
Hardware/Software
Partitioning using Integer

Programming
(Extended Version)

Ralf Niemann

Lehrstuhl Informatik XII

University of Dortmund

Report No. 586

September 1995

Hardware/Software Partitioning using

Integer Programming

Ralf Niemann

Lehrstuhl Informatik XII

University of Dortmund

Report No. 586

September 1995

Abstract

One of the key problems in hardware/software codesign is hardware/soft-

ware partitioning. This paper describes a new approach to hardware/software

partitioning using integer programming (IP). The advantage of using IP is that

optimal results are calculated respective to the chosen objective function. The

partitioning approach works fully automatic and supports multi-processor sys-

tems, interfacing and hardware sharing. In contrast to other approaches where

special estimators are used, we use compilation and synthesis tools for cost estim-

ation. The increased time for calculating the cost metrics is compensated by an

improved quality of the estimations compared to the results of estimators. There-

fore fewer iteration steps of partitioning are needed. The paper will show that

using integer programming to solve the hardware/software partitioning problem

is feasible and leads to promising results.

i

Contents

1 Introduction 1

2 Related Work 2

3 Hardware/Software Partitioning Approach 4

4 Formulation of the Hardware/Software Partitioning Problem 7

5 The IP-Model 9

5.1 The Decision Variables . 10

5.2 The Constraints . 11

5.3 Interfacing . 13

5.4 Sharing . 14

5.5 Scheduling . 14

5.6 Heuristic Scheduling . 15

6 Results 18

7 Conclusion 20

ii

1 Introduction

Embedded systems typically consist of application speci�c hardware parts and program-

mable parts, i.e. processors like DSPs, core processors or ASIPs. In comparison to the

hardware parts, the software parts can be developed and modi�ed much easier. Thus,

software is less expensive in terms of costs and development time. Hardware however,

provides better performance. For this reason a system designer's goal is to design a

system which ful�lls all performance constraints by using as few as possible hardware.

Hardware/software codesign deals with the problem of designing embedded systems,

where automatic partitioning is one key issue. This paper describes a new approach in

hardware/software partitioning for multi-processor systems working fully automatic.

It uses integer programming (IP) to solve the partitioning problem optimally (or if

desired, nearly optimally with decreased calculation time) for the chosen objective

function. The cost model is not calculated by estimators like other approaches, be-

cause the quality of estimations is often bad and estimators do not concern compiler

e�ects. In our approach the tools (a compiler for the software parts and a high-level

synthesis tool for the hardware parts) are used instead of special estimators. The dis-

advantage of an increased runtime for calculating the cost metrics is compensated by

a better quality of the cost metrics compared to the results of estimators. Further,

better cost metrics lead to fewer partitioning iterations.

The outline of the paper is as follows: Chapter 2 gives an overview of related work in the

�eld of hardware/software partitioning. In chapter 3 our own approach to partitioning

is presented. A formalization of the hardware/software partitioning problem follows in

chapter 4. Section 5 describes the problem by an IP-model. After experimental results

of solving these IP-models have been presented in chapter 6, a conclusion is given in

chapter 7 .

1

2 Related Work

There are only few approaches considering hardware/software partitioning. One of

these is the COSYMA system ([EHB93],[HEY+95]), where hardware/software parti-

tioning is based on simulated annealing using estimated costs. The partitioning al-

gorithm is software-oriented, because it starts with a �rst non-feasible solution consist-

ing only of software components. In an inner loop partitioning (ILP) software parts of

the system are iteratively realized in hardware until all timing constraints are ful�lled.

To handle discrepancies between estimated and real execution time, an outer loop par-

titioning (OLP) restarts the ILP with adapted costs ([HE94]). The OLP is repeated

until all performance constraints are ful�lled.

Another hardware/software paritioning approach is realized in the VULCAN system

([GCJDM92]). This approach is hardware-oriented. It starts with a complete hard-

ware solution and iteratively moves parts of the system to the software as long as the

performance constraints are ful�lled. In this approach performance satis�ability is not

part of the cost function. For this reason the algorithm will easily trap in a local

minimum.

The approach of Vahid [VGG94] uses a relaxed cost function to satisfy performance

in an inner partitioning loop and to handle hardware minimization in an outer loop.

