
Code Generation Techniques for
Irregular Architectures

Steven Bashford

Lehrstuhl Informatik XII
University of Dortmund

Report No. 596

November 1995

Code Generation Techniques for Irregular
Architectures

Steven Bashford Lehrstuhl Informatik XII
University of Dortmund

Report No. 596

November 1995

Abstract

The fast development of many different ASIPs make demands of rapid availability of dedic-
ated compilers. Fast retargeting is a major aspect, while fast compilation times are of minor
importance. There are also new demands in the quality of the generated code. Irregular
properties together with fine–grain parallelism given by a target architecture have to be ef-
fectively supported by the compiler. This report is focused on the traditional tasks of code
generation — code selection, register allocation, and instruction scheduling. The major
subject is to expose the tendencies of research of code generation techniques in recent years,
and survey their features with regards to support for irregular architectures, fine–grain par-
allelism, retargetability, and phase coupling. The report outlines the preferable techniques
involved in code generators. Features of irregular architectures being sufficiently supported
by these techniques are examined. The insufficiencies with regards to irregular architec-
tures are described and approaches to overcome them are described. The essential problems
arising are due to mutual dependencies among the tasks of code generation. Thus, phase
ordering problems and phase coupling approaches are a very important issue of the report.
Retargeting is discussed with regards to retargetability of the described techniques, but also
with regards to the quality of the generated code. Relations of structural and behavioral
models are exposed, addressing the issue of supporting both, the design process of the target
architecture and effective retargeting of all tasks of code generation.

Contents

1 Introduction 1
1.1 Scope of the Report . 1
1.2 Structure of the Report . 3

2 Intermediate Representations 5
2.1 Introduction . 5
2.2 Concepts of Representation . 7
2.3 Graph–Based Representations . 8

2.3.1 Terminology . 8
2.3.2 Control Flow Graph . 8
2.3.3 Control Dependence Graph . 10
2.3.4 Def–Use Chains, Data Dependence Graphs and Data Flow Graphs . 12
2.3.5 Program Dependence Graph . 14
2.3.6 Global Unified Resource Requirement Representation 16
2.3.7 Other Works . 16

2.4 Summary . 17

3 Retargetable Code Generation 18
3.1 Introduction . 18
3.2 Machine Operations and Machine Instructions 20

3.2.1 Microoperations and Microinstructions 21
3.2.2 From Microoperations to Machine Operations 22
3.2.3 Machine Operation Pattern . 23
3.2.4 Multicycle Machine Operations 23
3.2.5 Conflicting Machine Operations 24
3.2.6 Encoding of Machine Instructions 26

3.3 Operation Specification . 29
3.3.1 Abstract Machine Operations . 31
3.3.2 Intermediate Representation and Machine Operation Patterns 34

3.4 Summary of Notions . 34

4 Code Selection 36
4.1 Introduction . 36
4.2 Formal Foundations of Tree Pattern Matchers 38

4.2.1 Tree Pattern Matching . 39

i

ii CONTENTS

4.2.2 Regular Tree Grammars and Tree Parsing 42
4.2.3 Finite Tree Automata . 45

4.3 Generation of Code Selectors . 48
4.3.1 Code Selector Specifications . 51

4.4 Support of Architectural Features . 55
4.5 Retargeting: Extracting Code Selector Specifications from HDLs 58
4.6 Summary . 59

5 Register Allocation 60
5.1 Introduction . 60
5.2 Foundations of Graph Coloring . 61
5.3 Graph Coloring Register Allocators . 65

5.3.1 The Yorktown Register Allocator 67
5.3.2 Piority–Based Coloring . 68
5.3.3 Optimistic Coloring . 70
5.3.4 Hierachical Coloring . 72
5.3.5 Other Approaches . 72

5.4 Support of Architectural Features . 72
5.5 Retargeting . 76
5.6 Summary . 77

6 Instruction Scheduling 78
6.1 Introduction . 78
6.2 Local Compaction . 79
6.3 Global Instruction Scheduling . 83

6.3.1 Trace Scheduling . 84
6.3.2 Percolation Scheduling . 85
6.3.3 Region Scheduling . 88

6.4 Support of Architectural Features . 89
6.5 Retargeting Instruction Schedulers . 90
6.6 Summary . 91

7 Phase Coupling 93
7.1 Phase Ordering Problems . 93
7.2 Single Covering (Level–0) . 95

7.2.1 Recomputation (Rematerialization) 95
7.2.2 Delayed Binding . 95
7.2.3 Taking into Account Potential Parallelism and Limited Registers . . 96

7.3 Data Routing (Level–1,2) . 97
7.4 Integrated Code Selection (Level–3) . 98

8 Timing Constraints 99

9 Summary 101

Chapter 1

Introduction

Application specific integrated circuits (ASICs) were developed for giving highly special-
ized, effective hardware support for certain applications, e.g., audio and video applications.
Application specific instruction set processors (ASIPs) are a trade–off between ASICs and
general purpose processors, with some specific hardware support but still being program-
mable. Thus, developed for the effective support of specific applications, ASIPs contain a
certain degree of flexibility, allowing late changes, error corrections, and readjustments to
related applications. Hence, the increasing usage of ASIPs is motivated by advantages as
late design modifications, design error correction, and reuseability. Optimizing compilers
are demanded for the reuseability of the software developed for certain ASIPs. But as the
development of ASIPs is getting faster, due to the support of sophisticated CAD–tools, such
compilers must be rapidly readjustable to new target architectures. Only few algorithms are
implemented on a certain ASIP, thus, the costs for the development of a dedicated compiler
must be in relationship to its effective usage. In this context the importance of retargetable
compilers is increasing. Specification models for utilizing the design process are of interest.
I.e., description techniques are required, that support both, the effective retargeting of the
compiler and the adaptation to the design and synthesis of the hardware. There are new
demands in the quality of the generated code. High quality code is important for aspects
like size of the hardware, power–usage, and in the context of timing constraints predicting
a specific response time behavior for an application. Therefore, properties given by the
target architecture should be effectively supported by the compiler. Irregular architectures
with fine–grain parallelism lead to very strong mutual dependencies of the subtasks of the
compiler. A strict ordering of these subtasks often restricts the quality of the produced
code. Thus, an integration (phase coupling) of the tasks is another issue of interest. High
compilation times are of minor concern in this contect.

1.1 Scope of the Report

The report is concerned with retargetable code generation with the aim of high quality code
generation. It constitutes an outline of recent code improving techniques. Thereby, it is
focused on the traditional tasks of code generation: code selection, register allocation, and
instruction scheduling. The primary goal is to expose the following aspects:

1

2 CHAPTER 1. INTRODUCTION

� Describe the basic concepts, preferable techniques (incorporated in code generation),
and the tendencies of research, with regards to code selection, register allocation, and
instruction scheduling.

� Analysis of techniques with regards to supporting irregular architectures with fine–
grain parallelism. Thereby, exploitation of the following provided features of the
target machine are of major concern:

– irregular register sets and register classes;

– complex data pathes with restricted interconnection; i.e., not all register sets are
connected with each other, and functional units do not have general access to all
register sets;

– instruction level parallelism.

Issues of secondary concern, but also incorporated in this report, are:

– timing constraints given by the target architecture;

– exploitation of features provided by autoincrement/decrement registers.

The basic problems, insufficiencies, and superimposed solutions to solve the problems
are described.

� The essential problems arising are due to mutual dependencies among the tasks of code
generation. Thus, phase ordering problems and phase coupling approaches are a
very important issue of the report.

� Retargeting of code generation was mentioned to be an important subject; this item is
discussed with regards to:

– retargetability of the described techniques;

– quality of the generated code;

– relations of essential entities of the hardware and specification models.

The last item addresses the issue of supporting the design process of the target archi-
tecture. This requires specification models that enable both

– utilizing the design of hardware together with the synthesis based on the specific-
ation;

– effective retargeting of all tasks of code generation.

The relations of structural and behavioral (instruction set based) models are discussed.

� Aspects of timing constraints, enforcing a certain timing behavior of the algorithms
(to be compiled), are itemized.

1.2. STRUCTURE OF THE REPORT 3

Syntactic Analysis

Semantic Analysis

Machine-Independent

Front-End Code-Generator

Optimizations

Code Selection
Register Allocation

Instruction Scheduling
Source Program

Peephole Optimizations

Intermediate Representation

Machine Code

Syntactic Analysis

Semantic Analysis

Machine-Independent

Front-End Code-Generator

Optimizations

Code Selection
Register Allocation

Instruction Scheduling
Source Program

Peephole OptimizationsIntermediate Representation

Target Machine Code

Machine-(In)dependent
Optimizations

Code Selection

Instruction Scheduling Register Allocation

Phase Coupling

IR IR

IR
IR=Intermediate Representation

Figure 1.1: Phases of a Compiler

The report is not intended as an introduction to code generation. Knowledge about the
basic foundations of code generation techniques is assumed (e.g., [ASU86]). However,
introductions to the basic notions and concepts are given in each section. It enables the reader
to class notions and concepts, and constitutes a basis for further detailed investigations.
This report constitutes no criticism on code generation techniques. All techniques examined
were basically developed with certain classes of architectures in mind. Certainly, they
produce very sophisticated results with regards to their suppositions. It is tried to emphasize
the requirements and problems when irregular architectures with fine–grain parallelism are
incorporated.

1.2 Structure of the Report

In figure 1.1 an overview of the compilation process is given. The front–end performs the syn-
tactic and semantic analysis of the source program resulting in an intermediate representation
of the source program. Some machine independent optimizations may follow, generating the
final input to the back–end of the compiler. The code generator takes this input and generates
target machine code, optionally optimized by a succeeding peephole optimization. The report

4 CHAPTER 1. INTRODUCTION

is organized as follows: chapter 2 is concerned with an outline of intermediate representa-
tions and their impact on code generation; a short summary of basic compiler optimizations
is included. In chapter 3 the task of retargetable code generation is described. It introduces
the basic terminology and points out the necessary issues of retargeting. Chapters 4 – 6
are related with the traditional code generation phases code selection, register allocation,
and instruction scheduling. These sections are organized as follows: a short introduction of
basic concepts is given; the preferable techniques developed in recent years are described;
their abilities/insufficiencies in supporting features of irregular architectures and fine–grain
parallelism are outlined; approaches to overcome the basic problems and drawbacks are
described; the retargetability of techniques is discussed. Chapter 7 will describe the phase
ordering problems in the context of irregular architectures and instruction level parallelism.
It is concerned with drawbacks of the code generation tasks arising from strict decoupling
and ordering of the code generation tasks. Recent phase coupling approaches are outlined.
In chapter 8 a short summary of timing constraint aspects is given. Chapter 9 summarizes
the major issues of the report.

Chapter 2

Intermediate Representations

In this chapter an outline of existing intermediate program representations is given, with
priority on graph based representations. The basic notions will be introduced and special
interest is addressed to graph based representations. For the interested reader this chapter
serves as a source for further investigation by several references to recent approaches in this
area. The chapter is no introduction to intermediate representations. The reader unfamiliar
to intermediate representations is refered to [ASU86] or [WM95].

2.1 Introduction

As shown in figure 1.1, the process of compilation can be divided into the following phases:

� syntactical analysis

� semantical analysis

� program optimizations

� code generation

The first two phases check for the syntactical and semantical correctness of a source program,
resulting in a certain intermediate representation (IR) of the program, being amenable to
further program optimizations and code generation. The choice of an IR has profound effect
on the design, complexity and implementation of optimizations in a compiler. Some of the
well known program optimizations are:

� Constant Folding: Operands of an operation are all constants, therefore the result can
be replaced by the computed constant result.

� Copy Propagation: Removing assignments between variables by using the original
variable whenever possible.

� Code Motion: Operations are moved to program regions where they are less frequently
executed, e.g. moving loop–invariant code out of loops.

5

6 CHAPTER 2. INTERMEDIATE REPRESENTATIONS

� Dead Code Elimination: Elimination of instructions that are known to be never ex-
ecuted.

� Common Subexpression Elimination: Finding operations that compute the same result,
keeping the original result available in a certain destination and substituting these
operations by the destination (most prominent technique is value numbering).

� Redundancy Elimination: It determines instructions which compute the same result
and eliminates superfluous recomputations.

� Strength Reduction: Reducing an expensive operation to a less expensive one.

� Evaluation Order Determination: Reordering of statements to reduce the amount of
registers used to evaluate certain expressions.

� Branch Chain Elimination: Changing of branches that transfers control to another
branch to branch directly to the destination of the second branch.

Good intermediate representations (IR) are of much interest regarding retargetable code gen-
eration and there are several desirable characteristics an intermediate representation should
have, respectively:

� Machine independence: The IR should be suitable to a wide spectrum of architectures,
which is an important aspect for using it in a retargetable code generator (and prevents
the rewriting of the front–end for retargeting a compiler to a new target machine), while
still utilizing a wide spectrum of optimizations.

There are several levels of abstraction covering the representation of source level
operators up to the description of primitive operations on the register transfer level. The
usage of source level operators has several advantages, e.g. being easy to construct and
easy to understand. It also offers the highest amount of portability. Since retargetability
is the issue of interest this level is the most adequate to be used. Also, control flow can
be represented at different levels. It can be represented by using the control structures
of the source language or making the branching structure explicit by using conditional
and unconditional jumps. A description of the advantages and disadvantages of the
different abstraction levels and representations can be found in [Bra95].

� Exploitation of parallelism: It should be possible to easily extract potentially coarse
grain (task level) and fine grain (instruction level) parallelism. A program representa-
tion should not only facilitate the detection of parallelism but also should easily enable
program transformations that increase opportunities for parallelism.

� Well–defined: The IR should be well defined and should have a clear operational
semantics making it usable for abstract interpretation (and verification).

� Suitability for subsequent integration of aspects of the target machine with the aim of
enabling easy detection and exploitation of capabilities of the target architecture.

2.2. CONCEPTS OF REPRESENTATION 7

2.2 Concepts of Representation

Two basic concepts of representing programs are distinguished: the first one is the repres-
entation of a program by a sequence of abstract machine instructions. The second concept
relies on graph based representations.

Abstract Machine Instructions Abstract machines are designed to simplify the compilation
process for specific language classes like imperative languages, functional languages
or logic programming languages. An abstract machine instruction performs complex
tasks and often fully implements a high level language construct, e.g. procedure calls
or memory management.

A customary intermediate language for imperative languages is the 3–address code
[ASU86]. Some of the frequently used instructions are

� assignment statements of the form x := y bop z, x := op y or x:=y,
where bop represents a binary operator and op a unary operator;

� indexed assignments x:=y[i] or x[i]:=y;

� unconditional jumps goto L;

� conditional jumps if x relop y goto L.

There are also instructions for parameter passing and subroutine calls and adress–, and
pointer assignments.

The SECD–machine and the G–machine [FH88] are abstract machines for the execution
of functional languages. The WAM (Warren Abstract Machine) is the most frequently
used machine model used for implementing logic programming languages like Prolog.
For more detailed descriptions on abstract machines and abstract instruction sets see
[WM95, Kog91].

Problems arise, when the level of abstraction is too high. Global data flow analysis
can become very difficult when details that are necessary for detection of potentially
optimizations are not explicitly presented.

Graph–Based Representations In graph based representations certain dependencies of pro-
gram entities are made explicit, e.g. data flow or control flow. Therefore graph–based
representations offer better possibilities for program analysis and program transform-
ation. In these representations entities of the program are associated with nodes in a
graph where dependencies represent edges between nodes.

In general a program represented by a sequence of abstract machine instructions can be
transformed into a graph–based representation. But determining the dependencies becomes
harder when instructions represent complex tasks.
There are features inherent to the represented language that also effect analysis–, and optim-
ization techniques. Two very important and closely related features are:

Multi Assignment Form Imperative languages usually allow multiple assignments to the
same variable. An IR allowing multiple assignments has impact on the analysis

8 CHAPTER 2. INTERMEDIATE REPRESENTATIONS

methods used, e.g. a redefinition of a certain variable introduce an anti dependence
that restricts the reordering of statements in the program.

Static Single Assignment Form Static Single Assignment (SSA) form was recently pro-
posed by [CFR+89, CFR+91]. In an imperative programming language the same
variable can be assigned more than one time. In SSA each variable is only defined
once, therefore every redefinition of a variable and corresponding uses are renamed
uniquely. When control flow is coalescing, more than one definition of a variable can
reach a use of the variable. In this case the dummy function� is included, which selects
one of its parameters, depending on the control flow that was taken during runtime to
reach the �–function. In the SSA all anti dependencies and output dependencies are
eliminated.

Imperative languages with multi assignments can easily be transformed into SSA
[CF87]. A detailed overview of SSA is given in [San94, pp.8–9]. There are also many
extentions of SSA e.g. [Bra95].

2.3 Graph–Based Representations

There are many works concerned with graph–based intermediate representations which often
results in different definitions of the same notions. Due to that fact, the definitions introduced
here may differ from one or the other definitions given in other works. I tried to choose a
common description frame–work for a compareable introduction of the entities and features
of the intermediate representations stated.

2.3.1 Terminology

In the following we assume that an assignment statement is of the form x:=y op z, and a
conditional expression is a logical expression that evaluates to either of the values true or
false. A definition of a variable v is an assignment statement with destination v, i.e. v on
its left hand side. The use of variable v is an occurance of v in the right hand side of an
assignment statement or in a conditional expression.
A use of variable v is reachable by a definition of v if the execution of the definition may be
followed by execution of the use of v without intervening execution of any other definition
of variable v.

2.3.2 Control Flow Graph

The control flow graph directly reflects the branching structure of a program. There are
several different definitions of the notion control flow graph. The definition introduced here
differs from that given in [ASU86] and is similar to that given in [SS93].

Definition 2.3.1 The contol flow graph (CFG) is a directed labeled graphCFG = (N;Ecf ; �),
where:

2.3. GRAPH–BASED REPRESENTATIONS 9

start

x := 1

y := 2

if x=1

y := y+1

.. := ... y ...

.. := ... x ...

stop

1: x := 1
2: y := 2
3: if x=1 then
4: y := y+1
5: .. := ... y ...
6: .. := ... x ...

Control Flow

Statement Node

Conditional Node

start

x := 1

y := 2

if x=1

y := y+1

.. := ... y ...

.. := ... x ...

stop

BB1

BB2

BB3

(a) Program (b) Statement Level (c) Basic Block Level

T F
F

U

U

U

U

U

U

T

U

U

U

Figure 2.1: Control Flow Graph

� N is a finite set of labeled nodes, representing either an assignment statement or a
conditional expression. There are two special, non–labeled nodes nstart 2 N and
nstop 2 N .

� Ecf � N �N � fT;F;Ug is a set of labeled edges, representing possible transfer of
control between the nodes.

� � : N ! fSTART; STOP;COMPUTE;PREDICATEg is a type function identi-
fying the type of a node. � (nstart) = START and � (nstop) = STOP .

For every node n 2 N there exists a directed path from nstart to n and there exists a
directed path from n to nstop. Nodes of type COMPUTE are labeled with an assignment
statement and have only one unique successor with the corresponding edge labeled with U
(unconditional). Nodes of type PREDICATE are labeled with a conditional expression.
They always have two successors and outgoing edges are labeled with T and F , denoting the
flow of control in case the conditional expression evaluates to true and false, respectively.

In [ASU86] the CFG is constructed with nodes representing basic blocks. In this case an
edge from node x to node y exists, if the last instruction of block x is a conditional or
unconditional jump to the first instruction of block y. In figure 2.1 an example program
with its corresponding CFG representation is shown. Figure 2.1(c) shows an equivalent
representation on basic block level. The following definition of basic blocks is based on the
definition of CFGs:

Definition 2.3.2 Given a CFG = (N;Ecf ; �). A basic block is a path P = [n1; : : : ; nmax]
(n1; : : : ; nmax 2 N) of maximal length, such that at most noden1 has more than one incoming
edge, and at most nmax has more than one outgoing edge.

10 CHAPTER 2. INTERMEDIATE REPRESENTATIONS

A graph consisting of nodes corresponding to basic blocks and edges that denote control flow
between basic block will be called basic block graph.
An advantage of CFGs is their compact representation and their easy operational semantics.
Although being easy to implement, this approach has several drawbacks. Disadvantages
arise in the context of optimizations where the usage of the CFG leads to unefficient imple-
mentations, i.e. information is passed throughout the complete control flow graph, even in
program regions where it is not needed [PBJS90, JP93].

2.3.3 Control Dependence Graph

In contrast to the control flow graph, the control dependence graph explicitly shows the
essential dependencies, i.e. the conditional expressions responsible for the execution of a
statement, depending on the value of conditional expressions during program execution.
The notions introduced here are of great importance, e.g. in the transformation of a program
to SSA and in the definitions for other IRs like program dependence graphs (see 2.3.5).

Definition 2.3.3 A node x is a dominator of a node y, denoted by x4d y (x dominates y)
iff every path from nstart to y contains x [ASU86]. A node always dominates itself.

Definition 2.3.4 The set of dominators of a node x form a chain. x is an immediate
dominator of y iff x4d y and
:9z : x4d z ^ z4d y ^ z 6= x.

