operator Type Delay added to the path

Purely combinational Operator delay

Pipelined operator Initiation interval of the operator

as multiples of clock period

Registered operator 1 clock period

Table 2: Delays due to storage binding edges

3.3 Interconnection delays

The synthesized structure can be placed and routed and consequently the interconnection

delays can be obtained. Fig. 6 contains the partial structure (related only to the add opera-

tions) with delays marked on each interconnection as well as path elements like multiplexer.

An analysis of these interconnection delays can generate the delay of the individual opera-

tions. Fig. 6 also shows a sample binding of values to registers and lists the delay values for

the three addition operations bound to the same adder.

Just to control the complexity, all the feasible operations with associated delays on each

operator are generated and categorized into a few distinct delays ignoring very small vari-

ations. Then each operation bound to this operator is classi�ed as having one of these delay

values. The delays introduced by storage elements (setup/hold time) can be accounted for

here even if they have substantial variations.

3.4 Chaining of operations

Chaining of operations in the original scheduled graph is handled by creating operations

with sum of delays of the chained operations. Further, operator dependency edges cover all

operators used by any of the chained operations as none of these operators can be used in

the same clock cycle. Chaining also has an implication on the minimum feasible clock cycle

as the designer does not want to spread the chained operations across multiple clock cycles.
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op2: R5 <−− R2 + R3       48 ns

op3: R3 <−− R3 + R4       46 ns

op4: R4 <−− R3 + R5       50 ns

Figure 6: Partial data path structure with interconnection delays

3.5 Behavioral descriptions with loops and conditionals

The approach is extendable to any general behavioral description with conditionals and

loops. It is assumed that the behavior has been pro�led to generate average (/maximum)

loop counts and conditional branching probabilities. The one restriction that is placed on

scheduling is that the overlap of operations across basic blocks is not permitted i.e. all

multicycle operations in a block have to be completed before initiating operations in the

succeeding block. This permits computation of overall execution time as a weighted sum of

individual basic block execution times. Further, the identi�cation of dominating paths can

be handled locally at the block level.

3.6 Modi�ed dominating path condition

Introduction of binding edges resulting in multiples of clock period delays (pipelined op-

erators as well as storage dependencies) require the conditions for path domination to be

modi�ed. As the clock period is undecided at the time of graph traversal, a path can be
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eliminated only if it is dominated over the entire feasible clock period range. Assume the

clock period has a range < l1; l2 > and k1 is the highest index with dk1 � l1 and k2 is the

smallest index with dk2 � l2. Now each path pi is characterized by a set of K delay coe�-

cients faikg and a clock period coe�cient ail. For path pi to dominate over pj , the additional

condition to be satis�ed is given by:

pi � pj if
kX

p=1

(aik � ajk) � (ail � ajl) 8 k = k1::k2 (7)

It is obvious that this condition trivially holds as a subset of the previous condition (eq.

5) if ail � ajl.
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4 Experimental results

This technique has beeen implemented as a backend tool for a RTL structure to FPGA

mapper and is named OPTICLE (OPTImal CLock Evaluator). A data path synthesizer

[10] generates a RTL netlist which is directly mapped onto FPGAs [11]. Here we present

results from applying these techniques on some well-known HLS benchmarks. In each case,

the schedule and the RTL structure generated by a data path synthesizer was given as an

input to OPTICLE and an optimal clock period was computed. As interconnection delays

are very signi�cant in FPGA implementations, this is a suitable platform to show the utility

of our approach.

First, some remarks about the operator set, tools and the platform. The implementation

technology was XILINX XC4000 series [12]. All functional units were considered to be

8-bit wide. The multiplier was based on a CSA (carry-save-adder) implementation whereas

a library component (from XBLOX) was used for performing addition, subtraction and com-

parison. Delays of the adder/subtractor and multiplier operators (without interconnections)

were 20 ns and 204 ns respectively. For place and route as well as delay computation, pro-

prietory XILINX software was used. All the CPU times are based on a SUN SPARC classic

workstation.

Table 3 summarizes the inputs. Each of the three HLS benchmarks namely Di�erential

equation, Elliptical �lter and AR �lter, have been processed with di�erent initial control

steps. This corresponds to the number of c steps in the schedule generated by the data path

synthesizer. The third column lists the operators as well as the registers in the RTL structure.

The results are discussed with reference to the steps of the algorithm (�g. 5). Table 4 gives

details of the CPU time as well as the e�ciency of the algorithm in pruning the dominated

paths. Columns 1 & 2 specify the example. The pruning is quite e�ective as the ratio of

total paths (column 3) to non-dominated paths (column 6) is as high as 390. Columns 4,5,7

& 8 refer to the steps 3 and 4 in the algorithm. Column 8 entries vis a vis column 5 entries

show that the reduction in cpu time for optimal clock period computation is substantial and

thus the pruning procedure is e�ective.