The cost function consists of a very heavily weighted term for performance and a

second term for minimizing hardware. The authors present a binary-constraint search

algorithm which determines the smallest size constraint (by binary search) for which

a performance satisfying solution can be found by the partitioning algorithm. The

algorithm minimizes hardware, but not execution time.

Kalavade and Lee [KL94] present an algorithm (GCLP) that determines for each node

iteratively the mapping to hardware or software. The GCLP algorithm does not use

a hardwired objective function, but it selects an appropriate objective according a

global time-criticality measure and another measure for local optimality. The results

are close to optimal and the runtime grows quadratically to the number of nodes.

This approach has been extended to solve the extended partitioning problem [KL95]

including the implementation selection problem.

2

Eles [EPD94] presents a two-stage partitioning approach, where in the �rst step a

VHDL system speci�cation is partitioned into two sets of candidates for hardware

and software using pro�ling and user-interaction. In the second step a process graph

is constructed and partitioned into hardware and software parts using a simulated-

annealing algorithm [PK93].

Jantsch [JEO+94] presents a partitioning approach where hardware candidates are

pre-selected using pro�ling. All of these selected hardware candidates realize a system

speedup of greater than 1. The goal is to speed-up a system by incorporating hardware.

A key feature is a memory allocation method which minimizes the interface tra�c

between hardware and software. The disadvantage of this approach is that hard timing

constraints can not be guranteed because the cost model is based on pro�ling.

3

3 Hardware/Software Partitioning Approach

Design constraints

else

Syntax Graph Model

C code generation

Retargetable Compilation

Target architecture definition

SW costs HW costs

Partitioning Graph

Solving ILP model

Retargetable Compilation

Cluster SW nodes

Refine Partitioning Graph

SW costs

If Solution exists

then

VHDL system specification

VHDL code generation

High-Level Synthesis

Result := ValidPartitioning

ValidPartitioning := Partitioning

Figure 1: Hardware/Software Partitioning

Our hardware/software partitioning approach is depicted in �gure 1. The designer has

to de�ne the following:

1. The target architecture has to be speci�ed by de�ning the set of processors for

the software parts and the component library to synthesize the hardware parts

4

of the embedded system.

2. The system has to be de�ned in VHDL as a set of interconnected instances of

entities.

3. The design constraints have to be determined, containing performance con-

straints (timing) and resource constraints (area, memory).

Then, the VHDL speci�cation is compiled into an internal syntax graph model. For

each entity of this model, software source code (C or DFL) and hardware source code

(VHDL) is generated. The software parts are compiled and the hardware parts are

synthesized by a high-level synthesis tool (OSCAR [LMD94]). The results are soft-

ware cost metrics (software execution time, memory usage) and hardware cost metrics

(hardware execution time, area) for the entities. The disadvantage of an increased

runtime for calculating the cost metrics is compensated by two facts:

� a better quality of the cost metrics compared to the results of estimators,

� better cost metrics lead to fewer partitioning iterations.

After the compilation/synthesis phase a partitioning graph is generated. Nodes repres-

ent the entities of the system and edges represent the interconnections between them.

The nodes are weighted with the hardware and software costs, the edges are weighted

with interface costs which occur if an interface would be realized between the nodes of

the edge. The interface costs are approximated by the number and type of data
ow-

ing between both nodes. The user-de�ned design constraints are also matched to the

graph. Thus, the partitioning graph includes all information needed for partitioning.

The partitioning graph is then transformed into an IP-model, which is the key issue of

this paper. The calculated design is optimal for the generated cost model, but never-

theless it is possible to improve the design, because sharing between di�erent instances

of same entities is considered, but not sharing e�ects between di�erent entities. This

disadvantage can be solved by an iterative partitioning approach. We use a software

oriented approach, because compilation is faster than synthesis and software oriented

approaches seem to be superior to hardware oriented approaches (see [VGG94]).

5

Sets of nodes which have been mapped on the same processor are clustered, and new

cost metrics are calculated for them. The partitioning graph is transformed by replacing

each cluster by a new node attached with the new cost metric. Then, the rede�ned

graph is repartitioned. This iteration will be repeated until no solution is found. The

last valid partitioning represents the resulting design. The clustering technique is

illustrated in �gure 2.