Definition 2.3.5 The dominator tree of a CFG is a tree including the nodes of the CFG,
nstart is the root. A dominator tree has edges between nodes x and y iff x is an immediate
dominator of y.

A node x post–dominates a node y, x4p y, iff every path from y to STOP contains x. A
node never post–dominates itself. The reflexive closure of the post–dominance is denoted
by 4p. The least node in the chain of post–dominators of a certain node x is called the
immediate post–dominator of x. The set of post–dominators of x 6= nstop is non–empty,
hence all nodes except nstop have an unique immediate post–dominator. The post–dominator
tree is a directed graph rooted by nstop, and an edge from node x to y denotes, that x is an
immediate post–dominator of y. The post–dominator tree can be computed as the dominator
tree over the reversed CFG.

Example 2.1:

The node of type START is a dominator of every node. In figure 2.1 the node of
type PREDICATE is an immediate dominator of the nodes associated with statement
4 and 5. Statement 4 is no dominator of statement 5. The node of type STOP is a
post–dominator of every node.

Definition 2.3.6 Given a CFG = (N;Ecf ; �). Node x has control dependence on node y
denoted x�acy iff

1. (x; a; tfu) 2 Ecf ,

2.3. GRAPH–BASED REPRESENTATIONS 11

2

5

6

8

9

stop

(a) Control Flow Graph

7

start

4

T F

T

F

T
F

3

1

start stop9

1

2 3

4 5

6 78

T

T

F

F
F

F

T

(b) Control Dependence Graph

F

Figure 2.2: Control Dependence Graph

2. :(y4p x), i.e. y does not post–dominate x, and

3. there exists a non–empty path p = x; a; : : : ; y, such that for any z 2 p with z 6= x,
z 6= y : y4p z.

The index c denotes that �c is a control dependence relation, to distinguish it from the data
dependence relation �d. Ifx�acy, then y4pa. x�acy can also be stated as y is control dependent
of x.

Definition 2.3.7 The control dependence graph (CDG) of a CFG = (N;Ecf ; �) is defined
as a directed graph CDG = (N;Ecd; �) with labeled edges, such that (x; y; tf) 2 Ecd iff
x�acy and (x; a; tf) 2 Ecf and tf 2 fT;Fg.

The source of a control dependence edge is a predicate node. Like in the CFG an edge from
a predicate node is labeled with T or F , indicating the value of the predicate under which the
statement at the sink of the edge will be executed. The construction of the CDG is described
in [GP92].

12 CHAPTER 2. INTERMEDIATE REPRESENTATIONS
start

x := 1

y := 2

if x=1

y := y+1

.. := ... y ...

x := ...

stop

Control Flow

Data Flow y

Data Flow x

x := 1

if x=1

y := 2

y := y+1

.. := ... y ...

(a) Control Flow Graph (b) Def-Use Chains

Figure 2.3: Def–Use Chains

Example 2.2:

In figure 2.2(b) an example of a CDG of the control flow graph in figure 2.2(a) is shown
(the explicit contents of the nodes and the U–labels are omitted). Node 1 has control
dependence on nodes 2 and 3, as these two nodes are only executed if the conditional
expression of node 1 evaluates to true. Node 3 is not control dependent of node 2
because it post–dominates node 2. Node 9 is a post–dominator of every node except
node stop and itself. Therefore it is not control dependent of any node.

2.3.4 Def–Use Chains, Data Dependence Graphs and Data Flow Graphs

A very customary representation of data flow are def–use chains. Def–use graphs are graphs
that have the same set of nodes as the CFG, where edges connect each definition of a variable
to all uses of the variable [ASU86].

Definition 2.3.8 Given a CFG. A def–use chain for a variable v is a node pair (n1; n2) 2
N �N , such that n1 defines v, n2 uses v and n1 reaches n2.

Definition 2.3.9 Given a CFG = (N;Ecf ; �). DUG = (N;Edu; �) is a def–use graph,
such that (n1; n2) 2 Edu iff (n1; n2) is a def–use chain with respect to the CFG.

Example 2.3:

In figure 2.3(a) the control flow graph is augmented with def–use edges for the variables
x and y. Omitting the control flow edges results in the corresponding def–use chains
shown in 2.3(b).

Def–use chains provide partial solutions of the drawbacks of CFGs. Direct information flow
between definitions and uses of a variable is permitted. By this, unnecessary propagation

2.3. GRAPH–BASED REPRESENTATIONS 13

Code Selection

start

x := 1

y := 2

if x=1

y := y+1

... y ...

x := ...

stop

Control Flow

Data Flow y

Data Flow x

x := 1

if x=1

x := ...

y := 2

y := y+1

... y ...

 Output Dependence

Anti Dependence

(a) Control Flow Graph (b) Data Dependence Graph

Figure 2.4: Data Dependence Graph

of information is prevented. Def–use graphs eliminate unnecessary statement orderings,
exposing parallelism.
But also def–use chains suffer from several drawbacks. E.g. they cannot be used for
backward data flow problems (e.g. elimination of redundant computations), because not
enough information about the control flow structure is incorporated. Also, def–use chains
can effect the precision of analysis in forward data flow problems, i.e. they can prevent that
certain sources of optimizations are found that can be determined when using a CFG (e.g. in
constant propagation).

Data Dependence Graphs

Data dependence graphs (DDG) are a generalization of def–use chains, that take into
account the execution reordering constraints between nodes that arise by redefinition of
certain variables. The edges of the DDG represent conflicts between two nodes x and y in
the CFG, i.e. exchanging the execution order of the statements associated with the nodes
changes the semantics of the program.

� Flow Dependence: y is on a path from x to nstop in the CFG, such that the definition
x reaches the use y.

� Anti Dependence: y is on a path from x to nstop in the CFG, such that y subsequently
redefines a variable used in x.

� Output Dependence: subsequent redefinition of the same variable.

These dependencies force strict ordering among the corresponding statements to ensure
program correctness. Figure 2.4(b) shows the DDG of the control flow graph in figure 2.4(a).

14 CHAPTER 2. INTERMEDIATE REPRESENTATIONS

Programs that contain loops must be handled with care. In this case static edges in the DDG
must be distinguished from dynamic edges that order two nodes from successive iterations:

� Loop independent dependence: Dependencies that denote an order of nodes of the
same dynamic iteration.

� Loop carried dependence: Two nodes representing instances of statements in success-
ive iterations.

Data Flow Graphs

Data flow graphs (DFG) represent global data dependence at the operator level. Nodes
in a DFG with no incoming edges represent values and internal nodes represent operators.
DFGs completely abstract from statements and statement ordering. Def–use graphs can be
transformed to a similar representation, where operator nodes are labeled with a (possible
empty) set of variables, representing assignments to the corresponding variables [ASU86].
In [ASU86] this representation is used to represent the data flow of a basic block and is called
the DAG of a basic block (figure 2.5).
There are extended approaches of data flow graphs incorporating control flow, which are often
used in the context of functional languages with semantics based on data flow machines.

t1 := a+b
t2 := c+d
t3 := e-t2
t4 := t1-t3

-

+

+

-

a b e

c d

t1

t2

t3

t4

Figure 2.5: DAG of a Basic Block

2.3.5 Program Dependence Graph

Solutions to overcome the drawbacks of data flow representations use the CFG together
with the DDG (or DFG). However, it is difficult to keep both representations consistent in
the context of program transformations. The problem of maintaining two data structures to
represent the program execution semantics and its dependencies is addressed by the pro-
gram dependence graph. A PDG contains the DDG augemented with control dependence
edges [FOW87]. Therefore it can be stated as the union of the relevant control and data
dependencies. The PDG incorporates the CDG which represents only the essential control
relationships of a program.

Definition 2.3.10 The program dependence graph (PDG) is derived from a given CFG =
(Ncf ; Ecf ; �cf), such that
PDG = (Npd; Ecd; Edd; �pd) with

2.3. GRAPH–BASED REPRESENTATIONS 15

1: i:= 1
2: while (i<10) {
3: j := i+1
4: if (j=7)
5:

else
6:
7: i := i+1

}
8:

Data Dependence

Control Dependence

R1

1 R2 8

P1

R3

P23 7

R4

5

R5

6

T F

T

Figure 2.6: Program Dependence Graph

� Ncf n fnstopg � Npd.

� �pd : N ! fSTART;REGION;PREDICATE;COMPUTEg is a node type
mapping. In contrast to CFGs, nodes with type COMPUTE have no outgoing edges
and there is no STOP node.

� Ecd � Npd � Npd � fT;F;Ug is a set of labeled edges, such that (n1; n2; L) 2 Ecd

identifies a control dependence from n1 to n2 with label L.

� Edd � Npd �Npd �D is a set of labeled edges, such that (n1; n2;D) 2 Edd identifies
a data dependence from n1 to n2 from a set of data dependencies D, e.g. flow–, anti–,
or output dependencies.

The PDG contains the same nodes as the control flow graph and is aughmented with additional
nodes called region nodes. These are inserted into the graph to summarize the set of control
conditions for a node and to group all of the nodes that are executed under the same control
conditions together as the successors of the same region node. Each predicate node has at
most one successor node of type REGION labeled with T or F . Edges from Ecd with the
source node is of type REGION are always labeled with U .

Figure 2.6 shows a small program together with its program dependence graph representation.
Many of the optimizations operate more efficiently on the PDG [FOW87] and also incremental
program transformations on control flow and data flow are permitted. Detailed descriptions
of PDGs are given in [SS93, GP92, FOW87]. There have been efforts to give PDGs a formal
semantics, with the objective for using it in the correctness proofs of program transformations,

16 CHAPTER 2. INTERMEDIATE REPRESENTATIONS

but this has proved to be very difficult [JP93]. Also linearization has been found to be very
difficult using the PDG.

2.3.6 Global Unified Resource Requirement Representation

The global unified resource requirement representation (GURRR) augments the program
dependence graph with information about the resource requirements and resource availability.
It was developed to enable a better integration of register allocation and instruction scheduling,
while taking into account the real requirements of the target machine [BGS95]. Therefore
this approach also considers important aspects for retargetability. The allocation of specific
resources of the target machine is performed while considering the overall execution time of
the program. Another aim of this approach is to define a common base for a high amount of
optimizations and to overcome the drawback of using several different representation, thus
restricting the degree of phase integration.
A major goal is to support instruction level parallelism that is appropriate for a certain target
architecture by detecting regions of the program that are over–utilized, and regions that are
under–utilized with resources. The representation permits to determine the impact of each
decision made with major regards to the execution time of a program.

2.3.7 Other Works

There is a wide spectrum of other IRs and extended approaches of the introduced IRs. An
introduction to this IRs is out of the scope of this paragraph, therefore only some short
remarks on further approaches are given in the following.

Dependence Flow Graph The dependence flow graph is a generalization of def–use chains
and SSA, solving some of the drawbacks shown in the context of CFGs, def–use
chains and PDGs. The dependence flow graph utilizes the propagation of control flow
information, while bypassing informations not relevant to certain regions [JP93, Joh94].
Also, the dependence flow graph has a well–defined semantics [PBJS90].

Parallel Program Graph The parallel program graph (PPG) is a variant of the PDG. It
contains control edges that represent parallel flow of control and synchronization edges
[SS93].

Program Dependence Web The program dependence web (PDW) is an executable pro-
gram representation derived from the program dependence graph and was designed
to support control–driven, data–driven and demand–driven execution. The intention
is to provide a single IR to support multiple styles of programming languages (e.g.
functional and imperative) and multiple architectures (e.g. von Neumann, data flow,
reduction machines) [BMO90].

Hierachical Task Graph The hierarchical task graph (HTG) consists of five types of
nodes:

2.4. SUMMARY 17

� START and STOP : indicating entries and exits to HTGs. In contrast to CFGs
a single HTG may have more than one node of either type START or STOP
according to the fact that a HTG may consist of nodes containing sub–HTGs;

� SIMPLE: contains an instruction;

� COMPLEX: representing a sub–HTG;

� LOOP : represent loops whose body is a sub–HTG;

The HTG is more coarse grained than the PDG. It therefore allows program transform-
ations on a more abstract level. (see [GP92] or [NN93] where the HTG is used for
instruction scheduling).

Restricted Permutation Trees (see [San94]).

2.4 Summary

Intermediate representations have great impact on the effectiveness of optimization with
regards to either implementation and precision of the performed optimizations. The major
goal is to find a single intermediate representation to be used, that enables a high amount of
optimizations to be effectively performed, with special regards to phase integration. There is
a large number of intermediate representations developed in recent years. Control flow graphs
explicitly reflect the original structure of the source program. Several representations were
developed, for only denoting the relevant dependencies of a program, like def–use chains, data
dependence graphs, and control dependence graphs. Program dependence graphs and data
dependence graphs try to overcome the drawback of using several different representations
for a program. Extentions of the program dependence graphs try to integrate aspects of
fine–graine (instruction level) and coarse grain (task or functional level) parallelism and to
integrate aspects of the resource requirements of the target machine.

Chapter 3

Retargetable Code Generation

The chapter gives an introduction to traditional tasks of retargetable code generation: code
selection, register allocation, and instruction scheduling. A small formal model of machine
operations is defined, getting a common frame-work for the description of the subjects of
code generation tasks. The essential entities necessary for retargeting the tasks are exposed.
The chapter is structured as follows:

� Section 3.1 gives a short introduction of the tasks of a retargetable code generator.

� In section 3.2 elementary machine operations are identified. It will be shown how the
entities (i.e. machine resources) of the corresponding target architecture are composed
to yield elementary operations. It is further described how elementary operations are
combined for constituting machine instructions. In section 3.2.1 a representation for
the encodings of machine operations and machine instruction is presented.

� In section 3.3 the elementary entities for retargeting the tasks of code generation
are exposed within operation specifications. The relationship of the intermediate
representation and machine operation is specified.

� The last section summarizes the introduced notions important for further reading of the
report.

3.1 Introduction

The task of code generation is the mapping of an intermediate representation IR of a source
program to a target machine program. The aim of code generation is the selection of a
nearly optimal machine instruction sequence making effective usage of features of the target
machine with respect to the semantics of the initial program. Nearly optimal in this context
means that an optimal solution can not generally be computed because code generation
consists of NP-hard subtasks:

� code selection is the task of mapping an intermediate representation IR to a semantically
equivalent sequence of machine executable operations. There are usually several
semantically equivalent sequences for representing one program. A problem is the
selection of a favourable instruction sequence.

18

3.1. INTRODUCTION 19

+

-
a

b c

Code GeneratorCode Generator
- sub Rt,Rc,Rb

add R,Rt,Ra

Reg

Memory

+

-
a

b c
-

+

+-

Figure 3.1: Retargetable Code Generator

� The goal of register allocation is to map values in the intermediate representation
to physical registers in order to minimize the number of accesses to memory during
program execution. It consist of two subtasks:

– Allocate values to registers over a certain life times of the values. In general the
number of concurrently alive values exceeds the number of registers. Therefore
the register allocator must make decisions upon which values to keep in registers,
with the goal of reducing data transfers. In the context of distrubuted register
sets, a task of increasing importance is to allocate values to certain register sets.

– After allocation, the physical registers where values should reside must be de-
termined. This is the task of register assignment. During register assignment it
has to be known which registers are occupied by which values and which registers
are free for being occupied by new values.

� The traditional task of insruction scheduling is the reordering of machine instruc-
tions with the aim of minimizing spill code. In the context of fine grain parallelism,
instruction scheduling is the task of reordering an instruction sequence for gaining
effective usage of the machines parallelism. This incorporates either the compaction
of parallel executable machine operations into one machine instruction for VLIW like
architectures, or the reordering of machine instructions for avoiding pipeline stalls in
RISC like architectures.

A seldom stated task of code generation is resource allocation. It is concerned with binding
operations and values to machine resources (e.g., functional units and storage resources);
this task is also called binding. Resource allocation can hardly be viewed as a separate task
as each of the code generation tasks is concerned with some forms of binding. Register
allocation can be seen as a subtask of resource allocation. Also, resource allocation can be
performed before or after each task of code generation. A retargetable code generator (fig.
3.1) gets an intermediate representation of the source program and a description of the target
machine. The basic task of a code generator is to identify certain patterns in the intermediate
representation as elementary operations, that can be executed on the target machine. Thus,
an important task of the retargetable code generator is to derive a mapping from operations
occuring in the intermediate representations to target machine operations. Functional units
together with the required allocations of the operands (i.e., the storage resources like registers
or memories where the operands must reside) must be determined, and the corresponding

20 CHAPTER 3. RETARGETABLE CODE GENERATION

encodings of machine instructions must be extracted. In some specifications this relationship
between the intermediate representation and machine instructions are explicitly exposed. A
code generator generator (fig. 3.2) uses a specification that explicitly reflects mappings from
patterns occuring in the intermediate representation to the corresponding target machine
instructions. The output of a code generator generator is a code generator that maps the
intermediate representation to the specified target machine code. There are three basic classes
for modelling target machines, depending on the details of information that are available for
a designer:

� behavioral models provide a high abstraction of the hardware. These models are
generally used in code generator generators. E.g., instruction set models reflect the
relations between the intermediate representation and machine instructions, which are
explicitly specified.

� structural models contain more details and are usually specified by hardware de-
scription languages (HDL) (e.g., VHDL [BFMR92], MIMOLA [Mar93, BBH+94]);
generally, more aspects of the target machine can be specified, that cannot be defined
a purely behavioral model (e.g., complex timing behavior). The machine operations
are implicitly inherent and must be extracted from the description. Generally, this is
restricted to single cycle machine instructions.

� mixed models consist of information from both previously mentioned models. In
common, instruction set models are enhanced by additional informations, e.g., used
machine resources, size of storage resourcesor encodings of machine instructions.
These are basically informations, necessary for effectively retargeting register alloca-
tion and instruction scheduling.

The question of which model should be applied depends either on the informations available
to the designer, but also on the class of architecture being modeled. As mentioned, multicycle
machine instructions are hard to be extracted from purely structural models. A behavioral de-
scriptions lacks of informations for retargeting register allocation and instruction scheduling.
It is still a topic of further research finding adequate description models for both of

� utilizing the design process of architectures, and

� support effective retargeting of all the subtasks of code generation.

In the following section elementary operations of a machine are specialized. It is shown how
they are combined to machine instructions.

3.2 Machine Operations and Machine Instructions

To enable an understanding about the interrelations of an intermediate representation and
the target machine code, the elementary operations a target machine is able to execute
are identified. It is shown how this elementary operations are combined to yield machine
instructions. In the following we will define machine operations and machine instructions
based on the terminology developed in the area of microprogramming [DLSM81].

3.2. MACHINE OPERATIONS AND MACHINE INSTRUCTIONS 21

Specification (Behavioral)

Specification (Behavioral)
Reg: +(Reg,Reg) : 1 = add
Reg1,Reg2,Reg3
Reg: -(Reg,Reg) : 1 = sub

Specification (Behavioral)

Specification
Reg: +(Reg,Reg) : 1 = add Reg1,Reg2,Reg3
Reg: -(Reg,Reg) : 1 = sub Reg1,Reg2,Reg3
Reg: Main : 2 = load Main,Reg
Main: Reg : 2 = store Main,Reg

Reg

Memory

+

-
a

b c

Code GeneratorCode Generator
sub Rt,Rc,Rb

add R,Rt,Ra

+

-
a

b c

Code Generator Generator

--

+

Figure 3.2: Code Generator Generator

3.2.1 Microoperations and Microinstructions

A target architecture is well-defined by its storage resources (e.g. register sets, memory)
and operations that can be performed. A microoperation (MO) is an elementary operation
executable by the target machine and performed on data stored in one or more storage
resources (possibly distributed on more than one register set) and stores a result into certain
storage resources. Microperations that can be performed in parallel are combined to a
microinstruction (MI). Microinstructions are controlled by signals from the control word
in the control unit. The control word can be represented by a string of a certain length (called
its bit width or width) over the alphabet f0; 1;Xg. The X is representative for a signal that
can be either 0 or 1 without changing the semantics of any of the MOs within the MI.

A microinstruction can be partitioned into several logical fields, where a certain set of fields
being responsible for initiating certain microoperations. The control unit can be either
hardwired or microprogrammable. A programmable control unit contains a memory called
the control memory. A sequence of microinstructions constitutes a microprogram that is
stored in the control memory. Thereby, microinstructions are stored in certain cells of control
memory. A microinstruction stored in cell n of the control memory is called to be mapped
to instruction cycle n. The control memory can be read-only (ROM) or reloadable to load
new microprograms. The actual control word is determined by the microprogram counter.

Example 3.1:

In figure 3.3 a configuration of a control unit is shown. It has a bit width of twenty bits.
The notation c(m : n) specifies certain bits of the control word, e.g. c(10 : 5) denotes
bits 5 to 10 of the control word c and addresses the register file B. c(11) controls the
ALU F2, i.e. the encoding of c(11) determines the operation performed by F2, i.e. *
or + (c(21) controls the ALU F1, i.e., - or +).