Table 5 shows the result of step 4 of the algorithm for the AR �lter example with initial

control steps as 8. Results of optimal clock period computation by ignoring the interconnec-

tion delays (columns 2-5) and with the interconnection delays (columns 6-9) are tabulated.
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Benchmark Initial control Resource Allocation

example steps (ics) Operators Registers

Di�erential 4 f1+; 1 <; 2�; 1�g 7

Equation 7 f1+; 1 <; 1�; 1�g 6

Elliptical 14 f3+; 2�g 9

Filter 15 f3+; 1�g 8

16 f2+; 1�g 8

AR 8 f2+; 4�g 10

Filter 13 f1+; 2�g 10

18 f1+; 1�g 10

Table 3: Details of benchmark examples

Example ics Without pruning With pruning

dominated paths dominated paths

No. of CPU time(in secs.) No. of CPU time(in secs.)

paths Step III Step IV paths Step III Step IV

Di�erential 4 13 0.3 0.1 7 0.4 < 0.1

Equation 7 37 0.3 0.2 7 0.4 < 0.1

Elliptical 14 1856 0.9 15.3 17 0.6 < 0.1

Filter 15 5942 1.4 41.7 47 1.0 0.1

16 6250 1.5 46.2 16 0.7 < 0.1

AR 8 174 0.4 0.7 16 0.5 < 0.1

Filter 13 4078 1.1 25.2 18 0.5 < 0.1

18 3146 1.1 24.7 12 0.5 < 0.1

Table 4: CPU Times and algorithm e�ciency in pruning dominated paths
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Without interconnection delay With interconnection delay

Clock Clock Control Longest Execution Clock Control Longest execution

range period steps path time period steps path time

20-100 23 39 897 30 46 1380

30-100 34 27 918 30 46 1380

40-100 41 23 943 45 31 1395

50-100 51 19 876 969 54 26 1333 1404

60-100 68 15 1020 90 16 1440

70-100 70 15 1050 90 16 1440

80-100 80 15 1200 90 16 1440

90-100 90 15 1350 90 16 1440

Table 5: Optimal clock period for di�erent clock period ranges: AR Filter (ics = 8)

Di�erent rows give optimal values for di�erent clock period ranges. The results of this ex-

ample are plotted in �g. 7 as a graph of execution time vs. clock period. The two plots

correspond to execution time without interconnection delays (lower plot) and with intercon-

nection delays (higher plot). It is clear from this example that though the nature of plots in

the two cases is similar, the optimal values could be signi�cantly di�erent. Thus any clock

period estimation ignoring the interconnection delays would not even be close to the optimal.

Consider the clock period range of 50 to 100 ns in Fig. 7. The optimal clock period in this

clock range in the lower plot is 51 ns (without interconnection delays) which is close to the

local maxima in the upper plot (with interconnection delays). Such a choice would result in

atleast a 10% lower performance than the optimal which is at 54 ns.

Figures 8 and 9 show similar plots for the di�erential equation (ics = 7) and elliptical �lter

(ics = 16) examples respectively.

Table 6 summarizes the results for the eight cases. In all cases, the feasible clock period

range was considered to be 20 to 100 ns. Though in step 4 of the algorithm, a set of clock

periods is generated for each case, only the clock period corresponding to the global minima

is tabulated. Columns 4 and 3 show the optimal clock period with and without the inter-

connection delays respectively. It is signi�cant to note that interconnection delays do not

always increase the optimal clock period. Columns 5, 6 and 7 give details of the optimal res-
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Benchmark ics Optimal clock period Control Longest Execution

example w/o inter. with inter. steps path time

delays delays delay

Di�erential 4 23 49 17 814 833

Equation 7 34 27 61 1603 1647

Elliptical 14 21 20 103 1977 2060

Filter 15 23 27 97 2529 2619

16 23 25 110 2692 2750

AR 8 23 30 46 1333 1380

Filter 13 23 25 108 2639 2700

18 34 23 200 4521 4600

Table 6: Optimal clock period and execution time

ult with the interconnection delays. The number of control steps could be a rough estimate

of the control cost as it corresponds to the number of states in the controller. The di�erence

between execution time (column 7) and the longest path (column 6) reects the "wastage"

due to clock quantization even in the optimal case. detailed results for all the cases (with

local minimas and execution times) are shown in Table 8.

Finally, we present some results on the controller cost. It is expected that changing the

clock period would have a signi�cant inuence on the controller cost due to the change in

the number of control steps/states. The control signals required by the data path are the

outputs of the controller. Instead of realizing the controller as a general state machine, we

implemented the state transitions with a counter. As all our examples require a large se-

quence of simple state transitions, this approach was more cost e�ective. The logic for the

outputs was optimized using SIS (Berkeley tools).