Example 1:

v9 v10

v11

v6 v7v4

v3

v1

v8

v12

v2
v3,v6

v4 v5

v2

v1

v9 v7

v10,v11

v8

v12

v3,v6,v7,
v9,v10,v11

v1

v2

v4 v5

v8

v12

1st Partitioning 2nd Partitioning 3rd Partitioning

v5

Figure 2: Partitioning re�nement

The �rst partitioning iteration results in 4 software nodes (v3,v6,v10,v11). The nodes

v3; v6 and v10; v11 are clustered. After the second iteration it is now possible to execute

v6,v7 on the processor, so the new cluster contains v3,v6,v7,v9,v10,v11. In the third

iteration no more nodes can be pushed from hardware to software.

6

4 Formulation of the Hardware/Software Partition-

ing Problem

This chapter introduces a formulation of the hardware/software partitioning problem.

This formulation is necessary to simplify the description of the problem with the help

of an IP-model. We have to de�ne the target architecture and the system which has

to be partitioned.

De�nition 4.1 The target architecture consists of an ASIC h, a set of processors

P = fp1; : : : ; pnP g, external memory and busses between them. The set of target archi-

tecture components is de�ned as:

T A = fhg [P (1)

To simplify the notations in the following chapters, let the ASIC be the �rst element

of T A with index 0, followed by the processors:

ta0 := h; tak := pk;8k 2 f1; : : : ; nP g

A system that has to be realized on the target architecture consists of di�erent instances

of entities and interconnections between them. The formal de�nition looks as follows:

De�nition 4.2 A system is de�ned as a tuple

S = (E; V;E; I)

with the following de�nitions:

E = fen1; : : : ; ennEg set of entities,

V = fv1; : : : ; vnV g set of nodes, representing instances of entities,

E � V � V set of edges, representing interconnections between instances,

I : V ! E I(vj) = enl de�nes that vj is an instance of enl.

The following cost metrics are de�ned for each entity enl: c
a(enl) represents the hard-

ware area, cth(enl) the hardware execution time, cdm(enl) the used software data

memory, cpm(enl) the used software program memory and cts(enl) the software ex-

ecution time. The costs ca(vj), cth(vj), cdm(vj), cpm(vj) and cts(vj) for the instances

7

vj of an entity enl are equal to the costs of enl. The following interface costs for an

edge e = (v1; v2) are considered: ci
a(e) de�nes the additional hardware area and cit(e)

de�nes the communication time for e.

A design represents the realization of a system S on a target architecture T A. The

design quality can be expressed by the following design metrics: Ca(S) represents

the hardware area of S, Cpm(S) the used software program memory of S, Cdm(S) the

used software data memory of S and C t(S) the total execution time of S. The set of

design constraints C consists ofMAXa(S),MAXpm(S),MAXdm(S) and MAX t(S)

according to the design metrics of S.

De�nition 4.3 The hardware/software partitioning problem is the problem of

�nding a mapping map : V ! T A in such a way that all performance and

resource constraints are ful�lled and the design costs are minimized.

The de�nitions will be used in the following example:

Example 2:

DSP

Target Architecture

ta0 ta1

Mem.

Entities

en1

en2

Specification HW/SW-Partitioning

v1

v2 v3

v5 v6v4

v7

System

ASIC

Figure 3: Unpartitioned system

In �gure 3 a system is speci�ed consisting of 2 entities en1 (circle), en2 (box) and 7

instances v1; : : : ; v7 of these entities. This system will be partitioned for a target archi-

tecture containing one ASIC, one DSP, memory and a bus connecting these components.

8

5 The IP-Model

Optimization problems can be solved optimally by using integer programming (IP).

This paper will show that our IP-model is able to solve the hardware/software parti-

tioning problem with the following characteristics:

� optimal solution for a objective function,

� support of multiprocessor systems,

� timing constraints are guaranteed by scheduling the nodes,

� interface costs are considered,

� instances of the same architecture can be shared on hardware,

� if the user wants to interact the design process, user-de�ned constraints can easily

be adapted to the IP-model.

The following paragraphs describe the IP-model which has been used to perform hard-

ware/software partitioning with these characteristics. To describe the IP-model the

following notations are necessary:

De�nition 5.1 Let J = f1; : : : ; nV g represent the indices of vj 2 V .

Let K = f0; : : : ; nP g represent the indices of elements tak 2 T A.

Let L = f1; : : : ; nEg represent the indices of elements enl 2 E.

Let cxl;k be the cost metric c
x(enl) on target architecture component tak.