22 CHAPTER 3. RETARGETABLE CODE GENERATION

Incre-
menter

P
Program
Counter

CONTROL

MEMORY

controller

4 4

4

c(3:0)
c(24:0)C

M
U
X

+ -

Reg A

Memory M

>>

Reg B

*+
F1

F2

SH

c(23)c(23)

c(21) c(11)

c(4:4)

c(22)

c(10:5)

c(20:15)

c(8:5)

c(18:15)

c(24)

c(14)

Figure 3.3: Example Architecture

Example 3.2:

We consider the previous example for illustrating the notions microoperations and mi-
croinstructions according to functional units and storage resources of a simple architec-
ture. In figure 3.4 the control unit and control signals are omitted. The figure shows
an architecture that contains functional units F1, F2 and SH . There are three storage
resources: register setA, register setB and the memory M . F1 can perform an addition
or a substraction of two operands stored in register cells of register set A. The result
is stored into register A. Shifting of the first operand is optional. F2 can perform an
addition and a multiplication of operands stored in A or B with the result stored into
register B.

MOs are defined as operations performed on data that resides in storage resources with
results written to storage resources; thus the shifter SH does not constitute a complete
microoperation in this sense. Only in combination with F1 a complete MO is given.
Operands accessable to F2 can reside either in A or B. The result is stored to B . Data
can be loaded from the memory M to A or B and it can also be stored to memory M
from A or B. An illustration of the performable microoperations is shown in figure 3.5.

3.2.2 From Microoperations to Machine Operations

If the source language specifies a microprogram, the task of the code generator is to determine
a corresponding microinstruction sequence. In some architectures this is the only level of
programmability like e.g. some application specific instruction set processors (ASIPS). But
generally there can be higher levels of programmability. In this case a program is a sequence of

3.2. MACHINE OPERATIONS AND MACHINE INSTRUCTIONS 23

+ -

Reg A

Memory M

>>

Reg B

*+F1 F2

SH

Figure 3.4: Simplified Example Architecture

machine instructions stored in an additional memory. When executed, a machine instruction
initiates a microinstruction or a sequence of microinstructions. During program execution the
microprogram usually does not change. Changing the microprogram enables the integration
of late design decisions, correction of design errors and reuseability. Also, the modification
of the target architectures instruction sets is utilized, e.g. instruction sets that support specific
features of programming languages (e.g. WAM or SECD–Machine [Kog91]).
If more abstract levels of visibility of hardware details and of programability are taken into
account, we use the terms machine operation and machine instruction instead of micro-
operation and microinstruction. Generally, a machine operation will denote an elementary
operation on the register transfer level of the target machine, that is visible from the current
point of view (or level of abstraction). A machine instruction can consist of one or more
concurrently executable machine operations if this parallelism is explicitly visible. For ex-
ample, in a VLIW architecture we have explicit instruction level parallelism. A CISC like
architecture does not offer this kind of parallelism explicitly. However, implicitly a CISC
instruction may be implemented by a sequence of microinstructions.

3.2.3 Machine Operation Pattern

Figure 3.6 shows the machine operation patterns. The patterns will be the basic subject for
relating operators in the intermediate representation with target machine operations. Storage
resources are shaded as in the corresponding architecture in figure 3.4. The representation
is based on the symbols of the operators and storage resources and reflects the data flow of
machine operations. Notations of a corresponding register transfer language (see [Man93])
is associated with each the machine operation pattern. The notation describes the register
transfer level behavior of the machine operation patterns , but abstracts from a certain location
(i.e., address of the denoted storage resource).

3.2.4 Multicycle Machine Operations

The view of machine operations we have considered so far indicates that each machine op-
eration is performed in one machine instruction cycle. Generally, a machine operation can
require several instruction cycles. Thereby it occupies a certain set of machine resources in

24 CHAPTER 3. RETARGETABLE CODE GENERATION

+ -

Reg A

Memory M

>>

Reg B

*+F1 F2

SH

+

>>

-

>>

*

+

-

*

Figure 3.5: Elementary Operations

each cycle. If various machine operations take different numbers of cycles to execute, the
meaning of a machine instruction becomes vague. If we now consider machine instructions
and assume that certain fields within the machine instruction initiate certain machine opera-
tions, the execution time for machine operations have to be taken into account when machine
operations are mapped to certain instruction cycles. The point of view is changed from
considering machine instructions consisting of machine operations to machine operations
that are mapped to certain instruction cycles.

Example 3.3:

In figure 3.7 (a) and (b) machine operations with multiple instruction cycles are shown.
In figure 3.7 (b) it is illustrated that certain machine operations can be initiated before
other machine operations terminated, e.g. MO5;MO6 and MO7.

In the following we will basically consider single cycle machine operations. The problems
that are considered in this report are inherent in this restricted model.

3.2.5 Conflicting Machine Operations

We will now discuss demands of concurrent execution of machine operations and introduce
the notion of conflicting machine operations. Thus the point of interest are the reasons that
prevent machine operation from parallel execution. A set of machine opererations can be

3.2. MACHINE OPERATIONS AND MACHINE INSTRUCTIONS 25

*

M ← A

+

B ← +(A,A)

+

+ + +

-

+

>>

A ← +(>>(A),A)

-

>>

A ← -(>>(A),A)

A ← +(A,A) A ← -(A,A)

B ← +(B,B)B ← +(A,B)B ← +(B,A)

*

B ← *(A,A)

* *

B ← *(B,B)B ← *(A,B)B ← *(B,A)

B ← M A ← M M ← B

(1)

(4)

(3)

(2)

(5)

Figure 3.6: Machine Operation Patterns

executed in parallel if no resource conflicts occur. A resource conflict occurs, if the number
of available resources accessed is exceeded. For example, each functional unit can only be
used by one machine operation in each machine instruction cycle. Storage resources only
allow write access according to their number of write ports.

Example 3.4:

In the example architecture an addition with shifting of the first operand can never be
executed in parallel with a substraction, because both operations need the functionol unit
F1. If we assume, that the register sets A is equipped with a single write port, parallel
execution of machine operations involving F1 and a transfer machine operation from
memory to A would also cause a resource conflict.

Another class of resource conflicts can occur if certain machine operations are controled by
the same fields in a machine instruction word. An encoding conflicts occurs if two machine
operations have different encodings for a certain fields. For more details about conflicts and
how to model the detection of conflicts consult [DLSM81, Gas89, Hei93]. If we suppose
single cycle operations, resource conflicts can be mapped to encoding conflicts.

26 CHAPTER 3. RETARGETABLE CODE GENERATION

MO1 MO2 MO3 MO4

MO1 MO2 MO3 MO4

MO5

MO6

MO7

(a)

(b)

Figure 3.7: Machine Operations with Multiple Instruction Cyles

3.2.6 Encoding of Machine Instructions

This subsection is concerned with a precise notion of encoding machine operations and
machine instructions. How to determine encodings for machine operations from hardware
descriptions is not considered in this report (see [LM94]).

Definition 3.2.1 A machine instruction string of width w is a string over the alphabet
f0; 1;Xg denoted by f0; 1;Xgw . It is of the form aw�1aw�2 : : : a0, ai 2 f0; 1;Xg for
(w > i � 0). Each i is a bit position with associated value ai. A bit range (w1 : w2),
w > w1 � w2 � 0, specifies a sequence of bit positions w1 : : :w2 with the associated
machine instruction string aw1 : : : aw2 of width w1 � w2 + 1.

We assume that machine operations can be mapped to a machine instruction string. X
denotes a signal at the corresponding bit position not effecting the behavior of the machine
operations initiated by the machine instruction, therefore the value can be either 0 or 1. A
machine operation can be encoded by a machine instruction string or by a set of alternative
machine instruction strings. All bit positions not relevant for the execution of the machine
operation should be represented by X’s.

Definition 3.2.2 Two machine operations conflict, iff there exists a bit position i in the
corresponding machine instruction strings mis1 = aw�1 : : : a0 and mis2 = bw�1 : : : b0, such
that bi 6= ai and bi 6= X and also ai 6= X .

Thus, two machine operations can be performed if their machine instruction strings do not
conflict. This criterium is used in the compaction phase of some retargetable code generators,
e.g. MSSV [Mar93].

3.2. MACHINE OPERATIONS AND MACHINE INSTRUCTIONS 27

Machine Instruction Format

In the following, a formalism is introduced for defining the machine instruction strings and
reflecting the logical partitioning of machine instructions into a certain set of control fields.

Definition 3.2.3 A machine instruction format of widthw is a sequenceMIF = [f1; : : : ; fk]
of fields fi = (idi;mi; SFi), such that (for k � i; j � 1)

� idi is a field identifier that denotes the field fi and idi 6= idj iff i 6= j;

� mi defines the highest bit position of field fi with w > mi � 0. The bit range
(mi : mi+1 + 1) defines the bit positions of field fi with mi > mi+1 and dummy
position mk+1 = �1. It is required that m1 = w � 1.

With each idi a set Sidi � f0; 1;Xg
mi�mi+1 of machine instructions of widthmi�mi+1

is associated.

� A field can be further partitioned into subfields; SFi specifies a (possible empty) set
of machine instruction formats for field fi, denoted idi = mifi;1j : : : jmifi;ni . Each
mif 2 fmifi;1; : : : ;mifi;nig specifies a machine instruction format of widthmi�mi+1.

MIF specifies a set of machine instructions denoted MIMIF and mi 2 MIMIF iff mi =
s1 � : : : � sn ^ si 2 Sidi . For idi = mifi;1j : : : jmifi;ni the union MImipi;1 [: : : [MImipi;ni

is exactly Sidi . Therefore a non-empty set SFi specifies Si = MImipi;1 [: : : [MImipi;ni
.

A MIF enables to define the formats for a complete machine instruction set in a compact
representation. A encoding for a certain machine operation is defined by a specific configur-
ation of fields. All fields not relevant for the execution of the machine operation should be
represented by X’s.

*

-

field1 = O1|TO|UD field2 = O2|TO|UD field3

24 14 4 0

O1 = sh +/

r/w

O2 = reg-set

TO = reg mem

res op1

res op2

o

t

8 6 5 3 19

o

-

+/*

0

MIF =

o = 1 t = 0
sh∈{01,00}
+/- ∈{0,1}
+/* ∈{0,1}
reg-set∈{0,1}2

res,op1,op2∈{0,1}2

reg∈{0,1}2

mem∈{0,1}4

r/w ∈{0,1}
UD = {X} 10

op2

op1

Figure 3.8: Machine Instruction Format

Example 3.5:

A machine instruction format for the example architecture (figure 3.4 is shown in figure
3.8. The first field field1 controls the machine operations that involve the functional
unit F1. It can also initiate the transfer machine operations between the memory M

and the register set A. Which of either an arithmetic machine operation or a transfer
machine operation is performed is determined with the value of bit position 24.

28 CHAPTER 3. RETARGETABLE CODE GENERATION

The machine instruction format is composed from the submachine instruction formats
O1, O2, TO and UD; field1 can be composed from either of the machine instruction
formats O1 (specifying the arithmetic machine operations), TO (transfer machine oper-
ations) or UD (no machine operation specified). The subfield sh of field1 (specified
in O1) controls the shifting of the first operand of F1. +=� encodes the operation
performed by the functional unit F1. The other fields of O1 specify the addresses of
the operands of the operation, i.e. the locations in register set A. Field reg � set in O2
determines the sources for the operands. The subfield r=w specified in T0 determines
loads or stores of a transfer machine operation. The field field3 is used to control the
program counter for selecting the next machine instruction to execute. It is not further
specified here and is omitted in the following. The machine instruction format allows
to encode two arithmetic machine operations or two data transfers in one machine in-
struction. It allows the encoding of a data transfer between memory and registers and
an arithmetic machine operation within one machine instruction.

Versions and Partial Versions of Machine Instruction Strings

A certain machine operation can be encoded by several distinct machine instruction strings.
Each machine instruction string will be called a version of the corresponding machine
operation. A machine instruction string denoting the encoding of a subfield of a version
is called a partial version. I.e., partial versions represent the signals of the control word
necessary for controling a certain machine resource, involved in a certain machine operation.

Restricting Machine Instruction Formats

A restricted machine instruction formats reduces a given machine instruction format MIF to
a subset of its formats. Hereby, the encoding for a certain machine operation can be indicated
by an existing MIF.

Definition 3.2.4 Given a fixed MIF = [(id1;m1; SF1); : : : ; (idk;mk; SFk)]. The MIF
restriction of a machine instruction format is defined as

MIF 0 = [(id01;m1; SF
0
1); : : : ; (id

0
k;mk; SF

0
k)]

with associated sets S0id1 ; : : : ; S
0
idk

, such that

� S0id1 � Sid1; : : : ; S
0
idk
� Sidk and

� for each non-empty set of subfields SF 0i each mif 0 2 SF 0i is a restriction of a mif 2
SFi.

We denote a restriction of a machine instruction formatMIF byMIF 0 = [id01 : Sid1 ; : : : ; id
0
k :

Sid0

k
] and we will omit all fields id0i : Sidi with f 0i = fi.

3.3. OPERATION SPECIFICATION 29

Example 3.6:

In figure 3.9 the restricted machine instruction formats for each machine operation are
shown. The first machine operation defines the machine instruction format of the shift
and add operation. field2 is restricted to contain the undefined operation, i.e. the subfield
only contains X’s. field1 is restricted to the format O10 a restriction of the format O1
which contains the encodings of the addition (+/- = 1) and shifting (sh = 01). The
subfields res, op1, and op2 of O1 are kept unchanged.

TO’=[r/w:0]

+

O2’=[+/*:1, reg-set:00]

+

+ +

-

+

>>

O1’=[+/-:1, sh:01]

-

>>

O1’=[+/-:0, sh:01]

O1’=[+/-:1, sh:00] O1’=[+/-:0, sh:00]

O2’=[+/*:1, reg-set:11]O2’=[+/*:1, reg-set:10]

TO’=[r/w:1]

TO’=[r/w:1]

TO’=[r/w:0]

*
*

O2’=[+/*:0, reg-set:00]

* *

O2’=[+/*:0, reg-set:11]O2’=[+/*:0, reg-set:10]

a) MIF’=[field1’:O1’,field2’:UD]

b) MIF’=[field1’:UD’,field2’:O2’]

c) MIF’=[field1’:UD’,field2’:TO’]

c) MIF’=[field1’:TO’,field2’:UD’]

........

........

Figure 3.9: Encodings of Machine Operation Pattern

3.3 Operation Specification

An operation specifications specifies the alternative machine operations for implementing a
certain operation on the target machine. The model shown here is an extended instruction set
model and exposes the necessary entities for retargeting code selection, register allocation
and instruction scheduling for single cycle machine operations.

30 CHAPTER 3. RETARGETABLE CODE GENERATION

In the following a fixed set of functional units of a target machine is assumed, denoted by
FU . Further a fixed set of storage resources is given, denoted by SR. With each sr 2 SR a
certain set Locsr of permitted locations (i.e., addresses) is associated. Additionaly, for each
sr 2 SR there is a unique symbolic representation to denote sr. Further, we assume a fixed
width m of the machine instruction words and a fixed set of machine instruction strings,
denoted M .

Definition 3.3.1 An operation specification for an operation op is a quadruple OSop =
(id; arity;mos; Vid) and consists of

� id: a unique symbol denoting the operation op;

� arity: denoting the number of operands including the destination involved;

� mos: denotes a machine operation scheme and reflects the behavior of op; for
every operand it contains a template from $1,. . . ,$arity, representative for certain
combinations of storage resources;

example: $1 +($2,$3);

� Vid represents the set of all machine operations that implement the behavior of the
machine operation scheme; each v 2 Vid is a resource machine operation that im-
plements the machine operation scheme occupying the same configuration of machine
resources, denoted byR–MO; (F; [sr1; : : : ; srarity]; �) 2 Vid consists of:

– F � FU , the set of involved functional units.

– sr1; : : : ; srarity 2 SR are the storage resources where operands of theR–version
reside; each sri corresponds to the template $i in the machine operation scheme;
the substitution of storage resource symbols for the corresponding templates
$1; : : : ; $arity in the machine operation scheme constitutes the machine oper-
ation pattern; the right hand side of a machine operation pattern is called a
machine expression pattern;

– � : L1 � : : :� Larity ! P(M) is an encoding function; it is a mapping from
locations to a set of machine instruction strings; each Li denotes the set of
legal locations for addressing sri theR–version has access to; it is required that
Li � Locsri ; the encoding function maps a sequence of locations (l1; : : : ; larity) 2
L1 � : : :� Larity to the corresponding machine instruction string.

There are some special classes of operations called transfer operations and noload opera-
tion. Transfer operations describe data movements between storage resources, denoted by
the machine operation scheme $1 $2 and the corresponding machine operation patterns.
Noload operations are necessary for architectures providing fine–grain parallelism. They
prevent undesirable side–effects, i.e., the modification of certain storage resources . Noload
operations are denoted by the machine operation scheme $1 . This model so far assumes,
complete control by the machines control unit. Some architectures allow that certain con-
figurations of the machine state are necessary to initiate certain machine operations, termed
residual control. Code generators that produce code for such architectures are concerned

3.3. OPERATION SPECIFICATION 31

with generating code for creating the corresponding machine states. This subject is not fur-
ther addressed in this report. In the following we assume non–residual control. Addressing
modes are also not considered.
Other instruction based models for operations can be found in [DLSM81, BHE91, Hei93,
Coh94]. The notions defined in [DLSM81] were basically introduced for comparing different
compaction methods of machine programs. Informations, utilizing code selection are not
involved. [BHE91, Hei93, Coh94] all take into account multi cycle machine operationsand
extend the model for specifying features of RISC like architectures. [BHE91] only considers
a single machine operation pattern for each operation. In contrast to code selection based
specifications (see section 4) these models are concerned with utilizing register allocation
and instruction scheduling. The models basically differ in the degree of details of machine
resources incorporated, and relations between machine resources described. While they still
can be classifed as behavioral (instruction based models), more and more aspects of structural
models are integrated.

3.3.1 Abstract Machine Operations

An operation specification specifies the set of machine operations that implement the behavior
given by the machine operation scheme. It defines a hierarchy on this set of machine
operations, each constituting a certain level of abstraction, also exposing a certain degree of
binding machine resources. This degree of binding has much impact for the tasks of code
generation. It can be disadvantegeous if operations are fixed to certain machine resources
by one of the tasks, then restricting subsequent tasks. E.g., if code selection selects machine
operations, all resources are fixed for the operation. There are the following degrees of
binding machine resources:

� An L–MO specifies all storage resources and the locations (addresses) of its operands
and the functional units that perform the operation. It consists of a set of versions,
specified by the encoding function.

� An R–MO defines the set of machine operations, such that each machine operation
occupies the same set of functional units and assumes each operand opi in the same
storage resource sri; locations are not bound.

� An SR–MO consists of the union ofR–MOs with the same machine operation pattern.
Each machine operation of an SR–MO assumes each operand opi in the same storage
resource sri. Whether the functional units nor locations are bound.

� An U–MO is the complete set of mos specified by an operation specification. Thus it
does not bind any machine resource or location.

Other levels of abstraction are possible when the complete set of operation specifications
is analyzed. We assume, that there is a symbolic representation of operations, such that
each set of associated machine operations is uniquely denoted. This incorporates symbolic
representations for storage resources. The symbolic representations are called abstract
machine operations (A–MOs). R–MOs, SR–MOs, and U–MOs define specific classes
of A–MOs. The abstract representations for storage resources are called virtual registers.

32 CHAPTER 3. RETARGETABLE CODE GENERATION

We extend the notion machine instruction, such that a machine instruction consists of a set
famo1; : : : ; among ofA–MOs , whereby there is at least one set fmo1; : : : ;mong of machine
operations that can be executed in parallel, with mo1 2 amo1; : : : ;mon 2 amon.

+

O2’=[+/*:1,reg-set:00]

+

+ +

O1’=[+/-:1,sh:00]

O2’=[+/*:1, reg-set:11]O2’=[+/*:1,reg-set:01]

+

O2’=[+/*:1,reg-set:10]

Figure 3.10: SR–MOs

3.3. OPERATION SPECIFICATION 33

Example 3.7:
If we consider the example architecture, every R–MO is also a SR–MO, as no two
R–MOs have a common machine operation pattern . We have a look at the operation
specification for the addition (machine operation patterns shown in figure 3.10). We
assume that the domain of locations for A and B is f0,1,2g for every version, i.e. each
register set has three accessable register cells.