Table 7 shows the control cost for the clock periods which correspond to local minimas

in �g. 7. Table 8 shows consolidated results on six cases enumerating execution times and

controller costs for all selected clock periods. All times are in ns and costs are in XC4000

CLB counts. Step 5 in the algorithm is a time consuming step as controller costs are being

evaluated with logic synthesis rather than with a fast estimation technique. This table shows
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Clock Number of Execution Controller

period control time cost in

steps XC4000 CLBs

30 46 1380 13

34 41 1394 12

45 31 1395 12

54 26 1404 11

68 22 1496 10

90 16 1440 10

Table 7: Controller cost : AR Filter (ics = 8)

the controller cost to be rather well behaved as a function of the number of states. However,

it is not so in most cases as is evident from Table 8. In each case with the data path being

�xed, the number of controller input/outputs are �xed. Further, as the same behavior is

being e�ectively rescheduled even the number of transitions on these control signals do not

change signi�cantly. In spite of this the controller cost with the same number of i/os is not a

monotonic function of the number of states. Thus cost estimation models based only on the

number of states, input/outputs and their transition counts are not applicable. To speed up

this step in the algorithm, we do need to develop more re�ned models which are applicable

to our target technology.
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Clock Control Execution Controller Clock Control Execution Controller

period steps time cost period steps time cost

Di�erential Equation

ics = 4, Longest path = 814 ics = 7, Longest path = 1603

27 31 837 8 27 61 1647 10

35 24 840 7 30 55 1650 11

49 17 833 8 40 42 1680 13

50 17 850 8 45 38 1710 12

61 14 854 6 53 32 1696 13

80 12 960 7 67 26 1742 9

81 11 891 7 70 26 1820 9

93 10 930 7 89 19 1691 11

Elliptical Filter

ics = 14, Longest path = 1977 ics = 15, Longest path = 2529

20 103 2060 39 27 97 2619 32

32 66 2112 32 30 89 2670 38

48 44 2112 32 54 50 2700 26

50 43 2150 27 67 42 2814 20

60 38 2280 28 70 42 2940 20

100 23 2300 24 92 32 2944 22

AR Filter

ics = 13, Longest path = 2639 ics = 18, Longest path = 4521

25 108 2700 22 23 200 4600 24

32 86 2752 26 31 151 4681 32

48 59 2832 19 46 101 4646 21

56 50 2800 24 55 84 4620 29

70 42 2940 17 69 68 4692 18

96 30 2880 19 92 51 4692 23

Table 8: Consolidated results on execution time and controller costs
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5 Other applications

In presenting the clock period selection problem, we have also presented a novel graph

structure which we refer to as bound control data ow graph (bcdfg). In bcdfg, the data

and control edges of a control-data ow graph are augmented with resource dependency

edges which carry the allocation and binding information. Further, we have presented an

interpretation of these binding edges, in the context of scheduling, for a range of operator

types. These bcdfgs can have many other applications and we briey discuss one of them.

All high-level synthesis techniques have to partition a real life description before synthesis.

Once these parts are being synthesized separately, there is a need to communicate allocation

or binding information of one part to the other. This is important because the allocation is

global and one would like to optimize the use of resources across these parts. bcdfg can carry

partial binding information to meet these requirements e.g constraints posed by a pipelined

multiplier allocated in Part A to be reused in Part B can be reected by modifying the ow

graph of B.
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6 Conclusion and future work

We have proposed an e�cient method for computing the optimal clock period for a speci�ed

data path. The approach is based on back-annotating the interconnection delays and then

computing path lengths of all the "potentially" critical paths over the feasible range of clock

periods. Experimental results on RTL structures generated from HLS benchmarks show both

the utility as well as the e�ciency of our approach. It is clear from these results that even

though the number of non-dominated paths is not large, we still need to consider multiple

paths. It has been shown that a clock period selected ignoring interconnection delays could

be ine�cient by 10% or even more. Permitting multicycle operations can result in a large

increase in the number of states and thus it is inappropriate to choose a clock period ignoring

the controller cost. Presently, we select the optimal clock period by evaluating controller

costs at a set of potentially optimal clock periods.

In future, we also propose to look at the problem of developing models to estimate con-

troller costs rather than evaluate them through synthesis. This would considerably speed up

this step (step 5 : �g. 5) in the algorithm. The previously reported models for estimation

were found inadequate for our purposes. Further, even CLB estimates for combinational

logic have been reported only for XC2000 and XC3000 series of XILINX devices. Thus, a

more versatile controller cost estimator meeting our technology requirements is needed. The

clock period also has a strong inuence on power consumption and thus for low power applic-

ations, a power estimate should be a part of the objective function for optimal clock period

selection. Again, the existing power estimation models might have to be modi�ed to cater

for this situation. As the data path is �xed, a faster clock does not induce proportionately

more transitions on most of the data path signals. The impact of the clock period change is

primarily (though not solely) on the generation of control signals.
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