Let cxj;k be the cost metric cx(vj) on target architecture component tak.

Let Cx
k be the design metric Cx(S) on tak of S.

Let MAXx
k be the design constraint MAXx(S) on tak of S.

Let T S
j be the execution starting time of node vj.

Let TD
j be the execution time of node vj.

Let TE
j be the execution ending time of node vj.

9

5.1 The Decision Variables

Our IP-model uses the following 0/1-variables:

De�nition 5.2 Let the following 0/1-variables be de�ned as:

xj;0 =

8><
>:

1 : vj is executed unshared on ta0;

0 : otherwise:

yj;k =

8>>>><
>>>>:

1 : vj is executed shared on hardware ta0;

1 : vj is executed on processor tak(k � 1);

0 : otherwise:

shl;k =

8>>>><
>>>>:

1 : enl is executed shared on hardware ta0;

1 : enl is executed on processor tak(k � 1);

0 : otherwise:

ij1;j2 =

8><
>:

1 : an interface is needed between vj1 and vj2;

0 : otherwise:

bj1;j2;k =

8>>>><
>>>>:

1 : vj1 and vj2 are executed on di�erent components;

1 : vj1 ends before vj2 starts on tak;

0 : otherwise:

Example 3:

The result of hardware/software partitioning of the system depicted in �gure 3 is shown

in �gure 4. Gray shaded nodes are realized in hardware. Shared nodes are enclosed by

a dashed line. The following table shows the 0/1-variables for executing nodes shared

or not shared on hardware or software.

vj !

HW/SW shared var v1 v2 v3 v4 v5 v6 v7

HW (ta0) no xj;0 0 0 1 0 0 0 0

HW (ta0) yes yj;0 0 0 0 1 1 1 1

SW (ta1) yj;1 1 1 0 0 0 0 0

The nodes v1 and v2 are executed on the processor ta1 (y1;1 = y2;1 = 1). Therefore

sh1;1 = sh2;1 = 1, because v1 is of entity type en1 and v2 is of entity type en2. v3

10

v2

v6v4

v1

v3

v5

v7

v6

v5

v

t
v1

v2

v3

v4

v7

v5,v6

Timing Diagram

Resource Diagram

v2

memory area

v4,v7

v3v1

resource

costs

SW

HW

SW

HW

shared

Figure 4: Partitioned system

is executed unshared on the hardware (x3;0 = 1). The other four nodes v4; : : : ; v7 are

executed shared on the hardware. In total, 2 interfaces are needed: i2;4 = i1;3 = 1. The

timing diagram shows that unshared nodes in hardware (v3) can be executed in parallel

to instances of the same entity (v4). Shared nodes (v5; v6) have to be sequentialized, but

result in less hardware area as shown in the resource diagram.

5.2 The Constraints

The following constraints have to be ful�lled:

1. General Constraints:

Each node vj is executed exactly on one target architecture component tak.

8j 2 J : xj;0 +
X
k2K

yj;k = 1 (2)

2. Resource Constraints:

The values for used data memory Cdm
k (eq. 3) and program memory Cpm

k (eq. 4)

on each processor tak may not exceed a given maximum. The used hardware area

Ca
0 (eq. 5) is the sum of hardware area of unshared instances, shared entities,

and the total interface area CIa0 (eq. 16). Ca
0 may not exceed a given maximum.

11

8k 2 Knf0g : Cdm
k =

X
l2L

shl;k � c
dm
l;k �MAXdm

k (3)

8k 2 Knf0g : C
pm
k =

X
l2L

shl;k � c
pm
l;k �MAX

pm
k (4)

Ca
0 =

X
j2J

xj;0 � c
a
j;0 +

X
l2L

shl;0 � c
a
l;0 + CIa0 �MAXa

0 (5)

3. Timing Constraints:

The timing costs cannot be calculated by accumulating the execution time of the

nodes, because nodes, that are not shared on the ASIC can be executed in parallel.

To determine the starting time and ending time for each node, scheduling has to

be performed. The execution time TD
j (eq. 6) of vj is either the hardware or the

software execution time. The ending time TE
j (eq. 7) is the sum of starting time

T S
j and execution time TD

j . The starting time T S
j (eq. 8) of nodes have to be in

their ASAP/ALAP-range which can be calculated in a preprocessing step. Data

dependencies (eq. 9) have to be considered for all edges e = (vj1; vj2) including

interface communication time T I
j1;j2

of equation 14. The system execution timeC t

(eq. 10) is the maximum of all ending times and may not violate the constraint.