(add, 3,$1 := +($2,$3),
{(F1,[A,A,A],(a1,a2,a3) ->

[field2:UD,
field1:O1’=[sh:00,+/-:1,res:a1,op1:a2,op1:a3]])

(F2,[B,A,A],(a1,a2,a3) ->
[field1:UD,
field2:O2’=[+/*:1,reg_set:00,res:a1,op1:a2,op1:a3]])

(F2,[B,B,A],(a1,a2,a3) ->
[field1:UD,
field2:O2’=[+/*:1,reg_set:10,res:a1,op1:a2,op1:a3]])

(F2,[B,A,B],(a1,a2,a3) ->
[field1:UD,
field2:O2’=[+/*:1,reg_set:01,res:a1,op1:a2,op1:a3]])

(F2,[B,B,B],(a1,a2,a3) ->
[field1:UD,
field2:O2’=[+/*:1,reg_set:11,res:a1,op1:a2,op1:a3]])})

Each encoding function is specified with a restricted machine instruction format. There
are fiveR–MOs, eachR–MO also representing aSR–MO, because eachR–MO belongs
to a different machine operation pattern of the operation specification. We will have a
closer look at the SR–MO

(F2, [B,A,A], (a1,a2,a3) ->
[field1:UD,
field2:O2’=[+/*:1,reg_set:00,res:a1,op1:a2,op1:a3]])

It involves the functional unit F2. According to the machine instruction format defined
for the example architecture, field2 is used to encode the operation +. There fore +=�
is restricted to encode the addition. field1 is completely set to don’t care (X’s). A cell
i of a storage resource sr is denoted by sr[i]. If we further specify certain locations for
the operands assuming that we want to add register A[0] and A[1] and store the result
into register B[2] we will yield the followingL–MO version:

1) Locations = (2,0,1) -> B[2] := A[0]+A[1]
2) RIF = [field1:UD,

field2:O2’=[sh:00,+/-:1,res:10,op1:00,op1:01]]
3) Encoding = XXXXXXXXXX1001100001

In the following the transfer operation specifications for the example architecture are shown:
(load, 2,$1 := $2,

{({},[A,M],(a,m) ->
[field2:UD,
field1:TO’=[r/w:1,reg:a,mem:m]])

({},[B,M], ...)})
(store, 2,$1 := $2,

{({},[M,A],(a,m) ->
[field2:UD,
field1:TO’=[r/w:0,reg:a,mem:m]])

({},[M,B], ...)})

34 CHAPTER 3. RETARGETABLE CODE GENERATION

3.3.2 Intermediate Representation and Machine Operation Patterns

*

a b

+

ba

+a

+ *

+

a b

a

B1 ← A1*A2A3 ← A1*A2

A2 ← MbA1 ← Ma

B2 ← A3*B2

Ma ← B2

Figure 3.11: Decomposing Expressions

One basic task of code generation is to decompose the expressions in the intermediate rep-
resentation into machine operation patterns , illustrated in figure 3.11. All variables occuring
in the program are mapped to different virtual registers, according to the storage resources
they are required and accessable to data deopendend operations that use them. Additionally,
tempory virtual registers to store intermediate results are intodruced. In intermediate rep-
resentations like 3–address code [ASU86] statements are already decomposed to the form
x := binop(y; z) or x := unop(y) (see figure 3.12). If complex expressions are supported
by the architecture, the decompositions may be to fine–grained. Therefore the introduction
of temporary results should not be incorporated in the intermediate representation. The
decomposition should be based on the machine operations of the target machine (see figure
3.13).

*

a b

+

ba

+a

t1 := a+b
t2 := a*b
a := t1 + t2

a := (a+b) + (a*b)

t1 t2

t1 := a+b t2 := a*b

a := t1 + t2

Figure 3.12: Decomposition of a DAG

3.4 Summary of Notions

Finally the major notions used throughout the subsequent text are summarized: machine
operations are the elementary operations a target machine is able to perform on the visible
register transfer level. A machine operation can be implemented by a set of versions,
each version given by an alternative encoding (if residual control is incorporated, versions

3.4. SUMMARY OF NOTIONS 35

c+

b

>>

*

a

+

>>

*

a

b

c

Ai←Μa

Aj←Μb

Bi←Μc
Ak←+(>>Ai,Aj)

Bk←+(Ak,Bj)

Ai←Μa
Aj←Μb
Bi←Μc
Ak←+(>>Ai,Aj)
Bk←+(Ak,Bj)

Figure 3.13: Complex Patterns

may be based also one alternative machine states). An operation specification defines the
complete set of machine operations for implementing the specified operation. It also defines
the following abstraction levels of machine operations: R–MOs, SR–MOs, and U–MOs.
Further abstraction levels are possible. An A–MO is the symbolic representation denoting a
set of machine operations implementing a certain operation. EachR–MO, SR–MO and U–
MO is anA–MO. A machine instruction can be either a singleA–MO or a set of concurrently
executable A–MOs.

Chapter 4

Code Selection

This chapter is basically concerned with methods developed in the context of code selector
generators. Tree pattern matching is the preferable technique for code selection. Spe-
cification techniques based on behavioral models are introduced, that can automatically be
transformed to a tree pattern matcher. This is based on formal foundations of mapping
regular tree grammars to finite tree auyomata. A short introduction of these foundations is
given. Detailed introduction can be found in [FSW94, WM95]. The last two sections of this
chapter are related to supported and unsupported features (of the architectures of interest),
using tree pattern matching and with aspects of retargetability, respectively.
Aspects, leading to problems in the context of the architectures of interest are exposed.
Finaly, relations relations between structural and behavioral models are shown. Thereby, the
issue of interest is yielding regular tree grammars from structural models. The chapter is
organized as follows:

� A general introduction to code selection is given, followed by by the introduction to
the formal foundations of code selector specifications. This includes an illustration
how these specifications can be transformed automatically to tree pattern matchers.

� Section 4.3 is concerned with existing code selector generators. The major improve-
ments of specification techniques are outlined introducing term rewriting rules.

� Section 4.4 is related to the supported and not supported features of non–regular
architectures, when using the introduced specification techniques and tree pattern
matching. The basic problems to solve in this context lead to the integration of code
selection with either register allocation or instruction scheduling considered in chapter
7.

� In the final section 4.5, the relations between structural and behavioral models are
outlined. The point of interest is, yielding specifications for generation of tree pattern
matchers from structural models.

4.1 Introduction

Code selection is the task of mapping the intermediate representation of a program to a
sequence ob A–MOs (a common level of abstraction are SR–MOs). Also graph based

36

4.1. INTRODUCTION 37

c+

b

>>

*

a

+

>>

*

a

b

c

Ai←Μa

Aj←Μb

Bi←Μc
Ak←+(>>Ai,Aj)

Bk←+(Ak,Bj)

Ai←Μa
Aj←Μb
Bi←Μc
Ak←+(>>Ai,Aj)
Bk←+(Ak,Bj)

Ai←Μa
Aj←Μb

Bi←Μc
Ak←+(>>Ai,Aj)

Bk←+(Ak,Bj)

load Ai,a
load Aj,b
load Ai,c
sh_add Ak,Ai,Aj
add Bk,Ak,Bj

Figure 4.1: A Covering of an Expression Tree

or term based representations are possible outputs of a code selector. Most of the recent
code selection techniques are performed on tree based intermediate representations of a
program (e.g., DAGs; see section 2). It is assumed that common subexpressions (CSEs) were
extracted and assigned to fresh variables. Each occurence of a certain CSE is substituted
by the corresponding variable. Code selection can be performed on expression level, and
statement level, but also on basic block level (e.g., datadependence graph or def–use chains
[ASU86]). In the following we will be simply talking of input trees. Informally, a code
selector tries to cover an input tree with machine operation patterns, such that there is no
overlapping of patterns. This can be aslo seen as a decomposition into machine operation
patterns. The storage resources of results of selected machine operation patterns must always
correspond to the use in the input tree. I.e., that they are either identical or there exists
a sequence of data transfers, that move the operand to the required storage resource. A
covering that guaranties this is called a legal covering. Generally there exists more than one
legal covering for a given tree. Conventional code selectors select the cheapest solution with
respect to a given cost model. The task of finding a covering for an input tree for a fixed set
of machine operation patterns is stated as tree pattern matching. The technique used for
selecting the cheapest covering is incorporated into the tree pattern matching process and is
based on the dynamic programming approach introduced in [AJ76].

38 CHAPTER 4. CODE SELECTION

+

+

c d

+

ba

+

+

+

+

+

+ +

+

+

Figure 4.2: Some Legal Coverings of an Expression Tree

Example 4.1:

In 4.1 a covering for the expression(>>(a)+b)*c from machine operation patterns of
the architecture in figure 3.4 (page 23) is shown. The patterns are associated with SR–
MOs (here notated in register transfer language notation). Values are mapped to virtual
registers. The SR–MOs are sequentialized with respect to their data dependencies, also
shown in figure 3.4. This sequentialization is not generally necessary, therefore either
of the tree based or sequentialized form of versions can be passed to subsequent phases.
An assembler like notation is also given in the figure. In figure 4.2 a set of possible
coverings of machine operation patterns is shown. It is assumed, that the variables were
allready loaded to storage resource A.

If the target machine is specified by a structural model, the machine operation patterns have
to be extracted from the specification. In behavioral models they are explicitly represented
by rules. These rules are based on regular tree grammars. Such a tree grammar can be
automatically transformed into a tree pattern matcher by a code selector generator. The
tree grammar specifies the set of all input trees that can be covered. Only legal coverings
are selected by the tree pattern matcher. The principles of tree pattern matchers can be
constituted on finite tree automata [FSW94, WM95]. Tree pattern matchers are able to find
the complete set of coverings for an input tree, with respect to a given tree grammar. To
enable the selection of minimum cost coverings, tree grammars are augmented with costs.
These grammars are then called weighted tree grammars.

4.2 Formal Foundations of Tree Pattern Matchers

So far the notions tree pattern matching, covering, and tree pattern matcher were introduced
informally. In this section the formal foundations of tree grammars are described. The
relationship to machine operation patterns are exposed to utilize an imagination of what
entities are described by regular tree grammars, and also how they are described. Finally,
the construction of finite tree automata from regular tree grammars is shown. A detailed
introduction can be found in [FSW94, WM95].

4.2. FORMAL FOUNDATIONS OF TREE PATTERN MATCHERS 39

4.2.1 Tree Pattern Matching

The notions pattern and tree pattern matching will be constituted on a term based represent-
ations now. However, in the following the notions expression term and expression tree will
be used as synonyms.

Definition 4.2.1 A ranked alphabet is a finite set � of operator symbols together with a
ranking function � : � ! N0. �k denotes the set fa 2 �j�(a) = kg. The homogeneous
tree language over �, T� is the smallest set T such that

� �0 � T

� If t1; : : : ; tk are in T then a(t1; : : : ; tk) for a 2 �k is in T .

Example 4.2:

� = f+; >>; cg with �(+) = 2; �(>>) = 1; �(c) = 0. c represents a constant value.
Legal terms that can be constructed are e.g. +(c; >> (+(c; c))) or >> (+(c; >> (c))).

There are no restrictions to the operands of operators except that the number of operands of
an application of an operator o must be equal to �(o). An operand can be any legal term of
T�. The following definition enables to distinguish operands of different sorts and restricts
the structure of terms.

Definition 4.2.2 A signature Sig� over a ranked alphabet � is defined as Sig� = (S; �),
where S is a finite set of sort symbols and � is a type function defining the type of a certain
o 2 �, such that �(o) = (s1; : : : ; s�(o); s) with s1; : : : ; s�(o); s 2 S . �(o) will be denoted
as o : s1; : : : ; s�(o) ! s; if �(o) = s this will be denoted as o :! s. A term of sort s is
inductively defined as:

1. o is called a constant of sort s iff o 2 �0 and o :! s;

2. if t : s1; : : : ; s�(t)! s and t1; : : : ; t�(t) are terms of type s1; : : : ; s�(t) respectively, then
t(t1; : : : ; t�(t)) is a term of type s.

T s
� denotes the set of all terms of sort s and T� = [s2ST s

� is the set of all terms over S .

Signatures restrict the structure of terms, i.e., the way that terms can be constructed. The
notions operator symbol and sort symbol reflect that signatures denote pure syntax. Generally
the notions sorts and operators are used in the context of a certain interpretation and reflect
the semantical level of description. In the following we will use sorts and sort symbols, and
operators and operator symbols as synonym notions.

40 CHAPTER 4. CODE SELECTION

Example 4.3:

Signature EX
Sorts:

sh,n
Operators:

c : -> n
+ : sh,n -> n
>> : n -> sh

The type function restricts the left operand l of a term+(l; r) to be of the form>> (t) for
any term t of sort n. +(>> (c); c) is a legal term of sort n but +(c; c) and +(+(c; c); c)
are not.

Definition 4.2.3 Given a signature Sig�. Vs is a set of variables of rank 0 and of sort s and
V = [s2SVs. A member of T�(V) := T�[V is called a pattern. A pattern is called linear
if no variable occurs more than once. Two patterns are said to be equivalent, if they are
identical up to variable renaming.

Example 4.4:

If we consider the example signature and the sets Vn = fX; Y g and Vsh = Z, then
>> (X) and +(Z;+(>> (X); Y)) are legal pattern. +(X; Y) is no legal pattern
because the variable X is not of sort sh. A pattern defines a set of terms such that any
term of this set can be constructed by replacing the variables within with the pattern by a
term of the corresponding sort. In the case of non–linear patterns, equal variables must
be substituted by the same term.

We now define the meaning of pattern matching. Therefore, substitution for variables must
be further specified.

Definition 4.2.4 A substitution is a mapping � : V ! T�(V). � is extended to a mapping
� : T�(V)! T�(V) by t� := x� if t = x and t� := a(t1�; : : : ; tk�) for t = a(t1; : : : ; tk).
A substitution � is also written [t1nx1; : : : ; tjnxj] for a set of variables x1; : : : ; xj � V , such
that xi� = ti for 1 � i � j.

Definition 4.2.5 A pattern � 2 T�(V) matches a tree t if there is a substitution � such that
�� = t.

Example 4.5:

Assume thatVn = fX; Y g andVsh = fZg. Then+(Z;X),>> (Y) and+(>> (X); Y)
are legal patterns. +(>> (X); Y) matches +(>> (c);+(Z; c)) with substitution
[cnX;+(Z; c)nY].

Definition 4.2.6 An instance of the tree pattern matching problem consists of a finite set of
patterns T = �1; : : : ; �n � T�(V) together with an input tree t 2 T�. The solution to the
tree pattern matching problem for this instance is the set of all pairs (n; i) such that pattern
�i matches t=n.

4.2. FORMAL FOUNDATIONS OF TREE PATTERN MATCHERS 41

The tree pattern matching problem consists in finding all positions of subterms in an expres-
sion tree represented by a term t, that can be matched by a certain pattern.

Definition 4.2.7 An algorithm that returns a solution for every input tree t 2 T� for the tree
pattern matching problem (T; t), T = �1; : : : ; �n � T�(V), is called a tree pattern matcher
for T .

Definition 4.2.8 An algorithm that on every T = �1; : : : ; �n � T�(V) returns a tree pattern
matcher for T is called a tree pattern matcher generator.

Most tree pattern matchers work on linear patterns. Therefore, they do not have to check
for common subexpressions. But there are approaches that also work with non-linear pat-
terns. First, one can introduce tests for equality for subtrees, but this may not be efficient
because the pattern matcher has to visit some subtrees several times. Second, a pattern
matcher can execute all equality tests in advance [DST80] (for further discussion on common
subexpressions consult [ASU86]).
If each variable that occurs in a certain pattern is replaced by its corresponding sort (assuming
a symbolic representation of that sort), a pattern can be regarded as the formal counterpart of
a machine operation pattern and we observe the following correspondences:

1. storage resources correspond to the sorts in signatures;

2. the sort of a pattern corresponds to the destination storage resources of a machine
operation pattern (e.g. the sort of +(>> (X);X) is n and the destination storage
resource of B +(>> (A); A) is B);

3. operators in the signature correspond to operators in the machine operation patterns ,
but they also represent constants and variables.

The basic differences are that:

1. transfer machine operations do not have a corresponding entity; they can only be
specified by introducing extra operators with the purpose of sort casting, i.e., mapping
a sort to another sort;

2. machine operation patterns allow that the same machine expression pattern can be
assigned to different storage resources; in the terminology of sorts this assigns different
sorts to the same pattern (or term); a solution to overcome this again would involve
sort casting operators.

As signatures themselve do not incorporate constructs for the specification of complex
patterns, for specifying machine operation patterns, additional constructs are necessary.
A common frame–work for introducing storage resources and complex machine operation
patterns together with transfer machine operations is given by regular tree grammars, also
overcoming the introduction of extra sort casting operators.

42 CHAPTER 4. CODE SELECTION

4.2.2 Regular Tree Grammars and Tree Parsing

Definition 4.2.9 A regular tree grammar G is a triple (N;�; P) where

� N is a finite set of nonterminals,

� � is a ranked alphabet of terminals,

� P is a finite set of rules of the form X � t with X 2 N and t 2 T�(N).

If we consider regular tree grammars with regards to machine descriptions, the terminals
of a regular tree grammar represent operators, constants and variables of the intermediate
representation. The nonterminals correspond to the storage resources.

Example 4.6:

In figure 4.3 the regular tree grammar for the example hardware in 3.4 is represented.
A, B, and M denote the nonterminals. All variables occuring in the intermediate
representation are mapped to the operator var. Such abstractions from certain sets (like
variables or constants) can be made if the values have no impact on the matching process.
If certain values must occur in a pattern (e.g. the constant 0 in a pattern +(0; X)) a
specific operator can be specified.

A ← +(>>(A),A)
A ← -(>>(A),A)
A ← +(A,A)
A ← -(A,A)

B ← +(A,A)
B ← +(B,A)
B ← +(A,B)
B ← +(B,B)
B ← *(A,A)
B ← *(B,A)
B ← *(A,B)
B ← *(B,B)

B ← M
A ← M
M ← A
M ← B

M ← var

Figure 4.3: Regular Tree Grammar

A signature can be easily transformed to a tree grammar by observing the following corres-
pondence:

Definition 4.2.10 Let p : X � t be a rule of P of a grammar (N;�; P). P is of type
(X1; : : : ;Xn)! X , if the j-th occurence of a nonterminal in t is Xj .

The nonterminals correspond to the sorts of a signature. The drawback of signatures, only
being able to express transfer machine operations by introducing extra sort casting operators
is not inherent to regular tree grammars. In regular tree grammars the specification of data
movements is embedded in the specification technique given by the following class of rules:

Definition 4.2.11 Let p : X � t be a rule of P of a grammar (N;�; P). P is called a
chain rule is t 2 N , otherwise a non-chain rule.

4.2. FORMAL FOUNDATIONS OF TREE PATTERN MATCHERS 43

In figure 4.3 M � A, M � B, A � M , and B � M are chain rules. They
represent the data movements between certain storage resources. Nonterminals are also used
for factoring with the purpose of reducing the amount of tree grammar rules necessary for
specifying a certain target machine.

Example 4.7:

In figure 4.4 an example is shown for the grammar in figure 4.3, where factoring is used
to reduce the number of combinations of operands accessable to the functional unit F2.
The nonterminal O summarizes all possible sources of operands to F2.

A ← +(>>(A),A)
A ← -(>>(A),A)
A ← +(A,A)
A ← -(A,A)

O ← A
O ← B

B ← +(O,O)
B ← *(O,O)

B ← M
A ← M
M ← A
M ← B

M ← var

B ← +(A,A)
B ← +(B,A)
B ← +(A,B)
B ← +(B,B)
B ← *(A,A)
B ← *(B,A)
B ← *(A,B)
B ← *(B,B)

Figure 4.4: Factoring

We will no specify the notion covering. It describes, how a covering of a certain expression
tree is constructed with respect to given regular tree grammar. We assume that each rule of
the tree grammar can be identified by a unique symbol p, denoted by p : X � t.

Definition 4.2.12 Given a regular tree grammar G = (N;�; P) and a X 2 N . A X–
derivation tree for a tree t 2 T�(N) is a derivation tree 	 2 TP (N) satisfying the following
conditions:

� If 	 2 N then t = 	.

� If 	 =2 N then 	 = p(1; : : : ;	n) for some rule p : X � t0 2 P of type
(X1; : : : ;Xn) ! X , such that t = t`[t1nX1; : : : ; tnnXn] and 	j is the X-derivation
tree for tj .

An X-derivation for a certain term represents one possible covering for that term. Conversly,
it also reflects the necessary application of grammar rules for constructing a certain input
tree. An example of a B-derivation is shown in 4.5.

Definition 4.2.13 (Language of Grammar G) For X 2 N the language of G relative to X
is defined as:

L(G;X) := ft 2 T�j9	 2 TP (N) : 	 is a X-derivation tree for tg.

44 CHAPTER 4. CODE SELECTION

*(+(>>(a),b) , c) => m(j(a(f(i),f(i))) , k(e(i)))

A ← +(>>(A),A)
A ← -(>>(A),A)
A ← +(A,A)
A ← -(A,A)

O ← A
O ← B

B ← +(O,O)
B ← *(O,O)

B ← M
A ← M
M ← A
M ← B

M ← var

a:
b:
c:
d:

e:
f:
g:
h:

i:

j:
k:

l:
m:

+

>>

*

a

b

c

f: A ← M

e: B ← M
a: A ← +(>>(A),A)

B ← *(O,O)

f: A ← M

j: O ← A
k: O ← B

f: A ← M

e: B ← M
a: A ← +(>>(A),A)

m: B ← *(O,O)

f: A ← M

j: O ← A
k: O ← B

Tree B-derivation

i: M← var i: M← var

i: M← var

Figure 4.5: B–Derivation

The language of a grammar specifies the set of terms that can be covered. This set should be
the set of all expected terms of the intermediate representation. Therefore it is important that
the regular tree grammar completly specifies this set. Otherwise a code selector could fail in
trying to cover certain terms of the intermediate representation.

Definition 4.2.14 (The Tree Parsing Problem) An instance of the tree parsing problem con-
sists of a regular tree grammar G together with a nonterminal X 2 N and an input tree
t 2 T�. The solution for this instance is the set of all X-derivation trees of G for t.

The tree parsing problem consists in finding all possible coverings of a given input term, with
respect to a certain storage resource.

Definition 4.2.15 (Tree Parser) A tree parser for a regular tree grammar G is an algorithm
that, for every input tree t, returns the solution of the parsing problem for given nonterminal
X .

4.2. FORMAL FOUNDATIONS OF TREE PATTERN MATCHERS 45

Definition 4.2.16 (Tree Parser Generator) A tree parser generator is an algorithm that, for
every regular tree grammar G, returns a tree parser for G.

The difference between the tree matching problem and the tree parsing problem is, that a
solution of the tree parsing problem results in a set of complete coverings for a given tree. In
contrast to this, a solution to the tree matching problem returns a set of positions where certain
pattern match a given tree. Note that a tree parser not necessarily must be implemented by a
parser, e.g. LR-parser or LALR-parser. The definition only says what the algorithm does and
not how it does it. In the following we will use the notion tree pattern matcher as a synonym
for tree parser, as the aim of a tree pattern matcher is to find a complete covering.

4.2.3 Finite Tree Automata

The principles of tree pattern matchers can be constituted on finite tree automata. In this
subsection only the basic notions and principles of tree automata can be described. It is
illustrated how regular tree grammars are transformed into a corresponding tree automaton
accepting the language specified by the grammar.

Definition 4.2.17 A finite tree automaton is a 4-tuple TA = (Q;�; �;QF) where

� Q is a finite set of states;

� QF � Q is a set of final accepting states;

� � is a finite ranked input alphabet;

� � � [j�0Q� �j �Qj is the set of transitions.

A tree automaton A is called deterministic if for every a 2 �k and every sequence q1; : : : ; qk
of states there is at most one transition (q; a; q1; : : : ; qk) 2 �. In this case � can be written as
a partial function.

The following definition specifies the computation of a finite tree automaton TA for determ-
ining if a given input tree is in the accepted language. The language L(TA) accepted by TA
consist of all trees for which an accepting computation exists.

Definition 4.2.18 Let � be a ranked alphabet and Q a finite set of states. The extended
ranked alphabet is defined as ��Q and it’s operators consist of pairs of operators from �
and states.
Let q 2 Q: A q-computation � of the finite tree automaton TA on the input tree t =
a(t1; : : : ; tk) is inductively defined as a computation tree � = ha; qi(�1; : : : ;�k) 2 T��Q
where �j is the qj-computation for the subtrees tj , such that (q; a; q1; : : : ; qk) is the transition
from �. � is called accepting if q 2 QF .

The transitions of the automaton correspond to the types of the operator symbols, given by
the input alphabet of a tree automaton. An Automaton A� for the pattern matching problem
that matches a single linear pattern � 2 T�(V) is constructed as follows: First we assume
that there is an unspecified state ?s for every sort s 2 S. Every variable of sort s in � is
replaced by ?s. A� = (Q� ;�; �� ; Q�;F) is defined as

46 CHAPTER 4. CODE SELECTION

� Q� := fsjs is a subpattern of �g [f?s js 2 Sg;

� Q�;F := � ;

� (?s; a;?s1 : : : ? s�(a)) 2 �� for all a 2 �, and if s 2 Qf and s = a(s1; : : : ; sk) then
(s; a; s1; : : : ; sk) 2 �� .

For every tree of sort s there is a ?s–computation and for a tree t there is a pattern � there is
a � ��computaion if and only if � matches t.
The automaton can be extended to accept a set T = �1; : : : ; �n of patterns. Determining
which patterns match a tree t consists of computing all accepting states of the tree automaton.
A method to determine this set by one computation can be obtained by means of subset
construction, yielding a deterministic tree automaton performing all possible computations
concurrently.
The approach can further be extended to q–computations that represent X-derivations of a
given tree grammarG = (N;�; P) andX 2 N for a certain tree t [FSW94]. The tree parsing
problem for a regular tree grammar is therefore reduced to the problem of determining all
accepting computations of a finite tree automaton. A tree automaton can be constructed that
performs all possible X–derivation simultaniously and finds all possible coverings during one
computation.
Tree automata can be further extended to select the a minimum cost derivation, when given
a weighted regular tree grammar, by integrating the costs into the transitions of the tree
automaton. These automata are the called weighted tree automata. For further details of
constructing tree automata from regular tree grammars consult [FSW94, WM95].
The basic principle of determining the coverings is now illustrated in a small example, using
the factored tree grammar introduced in fig 4.4. The example schematically shows a bottom
up computation, i.e. deriving the compuation tree starting at the leafs of the input tree and
applying the rules of the tree grammar.

Example 4.8:

As already stated, variables are mapped to the terminal var. Therefore the rule i : M
var is the only rule applyable for the leafs, shown in figure 4.6 (a). The leafs of the
input tree are associated with the applied rules. In the next step shown in figure 4.6
(a), all chaining rules X M are applied. Chaining rule represent �–transitions of the
automaton, therefore consuming no operators. We assume that each node of the input
tree is associated with the set of storage resources SR that are reachable sofar. In figure
4.6 (b) this set consists of M for each leaf. We also assume that each node is associated
with the rules that match the node and a set CR of chaining rules (shown in the dark
gray shaded boxes). The setCR is succesivly constructed from the set SR. Initially this
set is empty and the set SR contains the destination nonterminals of the non-chaining
rules that matched the considered node. Successively all chaining rules cr : X Y are
added to CR, such that cr =2 CR and Y 2 SR; when the chaining rule is added SR is
updated to SR[fXg. The set SR denotes the possibleX � derivations for X 2 SR.
It also denotes the set of all data movements with corresponding pathes for the value
associated with the node (i.e. the value of the subtree whose root is the node considered.
In figure 4.6 the possible data movements are shown in the grey shaded areas.

4.2. FORMAL FOUNDATIONS OF TREE PATTERN MATCHERS 47

a a

b b

c c

O ← A
O ← B

A ← M
B ← M

+

ba

+

c

vara varb

varc

M ← var
a b

c

+

ba

+

c

vara varb

a b

varc

c

(a)

(b)

{M,A,B,O}

{M,A,B,O}

{M,A,B,O}

{M}

{M}

{M}

M ← var

Figure 4.6: Determining the Coverings

In the next step we travers the internal nodes in a bottom–up manner. A rule r : X p

with type X1; : : : ; Xn ! X matches at a node n if the pattern p matches the subtree
at the node n and each Xi 2 SRi of the corresponding operand nodes (figure 4.7 step
(c,d)). In figure 4.7 (c) there are two possible rules matching the node +(a; b). Again,
all possible chaining rules are added in the mentioned way.

In the example we see, that an input tree is covered with non-chaining rules and chaining rules.
The non–chaining rules cover certain patterns for the input tree. The chaining rules don’t
cover any pattern. They represent the possible data movements from the storage recources
where the machine operations (corresponding to the patterns of the non–chaining rules) will
store their results. Therefore the set SRn of a certain node n in the input tree denotes the
set of all possible storage resources to which a value can be computed. Additionally, the
set CRn implicitly contains the set of all possibe pathes from storage resources to storage
resources of SRn. This also denotes the set of possible spill pathes.
If all statements of a basic block are covered separately the storage resources of used variables
should be taken into account. After all input trees are covered, the SR sets should be reduced
to the necessary amount. It should only contain those storage resources that are incorporated
in the machine operations that will use the value, all storage resources from machine opera-
tions that produce this value and all storage resources involved in data movements between
definition and usage. The final tree contains all legal coverings for the input tree. In figure
4.8 the main aspects of a code selector generators and its corresponding formal foundations

48 CHAPTER 4. CODE SELECTION

+ +

+

ba

*

c

{M,A,B,O}{M,A,B,O}

{M,A,B,O}

{M,A,B,O}

(c)

+

ba

*

c
{M,A,B,O}

{M,A,B,O}

*

{M,A,B,O}

(d)

O ← A
O ← B

A ← M
B ← M

M ← A
M ← Β

O ← A
O ← B

A ← M
B ← M

M ← Β

Figure 4.7: Determining the Coverings

are summarized.

4.3 Generation of Code Selectors

Many efforts have been made for gaining efficient tree pattern matchers and efficient code
selector generators. There are various approaches in recent years. Initiated by the work of
Graham–Glanville [GR77] LR-parsing techniques where used for pattern matching, whereby
the target machine specification was defined by a context free grammar. A parser generator
was used for generating the code selector. A very good summary of first approaches using
grammars and attributed grammars for specifying code selectors can be found in [GFH82].
Limitations of the approaches are also shown. The basic problem is that input trees of
ambiguous grammars were not covered propriately. Best cost coverings were only approx-
imated. Tree pattern matching with dynamic programming [AJ76] constituted a solution
to this problem (figure 4.10). The pattern matching process is based on tree parsing using
weighted bottom–up tree automata.
The pattern matching process is generally based on tree parsing using weighted bottom–up
tree automata. There are several techniques for implementing tree automata, e.g. state
transition tables or decision trees. The informations computed by dynamic programming can

4.3. GENERATION OF CODE SELECTORS 49

Regular Tree Automata

Tree Pattern MatchingDynamic Programming

Specification (Behavioral)
Specification (Behavioral)

Reg: +(Reg,Reg) : 1 = addSpecification (Behavioral)Specification

+

-
a

b c

Code GeneratorCode Selector

+

-
a

b c

Code Selector Generator

--

+

Tree Pattern MatchingDynamic Programming

 Tree Automata

&

Regular Tree Automata

Regular Tree Automata
Regular Tree Grammars

Regular Tree Automata
 Tree Parsing

Construction of
Tree Automaton

TΣ

TΣ(SR)

Machine Operation
Pattern

TΣ(SR)

Pattern

Single Covering

Set of Coverings

Figure 4.8: Foundations of Code Selector Generator

be generated at compile-compile time and can be integrated in state transition tables (figure
4.11) [PLG88, Hen89c, Hen89a, Hen89b, FSW94]. One disadvantage of this approach is the
loss of expressiveness, i.e. the costs are restricted to constants (e.g. burg).
Many code-selector generators use tree pattern matching and dynamic programming. They
produce tree pattern matchers that make two passes over expression trees. The first pass
is bottom up and finds a covering with minimum costs. The second pass is top down and
produces the final output of the code selector, i.e. a representation of the target machine
program. Examples for code generator generators based on this model are: BEG[ESL89],
Twig[AGT89], burg [FHP92b], iburg [FHP92a], and CBC [FHKM94]. The informations
computed by dynamic programming can be generated at compile-compile time and can
be integrated in state transition tables [PLG88, Hen89c, Hen89a, Hen89b, FSW94]. One
disadvantage of this approach is the loss of expressiveness, i.e., the cost model of the tree
grammar is restricted to constants (e.g., burg).

� BEG tree pattern matchers are hard coded and mirror the tree patterns like recursive
decent parsers mirror their input grammars. Dynamic programming is used at compile

50 CHAPTER 4. CODE SELECTION

Specification (Behavioral)
Specification (Behavioral)

Reg: +(Reg,Reg) : 1 = addSpecification (Behavioral)Specification

+

-
a

b c

Code GeneratorCode Selector

+

-
a

b c

Code Selector Generator

--

+

BEG

TWIG

BURG iburg

CBC

Figure 4.9: Code Selector Generators

Tree Pattern MatchingDynamic Programming

+

-
a

b c

Code GeneratorCode Selector

+

-
a

b c
--

+

Tree Pattern MatchingDynamic Programming &

Finding the Set of CoversSelecting the Minimum
Cost Cover

Figure 4.10: Dynamic Programming

time to identify the minimum cost cover.

� Twig matchers use a table-driven variant of string matching. This representation
identifies all possible matches at the same time, resulting in a higher overhead. Dynamic
programming is used at compile time.

� burg uses BURS (bottom-up rewrite system) theory [PLG88] to move dynamic pro-
gramming to compile-compile time. A main disadvantage of BURS is, that costs must
be constants; systems that delay dynamic programming to compile time allow arbitrary
cost models permitting dynamic computations of costs associated with rules. This also
allows to propagate context-sensitive informations from subtrees.

� iburg reads burg specifications. In contrast to burg it perfoms dynamic programming
at compile time and like BEG it is hard-coded. It is simpler than burg and is amenable
for user defined modifications.

4.3. GENERATION OF CODE SELECTORS 51

Code GeneratorCode Selector

Code Selector Generator

Tree Pattern Matching Dynamic Programing

move to compile-compile time

constant costs complex costs

uff

Figure 4.11: Moving Dynamic Programming to Compile Time

� CBC [FHKM94] is based on a machine description based on the hardware description
language nML. The machine specification is tranformed to an iburg specification and
the code selector is generated by an extended version of iburg. CBC was developed in
the context of irregular architectures. The major differences to classic code selectors
are:

– handling of complex data paths;

– taking into account the different word length of storage resources (termed type
handling);

– considers instruction level parallelism by delayed binding of machine resources;

– handling of DAGs, thus also considering common subexpressions during code
selection;

– machine based description.

CBC also tries to take into account common subexpressions that additionally tran-
scends basic blocks by a technique called heuristic node duplication. Hereby a control
data flow graph is modified in order to create more complex machine operation patterns
across basic block boundaries by node dupplication, but only at places where this will
lead to improved code.

4.3.1 Code Selector Specifications

The major goal in the research of specification techniques is gaining more expressiveness.
There are several approaches to extend the specification techniques for gaining more ex-
pressive power, making specifications more readable, and easier to develop. One aim is a
comfortable incorporation of algebraic rules. They cannot be expressed appropriately using
regular tree grammars, while maintaining a readable structure of the grammar rules. The
specification of algebraic rules can blow up the size of the patterns of the rules. Thus, the rules
gain unreadability and are hardly to understand. Term rewriting rules allow the specification
of algebraic rules in an intuitive notation, that is easy to understand and prevents the designer
from errors. Restricted sets of term rewriting systems, can be transformed automatically to
regular tree grammars. Therefore, conventional tree pattern matchers can be used for driving
the task of code selection.

52 CHAPTER 4. CODE SELECTION

Regular Tree Grammars

Reg: +(Reg,Reg): 1 = add Reg1,Reg2,Reg3
Reg: -(Reg,Reg) : 1 = sub Reg1,Reg2,Reg3
Reg: Main : 2 = load Main,Reg
Main: Reg : 2 = store Main,Reg

Figure 4.12: Tree Reduction Rules

+

>>

*

a

b

c
*(+(>>(vara),varb),varc) → *(+(>>(M),varb),varc)

→ *(+(>>(M),M),M)
→ *(+(>>(A),M),M)
→ *(+(>>(A),A),M)
→ *(A,M) → *(A,B) → B

Figure 4.13: Reduction Sequence

Tree Grammar Based Approaches

The common specification techniques used are based on weighted regular tree grammars. Tree
grammars are represented by a set of tree reduction rules of the formX pattern[cost] : action.
The action part is used to generate the final output of the code selector, e.g., a sequence of
A–MOs. Generally, it initiates some user–defined procedures that emit target machine code.
The notion tree reduction rules reflects a view of the tree parsing process as the reduction
of a certain input tree to a certain nonterminal, by using the rules of the tree grammar as
rewriting rules. A pattern detected in the input tree is replaced (or better substituded) by the
nonterminal on the left hand sight of the corresponding rule. A reduction sequence is shown
in figure 4.13.
Tree grammars are ambiguous, i.e. there exists more then one covering for a certain expression
tree. Each covering represents correct code, but with differently code quality given by the
costs of the rules. A very good summary of first approaches using grammars and attributed
grammars for specifying code selectors can be found in [GFH82]. Recent approaches based
on regular tree grammars are e.g. BEG, Twig,burg and iburg. The following extended BNF
grammar defines the format of burg and iburg specifications:

grammar ::= {dcl} %% {rule}
dcl ::= %start nonterm

| %term {id=integer}
rule ::= nonterm:tree = action [cost];

4.3. GENERATION OF CODE SELECTORS 53

 1) Machine Specification

add(Reg,Reg) → Reg : 1
sub(Reg,Reg) → Reg : 1
load(Main) → Reg : 2
store(Reg) → Main : 2

2) Mapping

+(A,B) → +(B,A)
A → +(A,0)
A → -(A,0)
+(A,B) → add(A,B)
-(A,B) → sub(A,B)
var → load(Main)

Figure 4.14: Term Rewriting System

pattern ::= term(pattern,pattern)
| term(pattern)
| term
| nonterm

action ::= integer
cost ::= integer

The declaration part dcl defines the nonterminals and the ranked alphabet defining the
terminals of the regular tree grammar. The tree reduction rules differ a little from the
introduced format. The costs are optional and are given after the action. The actions are
specified by integers that are associated with user-defined actions for emitting corresponding
machine instructions. A burg specification only permitts costs given by constants. The cost
of a covering are then defined as the sum of all costs associated with the machine operation
patterns of the covering. In iburg arbitrary cost computations are allowed.

Term Rewriting Rules

Recent approaches try to extend the expressive power of the specification techniques. A
common aspect of most approaches is the integration of term rewriting rules. Regular tree
grammars are augmented with a set of term rewriting rules, permitting concise definition of
algebraic rules.
Term rewriting rules allow to transform the structure of the input tree by rewriting a certain
complex pattern to a new (generally semantically equivalent) complex pattern. Thus new
patterns can be matched, not occuring in the input tree without rewriting, which are effectively
supported by certain machine operations available on the target machine. Additionally it is
possible to substitute nonterminal or terminal symbols with complex patterns. Such rules
enable to insert patterns that do not necessarily have to be determined when generating the
input tree. E.g., if there is a set of alternative addressing modes for specifying an operand,
a proper mode can be selected during code selection. These rules enable to incorporate
decisions into code selection, that usually are due to other tasks of code generation or the
front–end.
BURS theory introduced by Pelegri–Llopart [PLG88] allows to specify term rewriting rules
fulfilling the restriction of being k–burs also called finite–burs. This restriction requires that

54 CHAPTER 4. CODE SELECTION

every reduction sequence must be reduced to j–normalform in finite steps (see [PLG88]).
A rewriting rule of the form a ! b(a) does not fullfill this restriction. Thus, rules like
A! plus(A; 0) are not supported.
The approach of H. Emmelmann also incorporates term rewriting rules [Emm92]. In his
approach, the machine instructions are represented as terms also. I.e., that not only the
intermediate representation is term based. The intermediate representation is mapped to a
legal target machine term by applying rewriting rules, describing the transformations from
the intermediate representation to target machine terms. The regular tree grammar is used to
define the set of legal target machine terms. Only terms with an existing covering with respect
to the machine grammar are legal target machine terms. I.e., that the target machine term
must be reducable to a nonterminal of the grammar. The specification technique allowes
to specify terms rewriting rules like A ! plus(A; 0). The code selector keeps track of
the termination of applying such rules. The two specification parts are transformed into a
conventional pattern matching based code selector specification. Therefore all techniques
known to build generators can be used. This also reflects, that it is possible to express the
algebraic rules by regular tree grammars. But the specification by term rewriting rules is
much more concise. The specification seems to be more naturally and easier to develope with
regards to specify correct rules. In figure 4.15 the basic issues and their interdependemncies
are illustrated.

4.4 Support of Architectural Features

This section is concerned with examining what features of irregular architectures are coped/not
coped by tree pattern matching. We will first consider what features are expressable using
regular tree grammars. Thereafter, aspects that are coped by the tree pattern matcher are
examined. Regular tree grammars enable to denote the following aspects:

� distributed register sets: each storage resource is denoted by a certain nonterminal
symbol; therefore the set of distributed storage resources is specified by the according
nonterminals;

� special purpose registers: e.g., address register can be specified by assuming that they
represent a certain storage resource. This is achieved by introducing a corresponding
nonterminal for denoting the register or registers. Uses and definitions in machine
operation patterns that have access only to such special registers are specified with the
corresponding nonterminals.

� register classes: a chaining rule of the formX � Y can describe a transfer operation.
It may also denote a subset relation between certain sets of registers. Hereby a hierarchy
of register classes can be defined. This allows to restrict machine operations to certain
register access.

� complex data routes: complex data routes are detected in the tree pattern matching
process. Only coverings with legal connectivities are selected. Thus the tree pattern
matchers checks the reachability of definitions and uses.