8j 2 J : TD
j = xj;0 � c

th
j;0 + yj;0 � c

th
j;0 +

X
k2Knf0g

yj;k � c
ts
j;k (6)

8j 2 J : TE
j = T S

j + TD
j (7)

8j 2 J : ASAP (vj) � T S
j � ALAP (vj) (8)

8e = (vj1; vj2) 2 E : T S
j2
� TE

j1
+ T I

j1;j2
(9)

8j 2 J : TE
j � C t �MAX t (10)

12

5.3 Interfacing

An interface has to be realized for an edge e = (vj1; vj2), if vj1 and vj2 are realized on

di�erent target architecture components.

Example 4:

v1

v2 v3

HW

SW

HW:

SW:
v1 v3

v2

Timing:

Figure 5: Interface

In �gure 5 an interface is needed between v1 and v2, because v1 is realized in software

and v2 in hardware. The interface causes a delay between the ending time of v1 and the

starting time of v2 which is needed for communication between the processor and the

hardware.

With help of the interface 0/1-variable ij1;j2 the following interface costs can be calcu-

lated: interface execution time T I
j1;j2

(eq. 14), interface hardware area AI
j1;j2

(eq. 15),

and the area of all interfaces CIa0 (eq. 16).

8e = (vj1; vj2) 2 E :

ij1;j2 � xj1;0 + yj1;0 +
X

k2Knf0g

yj2;k � 1; (11)

ij1;j2 � xj2;0 + yj2;0 +
X

k2Knf0g

yj1;k � 1; (12)

ij1;j2 �
X

k12Knf0g

X
k22Knf0g;k26=k1

yj1;k1 + yj2;k2 � 1; (13)

ij1;j2 ! minimize

T I
j1;j2

= ij1;j2 � ci
t
j1;j2

(14)

AI
j1;j2

= ij1;j2 � ci
a
j1;j2

(15)

CIa0 =
X

e=(vj1 ;vj2)2E

AI
j1;j2

(16)

13

5.4 Sharing

An entity enl is shared on hardware ta0 (eq. 17), if at least two nodes vj1; vj2 which are

instances of entity enl are executed shared on ta0. An entity enl is shared on processor

tak (eq. 18), if at least one instance of entity enl is executed on tak.

8l 2 L : 8j1; j2 2 J : I(vj1) = I(vj2) = enl : shl;0 � yj1;0 + yj2;0 � 1 (17)

8k 2 Knf0g : 8l 2 L : 8j 2 J : I(vj) = enl : shl;k � yj;k (18)

5.5 Scheduling

Two nodes vj1; vj2 which can be executed in parallel have to be sequentialized, if

� vj1 and vj2 are executed on the same processor or

� vj1 and vj2 are shared on the hardware.

To sequentialize two nodes vj1; vj2 on a target architecture component tak, the binary

decision variables bj1;j2;k and bj2;j1;k are used.

Example 5:

v1

v2

v4

v3

v4

v1 v2

HW:

v4

SW:
HW

or

HW:

SW:
v1 v3 v2

Execution in sequenceSW

v3

Figure 6: Scheduling

In �gure 6 v2 and v3 have to be sequentialized, because both are executed on the same

processor. Therefore, the starting time of v2 has to be greater or equal than the ending

time of v3 or vice versa.

14

If two nodes vj1 ; vj2 are sequentialized, then the scheduling variables bj1;j2;k and bj2;j1;k

have to be di�erent, otherwise both are 1. With bj1;j2;k (eq. 19-22) nodes can be

sequentialized (eq. 23,24).

bj1;j2;k + yj1;k � 1 (19)

bj1;j2;k + yj2;k � 1 (20)

bj1;j2;k + bj2;j1;k � 1 (21)

bj1;j2;k + bj2;j1;k + yj1;k + yj2;k � 3 (22)

8k 2 K : T S
j1

� TE
j2
�1 � bj1;j2;k (23)

T S
j2

� TE
j1
�1 � bj2;j1;k (24)

5.6 Heuristic Scheduling

Optimal scheduling of the nodes is a great problem, because the number of the 0/1-

variables bj1;j2 ;k can grow quadratically in the number of nodes. An idea to solve this

problem is to execute partitioning while iterating the following steps:

1. Solve an IP-model for the hardware/software mapping with help of approximated

time values.