4.4. SUPPORT OF ARCHITECTURAL FEATURES 55

finite
tree automata

Code GeneratorCode Selector

Code Selector Generator

Tree Pattern Matching Dynamic Programing

move to compile-compile time

constant costs complex costs

uff

Term Rewriting Systems

Specification (Behavioral)

Specification (Behavioral)

Reg: +(Reg,Reg) : 1 = add
Reg1,Reg2,Reg3
Reg: -(Reg,Reg) : 1 = sub

Specification (Behavioral)

Specification Techniques

add(Reg,Reg) → Reg : 1 +(A,B) → +(Β,Α)
sub(Reg,Reg) → Reg : 1 Α → +(A,0)
load(Main) → Reg : 2 +(A,B) → add(A,B)
store(Reg) → Main : 2 -(A,B) → sub(A,B)

Regular Tree Grammars

Term Rewriting Systems

Regular Tree Grammars

Reg: +(Reg,Reg) : 1 = add Reg1,Reg2,Reg3
Reg: -(Reg,Reg) : 1 = sub Reg1,Reg2,Reg3
Reg: Main : 2 = load Main,Reg
Main: Reg : 2 = store Main,Reg

more expressiveness

BURS-Theory
(Pelegri-Llopart)

Regular Controlled TR
(Emmelmann)

BURS-Theory
(Pelegri-Llopart)

Regular Controlled TR
(Emmelmann)

BEG

TWIG

BURGBEG

TWIG

BURG

finite
tree automata

Figure 4.15: Code Generator Generators

Example 4.9:

Consider the registers in figure 4.16. The register R set is subdivided into the register
classesA and B each denoting a certain subset of the main register set. The left operand
of the shift add operation must reside in register set A, the right operand in register
set B or in the Akku. The addition has access to the complete register set R. To
enable the pattern matcher to match operands of the addition that were produced by the
shift add operation two chaining rules are introduced: R A and R B; they
denote that either A and B belong to the complete register set. They can be regarded
as virtual transfer operations. Data movements to memory can only be performed from
Akku. Therefore a transfer operation from the register set to Akku exists.

General Problems

With respect to a sequential view, data routes leading to minimal costs are selected. Spilling
costs are not considered during tree pattern matching. In irregular architectures, complex data

56 CHAPTER 4. CODE SELECTION

+

Reg A

Memory

Akku

Reg B

+ +

>> +

>>

+

>>
Reg R

Figure 4.16: Irregular Register Sets

paths may induce a spilling accross a route of register sets. Spilling can have much impact
on the quality of the selected code. In order to compute spill costs effectively, knowledge of
the locations of other values and the order for executing subtrees is necessary. This implies,
that the costs of subtrees of a certain node are not independent anymore. But: this violates
the condition of the input tree to be executable contiguously, a necessary supposition for
perfoming dynamic programming. An analoguous problem arises in the context of instruction
level parallelism, which cannot be supported appropriatly by tree pattern matching. The
minimal cost covering must not be optimal with respect to parallelism. Again, the problem
is, that dynamic programming is based on the supposition, that an optimal solution of an
input tree can be constructed from optimal solutions for the subtrees [ASU86, AGT89]. If the
target machine allows certain subtrees of an operator to be executed in parallel, the necessary
supposition is violated.
The basic problem is the consideration of global, context sensitive and mutual dependent
information, which has to be accessable when selecting a certain covering (see figure 4.17).
Statements for determining the quality of spilling and exploiting parallelism are based on
informations of the complete covering. I.e., the informations that are necessary for selecting
an appropriate covering are only known when a covering is selected (a quite unsatisfying
situation). The consequence is the selection of a certain covering, which can restrict the
subsequent tasks of code selection.

Overcoming the Problems

A solution for partially overcoming the problems is to delay the binding of machine resources
as long as possible, while preserving the traditional scheme of tree pattern matching. For
each operation an A–MO is selected, offering a set of possible machine operations. This
enables the subsequent tasks in choosing among a set of machine resources. Another solution
is the integration of code selection into subsequent tasks. Tree pattern matchers are able to
effectively compute the complete set of coverings for a given input tree, with respect to a

4.4. SUPPORT OF ARCHITECTURAL FEATURES 57

CS

RA IS

distribution

spill cost
reduction

exploit
parallelism

locations
interfe-
rence

context sensitive informations

Figure 4.17: Mutual Dependencies of Code Selection

given tree grammar. In the following we give a very coarse–grain, hierarchical classification
for subsets of SR–MOcoverings :

1. level–0: a single covering of SR–MOs is considered.

2. level–1: the set of coverings differs in storage resources of definitions and uses.

3. level–2: the set of covering differs in data routes between definitions and uses. I.e.,
additional transfer operations occur between definitions and uses.

4. level–3: if the target machines offers machine operations that implement complex pat-
terns (like (>> (a); b)), different granularities of coverings are considered. Algebraic
transformations are considered, such that the set of operations incorporated in an input
tree changes (e.g., a+ a! 2 � a).

The levels can be further partitioned, by considering certain functional units allowed for
certain operations, or restricting the length of data routes between definitions and uses. It
should always be taken care of what is mend by the term code selection. Selection of machine
resources of levels 0 and 1 is generally stated as resource allocation and not code selection.
Often, the selection of coverings of level–2 is also not considered as code selection. The
notion code selection is generally seen as selecting between coverings of level–3, as this is
concerned with selection of different operations.

Approaches

The approaches based on integrating code selection are concerned with phase coupling,
therefore described in section 7. In [AM95] irregular architectures with no parallelism (i.e.,

58 CHAPTER 4. CODE SELECTION

pipelining or instruction level parallelism) and single register sets and one main memory are
considered (called [1;1]model). For this machine model, register allocation is automatically
performed by tree pattern matching. If instruction scheduling and spilling are disguarded,
the code selection for expression trees is optimal with respect to a sequential cost model and
the machine model. The storage resources of operands and the data routes are determined
by the matching process. The costs of data movements are taken into account by the costs
associated with the chaining rules. However, an unfavourable selection may still result in too
many spillings that might compensate the saved costs of the optimal covering. To prevent
spilling an instruction scheduling approach is proposed that produces spill free schedules for
expression trees if the target architecture fulfills the RTG Criteria (see [AM95] for details).
There is still some research necessary, for which classes of target machines, extending the
[1;1] model, still effective code is produced. One continuation of the approach is to extend
the algorithm to [N(M)] models, i.e., N classes of registers with M registers available.

4.5 Retargeting: Extracting Code Selector Specifications
from HDLs

The automatic generation of code selector specifications from structural models is an im-
portant issue. Generally this means to map the structural model to a behavioral model, and
consists of the following basic tasks:

� the machine operation patterns must be extracted to generate the tree grammar rules;

� residual control and addressing modes of operands must be determined and have to be
embedded into tree grammar rules;

� the alternatives for implementing control flow have to be extracted (conditional and
unconditional jumps); this is basically due to analysing the interconnections of the
program counter and the controller;

� The encodings (machine instruction strings) that are necessary to initiate the machine
operations must be determined (see [LM94]). This also incorporates NOLOAD (NOP)
operations, which are necessary for preventing side effects unwanted.

It may happen, that operations of the intermediate representation are not available on the
target architecture. Such operations must be converted to machine executable operations.
Additionally, types of the operands have to be taken into account. This is very important in
the context of register sets with different bit width.
The CBC [FHKM94] transforms a machine description specified in nML into an iburg
specification. The intermediate representation (CDFG) is transformed in advance, such that
operations in the CDFG are expanded into machine executable operations (MEOs) available
on the target machine. This set is determined by analysing the machine specification during
the retargeting process. In the terminology used in [FHKM94] the machine operations are
called chains or data path operations (DOs). All machine operation patterns are generated
by the nML front–end and represented by so called match–replace–pairs that include a term

4.6. SUMMARY 59

representation to that a matched machine operation pattern is rewritten. From this an iburg
specification is generated.
If we consider extended techniques like term rewriting rules a question is, if it is possible to
extract them from structural models. A more general question is, what kind of information
can be extracted from a structural model at all? What informations have to be added by
the user? These also incorporates questions about how informations have to be represented
(formal representation). Remaining questions are concerned with the support of auto–
increment/decrement registers.

4.6 Summary

The main fields of interest in the area of code selection are:

� Fast retargeting to new target machines;

� the developement of efficient code selectors and code selector generators;

� gaining more expressiveness of specification techniques.

The preferable technique for code selection is tree pattern matching assuming a tree based
intermediate representation. Tree pattern matchers are able to find all possible coverings for a
certain expression tree and they also find a minimum cost covering by dynamic programming.
The specification for code selectors is based on regular tree grammars. The principle of
constructing tree pattern matchers is based on constructing finite tree automata from regular
tree grammars.
Supported features of irregular architectures are:

� heterogeneous register sets

� register classes

� data routes

Instruction level parallelism and spill code minimization cannot be exploited appropriately by
traditional tree pattern matching techniques. The major problem is an appropriate integration
of code selection with the other tasks of code generation.
The preverable specification techniques for retargeting can be classified as a behavioral spe-
cification model. Structural models generally allow a more precise and detailed specification
and can be transformed to behavioral specifications. Therefore techniques developed for
tree pattern matchers are available for code generators based on structural specifications.
Remaining questions are concerned with the relations between extended specification tech-
niques and structural models. Integration of specific architectural features into tree pattern
matching is another issue for further investigations.

Chapter 5

Register Allocation

The prefered technique for register allocation is graph coloring. Thus, this section is mainly
concerned with approaches based on graph coloring. The section discusses the supported
features of irregular architectures and basic drawbacks. The basic notions like live range,
interference, and live range splitting are shortly intodruced (for details see [Bri92]). Problems
in the context of irregular architectures with fine–grain parallelism are shown. Some remarks
on retargeting register allocators are given. The subsequent sections are structured as follows:

� An introduction to the basic notions and principles of graph coloring is given in the
following two section.

� In section 5.3 an overview of the basic classes of graph coloring techniques are de-
scribed, disgarding approaches concerned with phase coupling.

� Section 5.4 discusses the problems arising in the presence of non–regular architectures.
Like in code selection solutions of the arising problems are basically concerned with
phase integration, which are described in chapter 7.

� Finaly, section 5.5 is concerned with common aspects of the retargetability of register
allocators.

5.1 Introduction

The task of the register allocator is to make effective usage of registers provided by each
architecture, which is essential for producing high quality code. Register allocation consists
of two components: the register allocator determines which values are stored in registers at
each program point; the register assigner determines the physical register (location) where
a value resides, that was allocated to a register.
In conventional code generators, the code selector maps values to virtual registers (level–0
coverings of R–MOs or SR–MOs). Using this strategy, the register allocator must assign
physical registers of the target machine to virtual registers. There are the following levels
register allocation can take place:

� local register allocation: The local register allocation techniques are restricted to
expressions or statements of basic blocks. Values are loaded to registers at the beginning

60

5.2. FOUNDATIONS OF GRAPH COLORING 61

of a basic block and stored to memory at the end of a basic block. Minimal path costs
is a technique based on finding minimal paths in a DAG. Graph nodes represent
the configuration of values residing in registers and edges are labeled with costs
corresponding to the number of loads and stores required to change the configuration,
acording to the pair. Belady’s optimal page replacement algorithm, developed for
operating systems can also be used to perform optimal local register allocation [Bel66].
Use counts developed by Freiburghouse is based on keeping track of the amount that
a virtual register will be referenced in the future [Fre74].

� global register allocation: Global register allocation methods transcendends basic
block level taking into account the control flow structure of a procedure. Techniques
are e.g., Packing algorithms (see [Ben94]), probabilistic register allocation [PF92], a
combination of local and global allocation, and graph coloring [Bri92], a combined
allocation and assignment technique.

5.2 Foundations of Graph Coloring

A value is a typed quantity that can reside either in a register, in memory, or, when it can
be computed by a sequence of instructions, in program code. The definitions introduced are
based on the CFG representation of a program. A variablex is defined at a point in a program
if a value is assigned to it. A variable is used when its value is referenced in an expression
(also see section 2.3.1).

Definition 5.2.1 A variable x is live at a node n if there exists a path from nstart to n
containing a definition of x and there is a path from n to a use u of x (u 6= n) containing no
redefinition of x.

Definition 5.2.2 The live range LRx of a variable x is the set of all nodes LRx =
fn1; : : : ; nkg such that x is alive at ni (1 � i � k).

Definition 5.2.3 Two variables x and y interfere iff they are simultaneously alive, i.e. the
intersection of their live ranges is not empty: LRx \ LRy = ;.

Definition 5.2.4 The interference graph is an undirceted graph IG = (N;E), such that N
is a set of nodes corresponding to live ranges of variables and (LRx; LRy) 2 E if x and y
interfere.

Two variables that interfere cannot occupy the same physical register. Two nodes ni and
nj with (ni; nj) 2 E are called neighbors. The number of neighbors of a certain node n is
called its degree denoted by no. A propper assignment is a mapping from live ranges into the
available registers of the target architecture, such that no neighbors of the interference graph
are mapped to the same register.

62 CHAPTER 5. REGISTER ALLOCATION

1: a := 2

2: b := a+2

3: c := a+b

4: d := 2*b

5: a := c+d

a

b

c

d

a b c d

c

{2,3}

{1,2,5}

{3,4,5}

{4}

Figure 5.1: Live Ranges and Interference Graph

Example 5.1:

Figure 5.1 shows an example program and an interference graph with its corresponding
live ranges associated. We see that the nodes of variable a and d do not interfere
because the intersection of their live ranges is empty. Remark: it should become clear
at this point, that the definition of interference is based on the ordering of the program
statements.

The problem of finding a propper assignment for an interference graph IG is reduced to
the problem of finding a k–coloring for IG. I.e. a mapping of nodes to k colors, such that
neighbors will always have different colors. If k is choosen to be the number of available
machine registers than a k–coloring can be mapped easily to a propper assignment.

Definition 5.2.5 (Graph k–Colorability) Let G = (N;E) be a graph with a set N of nodes
and a set E � N �N of edges. Furthermore, let there be a set of k colors. G is k–colorable
iff there is a function f : N ! f1; : : : ; kg such that f(u) 6= f(v) for (u; v) 2 E.

It has been shown, that the problem of finding a k–coloring for fixed k � 3 is NP–complete
[GJ79], therefore a heuristic method is used to search for a coloring. This method can’t
guarantee to find a k–coloring for a k–colorable graph. The heuristic is based on the
following observasion: if a node p exists with n neighbors (po = n) and n < k, then there
exists a color different from p’s neighbors. We eliminate p from the graph which results in a
smaller graph IG0. The problem is therefore reduced to a smaller problem. If all nodes can
be eliminated in this way, there exists a k–coloring for the graph.

Example 5.2:

In figure 5.2 a 3–coloring of the interference graph from 5.1 is illustrated. The set of
colors is fr; g; yg (red, green, yellow). A 2–coloring does not exist for this graph.

If a k–coloring cannot be found some live ranges are spilled. Let there be a live range LRx,
such that the set of colors assigned to its neighbors is f1; : : : ; kg. There is no color left for
LRx. There are three approaches to solve this problem:

� x is mapped to memory and all references to x access memory. This method cannot
be taken for load–store architectures and is also not the best solution if x is frequently
used.

5.2. FOUNDATIONS OF GRAPH COLORING 63

r

cg

a

b

c

d

c

a

c

d

c

a

cc

r

c

y

g

r

y

c

y

g

a r

Figure 5.2: A 3–Coloring of a Graph

� The introduction of spill code stores a live range after each definition of a variable and
reloads it before every use of the variable.

� The last solution introduces spill code only at certain points of its live range and
loads it back at certain points. Hereby some of the nodes in the live range can be
eliminated. Generally the live range is splitted into a set of new, disjuntive live ranges.
Each new live range constitutes a new node in the interference graph generally with
less interferences then the original live range. This thechnique is called live range
splitting. Chow and Hennessy used this idea [CH84].

Spilling a node (or splitting a live range) results in a new interference graph. Therefore the
register allocator must iteratively spill some nodes and color the new resulting graph. In
contrast to include spill code for every occurence of a variable, live range splitting may avoid
spilling when not necessary. Introducing spill code for every occurence can be seen as the
extreme case of live range splitting. Unfortunately live range splitting is very difficult, i.e.
determining live ranges to split and picking places to split them. Finding optimal solutions
is NP–hard for both problems.

64 CHAPTER 5. REGISTER ALLOCATION

Example 5.3:

In figure 5.3 the splitting of the live ranges of variables a and c from the graph in figure
5.2 is demonstrated. The splitting results in a spill–free 2–coloring of the resulting
graph.

a

b

c

d

c

{2,3}

{1,2,5}

{3,4,5}

{4}

a1

b

c

d

c

{2,3}

{1,2}

{3,4,5}

{4}

{5}

a2

a1

b

c

d

c2

{2,3}

{1,2}

{3}

{4}

{5}

a2

cc1
{4,5}

{3,4,5}

{1,2,5}

1: r1 := 2

2: r2 := r1+2

3: r1 := r1+r2

4: r2 := 2*r2

5: r2 := r1+r2

6: .. := r1*r2

1: a := 2

2: b := a+2

3: c := a+b

4: d := 2*b

5: a := c+d

6: .. := c*a

r1

r1

r1

r2
r2

r2

Figure 5.3: 2–Coloring of a Graph by Live Range Splitting

In the former example there are two classes of live range splittings. The first class splitts
the live ranges where a use is followed by a definition. Hereby no insertion of spill code
is needed, as the value is redefined anyway. The second class splitts between to uses of a
variable and may need the insertion of spill code when the assigned register is overwritten.
In our example no spill code was necessary, because the value of the variable c stored in
register r1 was not overwritten because of the availability of register r2. There are some
approaches using a more coarse grained representation of live ranges based on basic blocks,
i.e. the live ranges are not constructed from the nodes of the CFG, but from the nodes of the
corresponding basic block graph (e.g. [CH84]). An overview is given in figure 5.4.
An antagonosic task to live range splitting is coalescing of live ranges. This is performed for
variable copyings like x := y. In this case the live ranges of x and y can be coalesceded to

5.3. GRAPH COLORING REGISTER ALLOCATORS 65

Live Ranges

def-use
Live Ranges

spill-free
Live Ranges

spill
Live Ranges

Live Ranges

def-use
Live Ranges

spill-free
Live Ranges

spill
Live Ranges

nodes of CFG nodes of Basic Block Graphor

Figure 5.4: 2–Coloring of a Graph by Live Range Splitting

one live range by the union of the two live ranges of x and y. This results in assigning x and
y to the same physical registers. A very good overview of the advantages and problems of
live range splitting and coalescing is found in [Bri92]. Due to the fact that optimal solutions
cannot effectively be computed (while it not can be shown that P = NP), researchers are
concentrated with finding efficient heuristics to solve the spill problem, i.e. minimizing the
amount of spilling.
The subsequent section outlines basic classes of graph coloring techniques, disgarding ap-
proaches concerned with phase coupling. In section 5.4 the problems arising in the presence
of irregular architectures are discussed, followed by a discussion of retargeting register
allocators.

5.3 Graph Coloring Register Allocators

One of the first approaches on memory allocation and graph coloring was published in
[Lav62]. A summary of early approaches can be found in [Bri92]. The first implementation
of a global register allocator via graph coloring was done by Chaitin et alias (Yorktown
register allocator) [CAC+81]. Chow and Hennessy (C&H) described a technique based
on a combination of local register allocation and graph coloring (priority–based register
allocation). There are the following criterea for distinguishing the two approaches.

1. Abstraction levels:

(a) Chaitins allocator performes allocation on A–MOs, and C&Hs approach is per-
formed on source code.

(b) Chaitins defines the granularity of live ranges on A–MOs, in contrast to C&Hs
live ranges based on basic blocks.

2. Allocation model: Chaitin assumes values in registers. C&H assume, that values reside
in memory in advance.

3. Priority estimations and Coloring: In Chaitins allocator, priority estimations are used
to select a candidate for spilling among the set of constraint live ranges. A live range
is called constraint if its degree exceeds the number of available registers for the live
range. In C&Hs approach, the priority estimation denote the benefits for allocating a

66 CHAPTER 5. REGISTER ALLOCATION

value to a register. Due to their allocation model, they do not spill live ranges in the
sence of Chaitins allocator. They consider constraint live ranges and color the one with
the highest priority first, thereby reducing the set of colors constituting candidates for
the interfering live ranges.

4. Live range splitting versus spilling: If there are no register candidates left for a live
range, C&H s allocator performs live range splitting. All nodes which are uncolorable
are not allocated to registers. Chaitin includes spill code for every definition and use
of a variable.

Yorktown
Allocator

Priority-Based
Allocator

Chaitin et alias Chow & Hennessy

pessimistic
coloring color

k<n
spill

k>=n
cost saving
allocation color

k<n
color

k>=n

live range
splitting

uncolorable

values in
registers

live ranges
on instructions

values in
memory

live ranges
on basic blocks

Briggs et alias

optimistic
coloring color

k<n
spill

delayed spill decision
k>=n

k>=n

new iteration

new iteration and live range splitting

Larus & Hilfinger
(no local allocation)

limited
size

values in
registers

improved

Callahan & Koblenz

Meltzer & Knobe

hierarchical
approaches

control structure
sensitive

Bernstein

improved
a) coloring & b) spilling

priority heuristics

integrated

Graph Coloring

local

global

RA
Packing Algorithms

Probabilistic (Proebsting)

Use Counts

Minimal Cost Paths

Page Replacement

local allocation

Johnson & Miller

values in
 registers

Figure 5.5: Hierarchy of Register Allocation Techniques

There are several approaches improving Chaitins method [GSS89, BGG+89, Bri92], and
Chows and Hennessys method [LH86, JM86]. An overview of register allocation techniques

5.3. GRAPH COLORING REGISTER ALLOCATORS 67

and their dependencies is shown in figure 5.5. The improvements can be characterized as
follows:

1. Reducing spill costs by

� increasing probability of k–colorability. These approaches have in common to
use a modified improved heuristic to color the graph, such that the set of graphs
that are colorable but not colored by Chaitin’s approach is decreased.

– improved priority estimations, also with regards to selecting nodes to color
[BGG+89];

– delaying spilling decissions (optimistic coloring [Bri92, BCT94]).

� improved live range splitting. The developement of good splitting heuristics
is one field of interest in this research area (e.g., [BCT91, CK91]). It is also
concerned with integrating live range splitting into Chaitin’s approach, instead of
inserting spill code for every definition and use.

2. Consideration of control structure: this is achieved by an appropriate mapping of the
loop structure to priority estimations and/or live range splitting heuristics. There are
approaches of hierachical coloring algorithms that take into account the nestings of the
control structure by coloring nested regions bottom–up [KM90a, CK91].

3. Efficiency of register allocators [GSS89].

Recent approaches take into acount instruction level parallelism. These approaches are
concerned with phase coupling and outlined in section 7. Subsequently the basic approaches
and improvements to this approaches are outlined.

5.3.1 The Yorktown Register Allocator

renumber simplifyspill costscoalescebuild select

spill code

Renumber SimplifySpill CostsCoalesceBuild Select

Spill Code

Figure 5.6: Chaitin’s Register Allocator

Figure 5.6 shows the tasks of Chaitin register allocator which consists of seven components
(also see [BCT94]):

Renumber Chaitins register allocator defines a live range for each new definition of a
variable. At a use it unions all the live ranges that reach the use, thus coalescing live
ranges where control flow coalesces. The live ranges are statement based and represent
def-use chains. All live ranges are uniquely named.

Build constructs the interference graph.

68 CHAPTER 5. REGISTER ALLOCATION

Coalesce attempts to shrink the live ranges. Two live ranges can be combined if the definition
of a variable corresponding to the live range is a copy of the other (e.g. x := y) and
they do not otherwise interfere. By combining two live ranges the corresponding copy
instruction can be eliminated.

Spill Costs computes an estimation of the costs that are added if the value is spilled for each
live range. This is estimated by computing the additional loads and stores to spill the
value, with each machine operation weighted by c�10d, where c is the transfer machine
operation cost on the target machine and d is the statements loop–nesting depth.

Simplify chooses a node with degree n < k, removes it from the graph together with
its corresponding edges, and places the node on a stack. If there is no node with
degree n < k a node to spill is choosen according to the computed spill costs, with
regards to minimize spill costs. The node is removed from the graph together with its
corresponding edges and is marked to spill. If all nodes are removed from the graph
and there are nodes that are marked for spilling, Spill Code is initiated, otherwise Select
(see figure 5.6).

Spill Code is invoked if nodes were marked to spill. Spill code is inserted at the correspond-
ing places in the CFG (or program). Each marked live range is decomposed into it
elements resulting in many live ranges were a load is inserted before each use of a vari-
able and a store after every definition. Therefore the structure of live ranges changes
and register allocation restarts. The task of simplify together with the computation of
the spill costs can be denoted as the allocation task.

Select is performed when no live ranges are marked for spilling. It colors the nodes on the
stack in the reversed order Simplify removed them from the graph. A node is popped
from the stack, inserted into its position in the graph and gets a color different to that
of its neighbors that were sofar inserted by Select.

The task of simplify is reflected by the left reduction sequence of figure 5.2 and select is the
reconstruction shown on the right side of 5.2. Simplify only pushes a node to the stack when
it can prove that a node can be colored. If simplify does not find a node to color, it selects a
node to spill. The metric for picking candidates for spilling is a very important task. As the
interference graph abstracts completely from the loop structure of the CFG the nestings of
values are mapped to the spill costs. The node with the smallest ratio of spill costs is choosen.
Thus, the loop-structure is taken into account by the selection of the next spill candidate. The
aim of selecting a node for spilling is, to spill a value that is used very infrequently, such that
spill costs can be minimized. Several heuristics for making good choices were developed
and are summarized at the end of the section.

5.3.2 Piority–Based Coloring

In the approach of [CH84, CH90] graph coloring is performed after a local allocation phase.
The task of local allocation is to estimate the saving costs for a value that is allocated to
a register. The analysis is performed on basic blocks. Chow and Hennessy assume that
all variables are located to memory a priory. If a value is assigned to a register, first uses

5.3. GRAPH COLORING REGISTER ALLOCATORS 69

of values not preceeded by a definition of the value must load the value from memory to
registers. If the value is modified in the basic block it must be stored back to memory if it is
live at the end of the basic block. The saving costs are computed by regarding the amount of
execution time that is saved by accessing a value in memory in contrast to accessing it in a
register, for each basic block:

1. maxsave= (loadsave � u) + (storesave � d);

2. minsave = (loadsave � u) + (storesave � d) � (movecost � n);

such that

� loadsave is the execution time saved when a value is assigned to a register compared
with the corresponding memory reference. u is the number of uses in the basic block
considered.

� storesave is the execution time saved when a value is assigned to a register compared
with the corresponding storage to memory for a definition of a variable. d is the number
of definitions in the basic block considered.

� movecost is the execution time for loading and storing a value at the beginning and at
the end of a basic block. Thereby n is either 0; 1 or 2, depending on if the initial load
or the storage at the end of the basic block is necessary.

The global saving costs for a value are computed as the sum of the saving costs of all basic
blocks contained in the values live range. In the coloring algorithm live ranges with negative
saving costs are marked for spilling, even if they could be allocated to a register indicating that
allocation to a register does not result in any saving for this live range and should be avoided
for the live range. Chow and Hennessy distinguish between constrained and unconstrained
live ranges. Unconstrained live ranges denote nodes in the interference graph with degree
n < k.
The first tasks of the register allocator are to compute all live ranges, to construct the
interference graph and to seperate all unconstrained nodes from the graph. The unconstrained
live ranges are not colored until the very end because it is certain, that unused colors can be
found for them. In contrast to Chaitins register allocator, the priority–based register allocator
tries to color constrained live ranges, i.e live ranges that are marked for spilling in Chaitins
register allocator. The allocator performes the following steps:

� For each constrained live range the complete saving costs are determined.

� All live ranges with negative saving costs are deleted from the interference graph and
are marked as noncandidates.

� All live ranges that are uncolorable are removed and marked. An uncolorable live
range consists only of program points where all available registers are occupied by
other live ranges.

70 CHAPTER 5. REGISTER ALLOCATION

� The live range with the highest amount of saving costs to which a color can be assigned
is determined. A color is selected, not being in the forbidden set of the live range, i.e.
that there is no neighbor that received this color. The forbidden sets of all neighbors
of the selected live range are updated. It is checked if any neighbor must be splittet,
what is the fact if the set of available registers of the neighbors live range is equal to its
forbidden set. For all new live ranges (resulting from splitting) compute there saving
costs.

� Continue with this procedure until all constrained live ranges are colored or there are
only uncolorable live ranges left.

Splitting is performed by seperating out a component of the original live range that is as large
as possible. This has the effect of avoiding the creation of too small live ranges.

5.3.3 Optimistic Coloring

renumber simplifyspill costscoalescebuild select

spill code

Renumber SimplifySpill CostsCoalesceBuild Select

Spill Code

Figure 5.7: Optimistic Coloring (Briggs Allocator)

A basic drawback of Chaitin’s allocator is that it pessimistically assumes that all of the
neighbors of a certain live range will get different colors. If this situation occurs the live
range cannot be colored, but this must not necessarily happen. This can be illustrated, by
observing a simple example.

a

b

c

d

c

r

y

c

y

r

Figure 5.8: Diamond Graph

Example 5.4:

Figure 5.8 shows the diamond graph which is 2–colorable as seen on the right side. If
Chaitin’s approach is used, it will select one of the four nodes for spilling, because there
is no node with degree n < 2. Therefore the graph will not be 2–colored. It is said, that
the register allocator overspills.

The supposition that a live rangeLRx will get a color is approximated by hasLRx degree less
than k in Chaitin’s register allocator. This is a sufficient but not necessary condition. In the
example we have seen that a live range may have k neighbors with less than k colors occupied.

5.3. GRAPH COLORING REGISTER ALLOCATORS 71

The problem is that spilling decissions are made to early in the coloring algorithm. A solution
to overcome this drawback is the approach from Briggs, that combines a coloring heuristic
from [MB83] with Chaitins mechanism for cost–guided spill selection. Two modifications
in Chaitins register allocator are necessary [Bri92]:

1. Simplify: All nodes with degree less than k are removed in arbitrary order and pushed
to a stack. If there are remaining nodes with degree greater (or equal) then k a spill
candidate is selected. The node is removed from the graph but is not marked for
spilling. The node is pushed to the stack in spite of its degree and it is optimistically
assumed that that a color will be available for the node. Thus nodes are removed in
the same order as in Chaitin’s register allocator, but spill nodes are incorporated in the
stack.

2. Select: The detection of necessary spilling is delayed until the Select task. Select may
discover, that no color is available for the actual live range popped from the stack. The
live range is left uncolored and Select continues. Any uncolored live range must be a
node, that Chaitins register allocator would also spill.

If any live ranges remain uncolored spill code is inserted and register allocation is
restarted with the resulting interference graph.

In figure 5.7 the structer of Brigg’s register allocator is shown. The decision of spilling occurs
in the select task. Defering the spill decisions eliminates unproductive spillings and provides
a stronger coloring heuristic, thus increasing the set of k–colored graphs. In figure 5.9 the
coloring of the diamond graph using Brigg’s approach is demonstrated.

5.3.4 Hierachical Coloring

Callahan and Koblenz [CK91] approach is also an extension of Chaitin’s work. It decomposes
the CFG into a tree of tiles reflecting the control structure of a program. Tiles are visited
bottom–up and a local interference graph is created and colored with pseudo registers for
each tile. The interference graph of a tile is passed to it’s parent tile and is incorporated into
the parent tile’s interference graph. In a top down pass all pseudo registers are assigned to
physical registers and spill code is inserted where it is required. This must not necessarily be
where decision to spill were made by graph coloring. The allocation of registers is sensitive
to local register usage while maintaining the global aspects of register allocation. In each tile
registers are allocated by using standard graph coloring.

5.3.5 Other Approaches

There are several approaches for improving Chaitins method (e.g. [GSS89, BGG+89] and
Chow and Hennessys priority–based graph coloring method (e.g. [LH86, JM86]). Proebsting
and Fisher propose an approach not based on graph coloring [PF92] called probabilistic
register allocation. Probabilistics are used as a heuristic measure to drive the allocator. No
register assignment is performed. Probabilistic register allocation may be used for utilizing
good spilling decisions during graph coloring.

72 CHAPTER 5. REGISTER ALLOCATION

a

b

c

d

c

a

c

d

c

y

g

c

g

y

c y

c

d

c c

g

y

y

c

g

y

b

b

a

b

a

d

c

b

a

d

b

b

a

b

a

d

Figure 5.9: Coloring the Diamond Graph

5.4 Support of Architectural Features

Distributed register sets constitute no problem for graph coloring if the storage resources
of values are known. Live ranges of values that reside in different register sets will not
interfere. Register classes can also be incorporated in graph coloring, by extending the
notion of interference. The set of storage resources where a value may reside in, is assigned
to every node in the interference graph. The notion of interference is extended in the sense,
that live ranges only interfere if the intersection of the associated sets is not empty [Bri92].

Common Suppositions

To outline the problems occuring in the context of irregular architectures, we first consider
the original goals and suppositions made for performing conventional register allocation:

1. The original goal was the minimization of transfer costs of data. Reduction of spill
costs should seen as a special form of this task (e.g., Chow and Hennessy do not
consider spilling, due to their allocation model).

2. There are the following common suppositions:

5.4. SUPPORT OF ARCHITECTURAL FEATURES 73

� Allocating a value to a register is based on certain priority estimations; they rely
on static factors (with regards to a certain program) like the number of uses of
a value, corresponding nesting depth, and the costs for loading/storing a value
from/to memory.

� Candidates for spilling are determined by priority estimations. Generally, spilling
to memory is considered and direct memory access is assumed.

� Live ranges are based on a fixed execution ordering of the statements of a program.
Conflicts occur if too many live ranges interfere at certain points of the program.

New Goals

One motivation of providing distributed storage resources is to increase multiple storage
resource access. This can only be supported effectively if accessed values are properly
distributed to storage resources. Therefore, a new goal of register allocation is an adequate
distribution of values to register sets. The original goal is also concerned with new tasks, e.g.,
finding adequate data routes for minimizing tranfer costs. A distribution to storage resources
should also utilize minimizing spill costs. The support for auto–increment/decrement register
is an additionally new task for register allocation. Values used for addressing of subsequent
memory cells are candidates to be allocated to such special registers.

Mutual Dependencies

In figure 5.10 the dependencies of goals and tasks of code generation are shown. The new,
problematic situations that occur can be outlined as follows:

1. Allocation to register sets cannot be disconnected from code selection. The storage
resources, that values are allocated to, depend on the machine operation patterns related
to the operations. Mutual dependence between the storage resources and operations
is given. If code selection results in a covering of machine operation patterns, storage
resources are fixed in advance. Thus, there is no choice for distributing values. A
preallocation is quite difficult, because the mutual dependencies have to be taken into
account!mutual dependence of register allocation and code selection.

2. Spilling must not necessarily be performed to memory. It can be impossible to spill a
value directly to memory! complex spill routes and restricted spilling.

3. Spilling across data routes can involve the spilling of other values. Therefore, the spill
costs of a value depend on the values concurrently alive and their locations! dynamic
spill cost estimations.

4. Concepts based on fixed execution ordering are not adequate for utilizing parallelism
provided by the machine:

(a) Informations for minimizing spill costs are based on strict ordering of state-
ments and often allow the generation of unnecessary false dependencies. False
dependencies restrict the instruction scheduler in exploiting available parallelism.

74 CHAPTER 5. REGISTER ALLOCATION

spilling across

data routes

distribution to
storage resources

parallelism

CS

IS

reduce spill costs

ordering

live
 ranges

inter-
ference

evaluation reordering utilize

b) restrictions, by introducing unnecessary

false dependencies

spill
costs

utilize

changes

compaction

reduce transfer
costs

a) spill code, that has to be scheduled;

trade--offs

indicate more
spilling

for minimizing spilling

Figure 5.10: Mutual Dependencies of Register Allocation

(b) If register allocation is concerned with taking parallelism into account it has to
make some estimations about the available parallelism. An over–estimation of
available parallelism leads to a high amount of interference, that can lead to a
high amount of spill code. This may result in worser code, than the uncom-
pacted program. For making exact estimations about the interference, instruction
scheduling has to be performed before register allocation. By this more exact
estimation about available parallelism are made, but spill code is not considered.
It is determined in the (so called) late register allocation phase, thus leading to a
rescheduling. Again, the additional spill code can lead to worser code! cyclic
dependencies: estimations are based on factors that change, when estimation
based transformations are applied.

5. In some cases it is unecessary to avoid spilling or more expensive data transfers, because
they can be performed concurrently with other machine operations. Therefore they can
be integrated into the generated schedule without producing extra costs! trade–off
between exploiting parallelism and transfer cost reduction.

6. A very important issue is the distribution of values to storage resources for exploiting
parallel execution. This can only be performed appropriately, when register allocation
is moved into instruction scheduling. As this will indicate a selection of certain
machine operation patterns, code selection is also embedded. Moving code selection
into scheduling makes it difficult to perform global register allocation, because certain
storage resources are not determined, when a certain machine operation is scheduled

5.4. SUPPORT OF ARCHITECTURAL FEATURES 75

! uncertainty of storage resources for certain values. Therefore, incremental
techniques are required.

The new task of distributing values to storage resources basically constitutes a phase coupling
problem. Section 7 is concerned with this subject. Aditionally, an adequate technique taking
parallelism into account has to make good trade–offs between exploiting parallelism and
preventing spill code. In the following, recent approaches trying to solve some of the
problems and not concerned with phase coupling are described.

Approaches

In the following, some approaches are outlined trying to solve some of the mentioned prob-
lems. More approaches concerned with phase coupling are given in section 7. It is mentioned
in advance, that the basic remaining problems are the distribution to storage resources and
adequate coupling with code selection. The support of auto–increment/decrement registers
seems to be also a very scarce investigated area, with regards to retargeting.

Storage Resource Abstraction

In [Hei93] storage resources are combined to new abstract storage resources by introducing
corresponding new nonterminals and machine operation patterns. It must be ensured, that
each storage resource belonging to an abstract storage resource is accessible to the set of
functional units, with respect to the machine operation patterns where the corresponding
nonterminals occur in. A storage resource of the set of storage resourcesdenoted by the
abstract storage resource, is either

� directly accessible, or

� reachable from all directly accessable storage resources contained in the set.

By this, traditional tree pattern matching can be performed producing a single covering of
A–MOs. This covering leaves some freedom to the register allocator in distributing values
to those storage resources, denoted by corresponding abstract storage resources.

Exploiting Distributed Storage Resources

An approach trying to distribute values for exploiting parallelism proposed in [ADK+95]
is based on extended versions of graph coloring but is restricted to distributed memories.
Therefore it is not confronted with restricted data paths and register connectivities. The
goal is to maximize the number of parallel move operations between registers and memory.
Late register allocation (i.e., register allocation after instruction scheduling (see chapter 7)) is
performed which assigns symbolic registers to physical registers and variables to distributed
memory banks.
In [CDN94] an approach is proposed called hypergraph coloring and also performs late
register allocation. The task of register allocation is delayed until after scheduling, because
informations about the concurrently alive values are necessary. They assume idealized VLIW
like architectures, such that every functional unit is connected to every register set. Therefore
no restrictions of connectivities and non of the problems of interest do occur.

76 CHAPTER 5. REGISTER ALLOCATION

Register Classifications

Paulin [PLMS95] adopts a method whereby a number of overlapping register classes for a
given target architecture can be specified. The code selection task is concerned with handling
machine operation patterns (Paulin uses the term micro–instruction patterns) with register
classes. In contrast to tree pattern matching described in section 4 the pattern do not contain
nonterminals for denoting different storage resources or register classes. Instead there are
specific write and read terminals annotated with register classes specifying a certain set of
registers. The register candidates for a value are determined by the intersection of the register
classes annotated to connected definitions and uses. Empty intersection indicates that a
register move is necesssary. These register moves are determined after matching. It is quite
clear how reachability is checked to yield a legal covering of the input tree. The approach is
based on an improved left–edge algorithm. Even if Paulin states to overcome the drawbacks
of graph coloring, it is not quite clear which drawbacks are really solved. The intersection
sets are determined by the matching process. Therefore the possible locations for values are
determined. Live ranges are also known before register allocation. Register classes can be
handled by graph coloring aswell. Therefore, the aspects considered by Paulin can be coped
by graph coloring.

5.5 Retargeting

If conventional register allocation techniques are considered, retargeting seems to be of no
problem at a first glance. However, this is generally related to consider retargetability as
using the same algorithm for a wide range of architectures, without the need of modifying
it. This aspect of retargetability does not take into account, that certain architectures are
utilized by a specific technique, while other architectures are not. A good retargetable code
generator should also select a register allocator suitable for the target architecture, regarding
and exploiting the specific features of a machine. There are three factors that should be
considered:

1. Heuristics: Register allocation techniques are based on heuristics for selecting candid-
ates for coloring or spilling. There are various heuristics developed in recent years.
An adequate heuristic has to be determined during retargeting.

2. Amount of registers: An architecture may contain only very few, few, or many registers.
If only very few register are available, global register allocation seems to be unnecessery
or even undesirable. Depending on the amount of registers, either local techniques,
trade–offs between local and global techniques,or global techniques have to be selected.

3. Phase coupling: With regards to other code generation tasks, specific features indicate a
certain ordering and/or integration of these tasks. This must also be seen in the context
of other well known optimization techniques (e.g., constant folding, code motion
[ASU86]), which are not considered in this report. The selection of a good register
allocation technique has to take into account the mutual dependencies of selected
technique with other tasks, i.e., the order of phases and the degree of integration.

5.6. SUMMARY 77

E.g., a register allocator that tries to reduce register usage will drastically constrain
instruction scheduling for instruction level parallelism.

A detailed analysis of retargetable register allocation in the context of other optimizations and
phase ordering is given in [Ben94]. Investigations in finding criterea and analysis techniques
for classifying architectures are necessary, that enable the selection of adequate register
allocation techniques and corresponding interaction with other optimization tasks.