2. Solve an IP-model for calculating an exact schedule with nodes mapped to hard-

ware or software.

3. If the resulting total time violates the timing constraint, repeat the �rst two steps

with a timing constraint that is tighter than the approximated total time of step

1. (see �gure 7).

Example 6:

The �rst partitioning results in an approximated execution time which ful�lls the given

timing contraint. However, the exact execution time violates this constraint. For this

reason, a second partitioning with a new timing constraint is executed. This new con-

straint is tighter than the approximation of the �rst partitioning. The second parti-

tioning results in a decreased approximated execution time. The exact execution time

of the second partitioning ful�lls the original timing constraint. Therefore, the second

partitioning represents the solution.

15

t t

Exact

CONSTRAINT

Approximation

Exact

Approximation

1. Iteration 2.Iteration

new Constraint

Figure 7: Heuristic scheduling

The following constraints are used additionally to the equations 6-10 to approximate

time values:

� The starting time of a node vj is equal or greater than the accumulated software

execution times of all predecessor nodes vj (eq. 25) and the accumulated hardware

execution times of all shared predecessor nodes of vj (eq. 26).

8k 2 Knf0g : 8j 2 J : T S
j �

X
i2J;vi2Pred(vj)

yi;k � c
ts
i;k (25)

8j 2 J : T S
j �

X
i2J;vi2Pred(vj)

yi;0 � c
th
i;0 (26)

� The starting time of a node vj is equal or greater than the sum of the ending

time of the dominator node vi of vj and the software execution times on processor

tak of all nodes on the paths between vi and vj (eq. 27). Equation 28 de�nes

the same constraint for the hardware execution times of all shared nodes on the

paths between vi and vj.

8j; j 0 2 J : vj0 2 Dominator(vj) :

8k 2 Knf0g : T S
j � TE

j0 +
X

i2J;vi2Path(vj0 ;vj)

yi;k � c
ts
i;k (27)

T S
j � TE

j0 +
X

i2J;vi2Path(vj0 ;vj)

yi;0 � c
th
i;0 (28)

16

Example 7:

v9

v7v4 v5

v1

v12

v3

v6

v10

v11

v2

v8

en1

en0

in HW

in HW

en1

shared

v3 v6 v7v9 v10 v11

v12

v2 v4 v5 v8

v1in SW

in SW

Timing:en0

Figure 8: Time approximation used in heuristic scheduling

The partitioning graph in �gure 8 contains the following dominator nodes:

Dominator(v8) = v2, Dominator(v11) = v3, Dominator(v12) = v1. For this reason

the starting time of v8 is greater or equal than the sum of the ending time of v2 and

the hardware execution times of v4 and v5, because v4 and v5 are shared. The starting

time of v11 is greater or equal than the sum of the ending time of v3 and the software

execution times of v6, v7, v9, v10, because these nodes are realized on the same processor

and have to be executed sequentialized.

17

6 Results

The interesting parameter for partitioning is the number of nodes n which have to

be partitioned. For this reason, we have developed some examples containing a lot of

instances of small entities. The heuristic partitioning approach can be evaluated by

examining the deviation between the exact and the approximated solution and by the

di�erent runtimes of solving the IP-models. If the heuristic partitioning approach does

not consider interfacing, then the results are always exact, and therefore optimal. If

interfacing is considered however, then the approximated system execution time may

di�er from the exact value. We have calculated the exact and the approximated sys-

tem execution time, considering interfacing, for 6 di�erent systems. For each system

solutions have been calculated for a set of constraints. In �gure 9 it is shown that the

-5.13%

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

design

ex
ec

ut
io

n
tim

e
[n

s]

19

19

16

16

13

13

10

10

7

7

4

4

Figure 9: Exact and approximated system execution time

approximated execution time is equal or very close to the exact value. In �gure 10

the maximal and the average deviations of both execution times for all 6 systems are

depicted. The maximal deviation between the exact and the approximated execution

time is 5:13%, the average deviation is smaller than 1% for all examined systems. The

runtimes (CPU seconds of a Sun SPARCstation20) to solve these examples considering

interfacing and sharing are depicted in �gure 11. The maximal runtime of the 6 ex-

amined systems has been 29 seconds. Compared to the heuristic approach, the optimal

approach (see table 1) has a drastic increased runtime. Thus, the heuristic approach

is superior to the optimal approach, because the results are always nearly optimal and

the runtimes have been drastically reduced.

18

4 7 10 13 16 19

0

1

2

3

4

5

6

de
vi

at
io

n
[%

]
number of nodes

Figure 10: Maximal and average deviations

1 3 5 7 9 11 13 15 17 19

4
10

16
0

10

20

30

40

50

60

70

ru
nt

im
e

[s
]

design

n=

Figure 11: Runtimes of the heuristic approach

n Method 1 2 3 4 5 6 7 8

4 optimal 2 3 3 1 - - - -

4 heuristic 2 1 1 0 - - - -

7 optimal 9 32 59 246 135 44 12 8

7 heuristic 1 1 2 2 1 1 1 1

Table 1: Runtimes of the exact and the heuristic approach

19

7 Conclusion

This paper presents a new approach to full-automated hardware/software partitioning

supporting multi-processor systems, interfacing and hardware sharing. The partition-

ing approach itself is based on integer programming leading to optimal results. In

contrast to other approaches, where hardware and software costs are estimated, our

approach follows the idea of 'using the tools' for cost estimation. The disadvantage of

an increased calculation time is compensated by better metrics. The presented parti-

tioning results are very promising, because (nearly) optimal results are calculated in

short time. Future work will deal with the iterative partitioning approach to improve

the design successively. Design studies of real system level examples will be performed

to examine our approach and the idea of 'using the tools' for cost estimation.

20

References

[EHB93] Rolf Ernst, J�org Henkel, and Thomas Benner. Hardware-software cosynthesis

for microcontrollers. IEEE Design & Test, Vol.12, pages 64{75, 1993.

[EPD94] Petru Eles, Zebo Peng, and Alexa Doboli. VHDL system-level speci�cation

and partitioning in a hardware/software co-synthesis environment. Third Interna-

tional Workshop on Hardware/Software Codesign, Grenoble, pages 49{55, 1994.

[GCJDM92] Rajesh K. Gupta, Claudionor Nunes Coelho Jr., and Giovanni De Micheli.

Synthesis and simulation of digital systems containing interacting hardware and

software components. 29th ACM, IEEE Design Automation Conference, pages

225{230, 1992.

[HE94] D. Henkel J. Herrmann and R. Ernst. An approach to the adaption of estim-

ated cost parameters in the cosyma system. Third International Workshop on

Hardware/Software Codesign, Grenoble, pages 100{107, 1994.

[HEY+95] J�org Henkel, Rolf Ernst, Wei Ye, Michael Trawny, and Thomas Benner.

Cosyma: Ein system zur hardware/software co-synthese. GME Fachbericht Nr.

15 Mikroelektronik, pages 167{172, 1995.

[JEO+94] Axel Jantsch, Peeter Ellervee, Johnny �Oberg, Ahmed Hemani, and Hannu

Tenhunen. Hardware/software partitioning and minimizing memory interface

tra�c. European Design Automation Conference (EURO-DAC), pages 226{231,

1994.

[KL94] Asawaree Kalavade and Edward A. Lee. A global critically/local phase driven

algorithm for the constrained hardware/software partitioning problem. Third In-

ternational Workshop on Hardware/Software Codesign, Grenoble, pages 42{48,

1994.

[KL95] Asawaree Kalavade and Edward A. Lee. The extended partitioning problem:

Hardware/software mapping and implementation-bin selection. Proceedings of the

6th International Workshop on Rapid Systems Prototyping, 1995.

21

[LMD94] B. Landwehr, P. Marwedel, and R. D�omer. OSCAR: Optimum Simultaneous

Scheduling, Allocation and Resource Binding Based on Integer Programming. Pro-

ceedings of the EURO-DAC, pages 90{95, 1994.

[PK93] Zebo Peng and Krzysztof Kuchcinski. An algorithm for partitioning of ap-

plication speci�c systems. Proceedings of the European Conference on Design

Automation (EDAC), pages 316{321, 1993.

[VGG94] Frank Vahid, Jie Gong, and Daniel Gajski. A binary-constraint search

algorithm for minimizing hardware during hardware/software partitioning.

European Design Automation Conference (EURO-DAC), pages 214{219, 1994.

22