5.6 Summary

Graph coloring is the most popular subject of research. Graph coloring is able to handle
distributed register sets, if the locations of values are known. A more important task is an
appropriate distribution of values to registers. In the context of restricted interconnections of
storage resources and functional units , this becomes a very difficult task, due to the strong
mutual dependence to code selection and instruction scheduling. Therefore, a complete
integration of code selection, register allocation and instruction scheduling is an important
subject for further investigations (so far, there are few approaches, shown in chapter 7). Re-
targeting of register allocation should be concerned with the selection of adequate techniques
and corresponding interaction with other optimization tasks.

Chapter 6

Instruction Scheduling

In this chapter the basic classes of instruction scheduling developed in recent years are
described. The foundations of compaction techniques for microcoded architectures are
described. These techniques constitute a basis for many subsequent instruction scheduling
techniques for instruction level parallelism. The basic drawbacks are in the context of irregular
architectures are discussed. Some new aspects of retargeting schedulers are outlined. We
will discuss the following topics:

� Section 6.2 will introduce the formal foundations of local compaction and the basic
local compaction methods.

� In section 6.3 the classes of global scheduling techniques are described and compared.
All these techniques are concerned with fine–grain parallelism. However, no spe-
cialized techniques concerned with code generation for RISC like architectures are
included.

� Section 6.4 emphasizes the basic problems arising when irregular architectures have to
be taken into account.

� Remarks on retargeting schedulers are given in section 6.5.

6.1 Introduction

Instruction scheduling is the task of reordering the machine instructions generated from
a source program, with the aim of getting a machine program with less execution time
and less code space. In the absence of parallelism the reordering of machine instructions
utilized the task of register allocation for minimizing register pressure. In recent years
there is increasing interest in architectures with instruction level parallelism. The main task
of instruction scheduling is to find a mapping of machine operations to instruction cycles
that effectively exploits the available parallelism of the target machine, while maintaining
the semantics of the original program. Compaction is a subtask of instruction scheduling.
The aim of compaction is to combine machine operations into machine instructions , such
that parallelism is effectively supporting program execution. If machine resources were not
strictly bound by previous tasks, compaction is concerned with the mapping of operations

78

6.2. LOCAL COMPACTION 79

to machine resources. Early works were developed in the context of microcoded machines,
termed compaction techniques. A summary of this work’s can be found in [DLSM81].

A few classes of instruction scheduling techniques have evolved in the last years. There are
four basic classes of scheduling techniques: Local list scheduling techniques are performed
on basic block level, i.e., the machine instructions are restricted to contain only machine
operations from the same basic block. Trace scheduling [Fis81] is an extended list schedul-
ing technique not restricted to basic block boundaries and employs branching probabilities
to select the most likely execution path of a program. The selected path (trace) is the re-
garded as if it was a basic block. To preserve program semantics when moving machine
operations across conditional jumps, compensation code has to be inserted. Percolation
scheduling also is a global scheduling technique based on four semantic preserving program
tranformation rules performed on the program flow graph (similar to the control flow graph)
[Nic85]. Percolation scheduling reduces the generation of superfluous compensation code;
code explotion is a major draw back of trace scheduling. Region scheduling is a technique
based on the program dependency graph and allows movements of machine instructions over
wider program regions than percolation scheduling [GS90]. Region scheduling redistributes
available parallelism, such that machine resources are fully utilized. This is also achieved
by applying semantic preserving transformation rules on the program dependence graph.
Region scheduling can also be used for coarse grain scheduling on source code level.

6.2 Local Compaction

As introduced in section 3, a machine instruction is composed of machine operations . If
only one or very few machine operation can be performed in parallel, the target machine is
said to be vertical (e.g., RISC). If many machine operations can be combined in one machine
instruction , the machine is said to be horizontal. In the context of vertical and horizontal
machines instruction scheduling has to solve two different tasks:

1. If the target machine is of vertical nature, it still can offer some fine grain parallelism,
as given by the principle of pipelining in RISC machines. The major tasks of the
scheduler is to minimize register pressure for avoiding spill code, and keeping each
stage of the pipeline busy.

2. In horizontal machines an aim is to parallelize as many machine operations as possible,
with regards to effective program execution. Avoiding spill code is not a basic aim of
compaction. In some situations the generation of spill code can lead to more efficient
programs if spilling can be done in parallel with other operations.

80 CHAPTER 6. INSTRUCTION SCHEDULING

There are no uniquely definitions that distinguish compaction from instruction scheduling.
In [Gas89] formal definitions of the local compaction problem is given as follows:

Definition 6.2.1 (Local Compaction Problem) Given:

1. a machineM and a set of m machine resources R;

2. a resource configuration vector ~RM 2 Nm, where the kth entry (1 � k � m) of ~RM
gives the number of units of resource rk 2 R available in the machine configuration;

3. a set of operations O = fop1; : : : ; oplg

4. a duration function d : O ! N where d(opj) denotes the number of machine cycles
opj takes to execute;

5. a resource usage function ~RO : O � N0 ! Nm
0 . ~RO(opj ; x)(k) gives the number of

units of resource rk needed in the xth time step of operation opj ;

6. a data dependence graph DDG imposing a partial ordering on O;

7. a delay function � : E ! N0 defined on the edges of the DDG. e = (opi; opj) and
e 2 E; �(e) is the delay that has to be respected before scheduling opj as soon as opi
has been scheduled.

The local compaction problem consists in finding a schedule � : O ! N such that:

1. minimality: � is of minimal length, and

2. dependence constraints: 8e = (opi; opj) 2 E : �(opj)� �(opi) � �(e), and

3. resource constraints:

8t(0 � t � length(�)) : (
Pl

j=1
~RO(opj ; t� �(opj))) < ~RM

Informally, the problem that compaction tries to solve, is to place machine operations into
as few machine instructions as possible, constituting the final schedule. Legal schedules are
determined using the data dependencies reflected by the data dependency graph (see section
2.3.4 page 2.3.4). The definition considers multicycle machine operations . Conflict analysis
determines wether or not a machine operation can be placed within a machine instruction,
without violating data dependencies and resource constraints of the target architecture. En-
coding conflicts are not determined in this defintion of the compaction problem. Finding
an optimal solution for the compaction problem has been shown to be NP–complete by
[DeW76].
The next candidate which is selected for being scheduled is taken from the data ready set.
These set includes machine operations whose with no predecessors in the data dependence
graph, or whose predecessors already have been scheduled. In the following we outline some
of the decisions a scheduler has to make. These decisions are made in both local and global
compaction techniques.

6.2. LOCAL COMPACTION 81

� choosing an appropriate cycle: using list scheduling techniques the scheduler has not
much freedom in selecting other cycles than the actual cycle. Linear analysis always
chooses the earliest cycle for placing a microoperation. Instead of placing a new
microoperation at the rise limit, one could think of placing it at the end of the list.

� choosing a machine operation from the data ready set: there are several criterea for
selecting the next machine operation from the data ready set, e.g.:

– prefer machine operation with the maximum path in the DDG;

– select machine operations from critical path first;

– timing constraints;

A summary of heuristics for selecting the next microoperation to schedule is given in
[Bea91].

It is advantageous to delay the binding of certain machine resources until compaction. In this
case, the candidates in the data ready set areA–MOs. The following additional decisions are
necessary:

� choosing a functional unit: this requires that code selection has not selected a specific
machine operation for implementing a certain operation in the intermediate represent-
ation. If architectures are used offering more than one functional unit (e.g. VLIW
architectures or some DSPs) it must be determined which functional unit is occupied.
If the set of functional units is identical and each functional unit has access to all
storage resources this is no big problem. Section 6.4 is concerned with the subject if
these idealized assumptions are not present. If there is more than one possible machine
operation that can be placed within a microinstruction it can be advantageous to delay
the decision of which machine operation to choose as long a possible.

� choosing result destinations: i.e. selecting a storage resource and a location where the
result of a machine operation is stored in. This again requires that code selection has
not selected a specific machine operation. If register allocation was performed before
instruction scheduling or a functional unit has already been selected, there is generally
less freedom for the instruction scheduler (see section 6.4).

Early compaction techniques where developed for microcoded machines. Many principles
developed for compaction techniques can be found in recent scheduling techniques. In
[LDSM80] the basic compaction techniques are described, e.g., linear analysis [DT76],
critical path [RT74], branch and bound [YST74], and list scheduling. These techniques are
described do not consider timing constraints and assume single cycle microoperations:

Linear Analysis [DT76]: This approach starts with an empty list of microinstructions. It
attempts to place microoperations into existing microinstructions in the list in the order
they appear in the basic block. If there is no microinstruction the microoperation
considered can be placed in without violating the resource constraints of the target
machine; a new micronstruction is inserted into the list (completely don’t care) and the
microoperation is placed into it. The scope of microinstructions where a microoperation

82 CHAPTER 6. INSTRUCTION SCHEDULING

can be placed reaches from the last microinstruction in the list to that microinstruction
the microoperation is data dependent on. This location is denoted as the rise limit.
Thus the rise limit denotes the earliest microinstruction the microoperation can be
placed in, in spite of any resource constraints. Now a microinstruction is searched
where the microoperation can be placed in, searching from the rice limit back to the
end of the list. If no microinstruction can be found that accepts the microoperation a
new and empty microinstruction is placed at the rice limit. By this microoperations are
placed as early as possible. If no rice limit is found and no microinstruction accepts
the microoperation, the new microinstruction is inserted in front of the actual first
microinstruction in the list.

Critical Path [RT74] : The minimal length of the list of microinstructions is the depth of
the DDG, i.e. its critical path. An early partition of microoperations is constructed,
placing all microoperations that occur at the same level in the DDG into the same
microinstruction, in spite of any resource conflicts. An analogous late partition is
constructed. All microoperations having the same position in the list of the early and
in the list of the late partitioning constitute the critical path. From these two partitions
a critical path partition is constructed (for details consult [LDSM80]).

Branch and Bound [YST74]: A tree is constructed which nodes represent microinstruc-
tions. A path from the root to a certain leaf corresponds to one possible ordering of
microinstructions. The tree branches in that cases when there is more than one possible
microinstruction that can be placed at the point in the tree. If the algorithm finds a path
with the length of the critical path it has found an optimal answer. Generally heuristics
are applied for not constructing a complete tree (that would take exponential time).

List Scheduling This is a special case of branch and bound, where only one branch is
constructed (followed) at every node. List scheduling starts with an empty list of
microinstructions. Microoperations are placed into the last microinstruction of the list
if they are

1. data ready, and

2. they have the highest priority (computed by some weighting heuristics) among
the set of data ready machine operations, and

3. they can be placed into the last microinstruction.

If no microoperation from the data ready set can be placed a new microinstruction is
placed at the end of the list. The weighting heuristic has great impact upon the final
schedule.

The compaction methods rely on heuristics to reduce the search space of possible schedules
with the aim of pruning solutions representing no good results. List scheduling is the most
popular technique used in local instruction scheduling techniques, because there exists a
known bound on the time it takes to execute. It has complexity O(n2) [LDSM80, Gas89].
List scheduling produces good results in the presence of adequate heuristics and is easy to
implement. A detailed introduction to compaction methods, list scheduling, and a summary

6.3. GLOBAL INSTRUCTION SCHEDULING 83

of heuristics can be found in [Bea91]. Instruction scheduling techniques considering timing
constraints between machine operations are summarized in chapter 8.

6.3 Global Instruction Scheduling

Local List Scheduling

Trace Scheduling

Percolation Scheduling (PS) Region Scheduling

Enhanced Region Scheduling

Local Compaction

Branch and Bound

Linear Analysis

Critical Path

global extension

GRiP TiPS (Trailblaizing PS)

Mutation Scheduling (MS)

(Global-Resource

Enhanced Pipelined PS Perfect Pipelining

Constraint Scheduling)

Unifiable-Ops

can be integrated

improvements
based on elementary
transformation rules

Software Pipelining

Loop-Handling-
Transformations

Figure 6.1: Hierarchy of Scheduling Techniques

The techniques of the last section are local scheduling techniques operating on basic block
level. A disadvantage is that basic blocks generally offer a more limited degree of instruc-
tion level parallelism. Therefore architectures that offer a high amount of parallelism are
not supported appropriatly. Recent research has succeeded in overcoming the basic block
boundaries. In figure 6.1 an overview of the basic scheduling techniques and their improve-
ments is shown, including the local compaction techniques. These techniques are discussed
in the subsequent sbsections. The basic issues of investigations in scheduling techniques and
their superimposed and enhanced approaches are:

� improvements in effectively support of instruction level parallelism is a major goal of
all approaches;

84 CHAPTER 6. INSTRUCTION SCHEDULING

� taking resource constraints into account is becoming of much interest; e.g., percolation
scheduling assumes unbounded resources; many efforts are made to integrate the
consideration of a restricted number of machine resources [EN89b, ME92, NN92];

� considerations of over–, and under–utilized regions of a program with respect to the
underlying target architectures are made [GS90, BGS95];

� integration of scheduling accross loops.

� Adapting global scheduling techniques for advanced RISC architectures (remark: this
topic was out of the scope of this report and is therefore not involved, but should not
be ignored in further research).

Other issues of improvements are avoiding the generation of superfluous compensation code
and integrating transformations rules that allow the movement of operations accross large
program regions. Upto region scheduling, the basic scheduling techniques can only handle
acyclic code. In region scheduling, loops are compacted by unrolling its body. This approach
can be very inefficient with regards to code space. Therefore another class of scheduling
techniques based on software pipelining has been developed. Hereby a new iteration of
the loop is started before the preceeding iteration has completed. Extended versions based
on percolation scheduling and region scheduling where developed to incorporate software
pipelining (e.g., perfect pipelining [AN88b], enhanced pipelining percolation scheduling
[EN89a], and enhanced region scheduling [AJLS92]).

6.3.1 Trace Scheduling

Trace scheduling was originally developed by Fisher [Fis81] as a technique for global micro-
code compaction. Trace scheduling uses a programs basic block graph (see section 2.3.2).
Nodes of the graph are the basic blocks. Edges represent the possible control flow. The
scheduler partitions the basic block graph into an ordered set of non–overlapping loop–free
pathes called traces. The first trace is the most frequently executed trace, the second one is
the trace with the next hiqhest frequency, and so on. The set of traces is exhaustive, i.e. the
basic block graph is covered completely by the set of traces. Execution frequencies are either
extracted from profiling information or estimated from loop–nesting and branch prediction.
The scheduler repeatedly picks traces consisting of uncompacted basic blocks. It now treats
the trace as a single basic block and performs list scheduling. It is based on the data
dependence graph to determine the legal reorderings of machine instructions. The scheduler
determines the data ready set, which contains all machine operations whose predecessors in
the DDG have already been scheduled. A machine operation of the data ready set is selected
for scheduling and is assigned to the earliest cycle it can be placed in without causing any
resource conflicts.
If compaction is restricted to basic blocks, reordering is uncritical, but for traces consisting
of many basic blocks the branches have to be taken into account. Multiple conditional or
unconditional jumps may leave the trace and there may be multiple nodes of the trace that
represent entry points from outside into the trace. To preserve data dependencies, the sched-
uler has to take care of moving machine instructions accross conditional and unconditional

6.3. GLOBAL INSTRUCTION SCHEDULING 85

jumps. If machine instructions are moved from above a conditional jump to below it, it has
to be ensured that this operation is also executed on the path that leaves the trace by the
conditional jump. If the scheduler moves a machine instruction from below a conditional
jump to above it, it must be ensured, that a copy of the machine instruction has to be added
to incomming traces of the corresponding basic block. Also, it must be ensured that moving
up definitions of variables will not change the programs semantics. Additional instructions
that have to be added to other traces are called compensation code. The compaction of a
certain trace therefore results in adding machine instructions to other traces for preserving
program semantic correctness and may lead to slowing down the execution performance of
the other traces. Thereby it does not take into account the execution frequencies of the trace
compensation code is added to.
Nicolau [Nic84] has shown that trace scheduling may produce exponential number of machine
instruction copies. Some heuristics were developed, that restrict the schedulers freedom of
reordering machine instructions for preventing code explosion [LA83, Lin83, SDJ84, Ell86].
A good introduction to trace scheduling can be found in [WM95]. The movements of machine
operations are described in form of transformations rules.

6.3.2 Percolation Scheduling

Percolation scheduling overcomes the problem of code explosion, but can still produce su-
perfluous code in some cases. The technique was introduced by Nicolau [Nic85]. It does
not consider a program as a set of basic blocks anymore. There is a set of transformation
rules, that locally transform a program graph. The program graph is similar to the control
flow graph. In contrast to the control flow graph there is only one type of nodes, where each
node is associated with an instruction. In the terminology of Nicolau an instruction is a set
of operations involving conditional jumps. Comparing to our terminology conditional jumps
are corresponding to conditional expressions in the CFG. Operations can be compared with
machine operations. In contrast to machine instructions, an instruction in the program graph
must not necessarily consist of operations that can be performed in parallel. Percolation
scheduling does not consider any resource constraints during the application of its trans-
formations. An assumption in percolation scheduling is that operations always execute in
one instruction cycle. An instruction may contain multiple conditional expressions that form
a directed acyclic graph with respect to control flow, whose leaves are again nodes of the
program graph, representing multi–way branches corresponding to the branching structure
in the CFG.
The initial program graph has the same structure as the control flow graph (CFG with non–
typed nodes). Percolation scheduling performs parallelizing transformations on the program
graph moving up operations (or conditional jumps) in the program graph, while preserving
the semantics of control flow and data flow. Repeatedly applying the transformation rules
allows machine operations to percolate toward the top of the program graph. The process
of scheduling is termed migration. Applying a core transformation always results in a
semantically equivalent, but more parallel program graph. [Nic85] proposed four core
transformation rules which were simplified to three transformations by [Aik88].
The basic idea of percolation scheduling is to start with a program graph that represents the
original sequential program. Each node contains exactly one assignment or one test. The

86 CHAPTER 6. INSTRUCTION SCHEDULING

core transformations are then repeatedly applied to the program graph. The order in which
the transformations are applied is fundamental for two reasons:

1. the transformations are not confluent, i.e. when two different transformation can be
applied to a graphG, resultingG0 or G00 respectively, it can not be guaranteed that both
G0 and G00 can be transformed into a final unique result graph.

2. the transformations are not complete, i.e. a program graph cannot always be trans-
formed into a semantically equivalent program graph with maximum parallelism.

Finding an optimal sequence of transformations is NP–complete. Therefore heuristics are
applied for choosing the operation to move next. Approaches were proposed by Aiken and
Nicolau [Aik88, AN88a] called compact–block, compact–path, and compact–global. Like
in trace scheduling, the scheduler chooses frequently executed paths first. This method has
a major problem: compact global relies on a target architecture with infinite resources that
is able to concurrently execute an arbitrary set of machine operations without any restriction
in any cycle. The created schedule has to be repartitioned with respect to the resource
constraints of the target machine. Another disadvantage of percolation scheduling (or the
superimposed techniques) is that the transformation rules enforce continious traversals of the
program graph. This is due to the locality of the transformation rules, resulting in a slow
compilation process.
Two overcome this problems two approaches have been developed integrating the considera-
tion of resource constraints [EN89b] (e.g. percolation scheduling with resources constraints).
Thereby no transformation rule move an machine operation into a node if this causes the
requirement of more machine resources then available for the instruction.

GRiP

Global resource–constrained percolation scheduling GRiP [NN92] was motivated by the
belief that resource constraints should be integrated into scheduling. It is not restricted
to for using it in percolation scheduling but to be also used in parallelization techniques,
such as trace scheduling or Enhanced Pipelined Percolation Scheduling [EN89a]. GRiP also
introduced some improvements for software pipelining (keyword gap prediction).
Aggressive speculative movements (i.e. across conditional jumps) of operations in the
absence of resource constraints can yield in moving possibly useless operations competing
with useful operations for scarce resources. The knowledge about the resources available
during scheduling allows more sophisticated decisions, e.g.

� when a large number of resources is available it might be worthwile to allow speculative
movements;

� if only few resources are available, it might be better to prohibit the speculative
movements until all non–speculative movements have been performed;

� data dependencies often permit operation to move farer than resource constraints would
allow.

6.3. GLOBAL INSTRUCTION SCHEDULING 87

GRiP was inspired by a technique based on unifiable operations [EN89b]. The set of unify
operations of a node n in the program graph is the set of all operations that can be moved
to n without raising resource conflicts. Unifiable–Op scheduling consists of traversing a
program graph in a top down fashion and filling the resources of each node (thus nodes are
viewed as machine instructions) with the best nodes from the unifiable operation set. The
disadvantage of this technique is that the computation of the sets is very expensive and must
be incrementally updated, thus not really practicable for application. GRiP is based on the
same principle, filling resources of nodes by using migration to move operations. When a
node is scheduled, all operations that are in nodes that are dominated by the node considered
can move, with respect to data dependencies and resource constraints. An operation becomes
unmovable if

� it has moved into or above the actual node being scheduled, or

� a resource constraint prevents any application of the transformation rule of percolation
scheduling, or

� it is prevented from moving by a data dependence on an operation itself not movable.

GRiP performs the following tasks:

1. A heuristic is applied to rank the importance of all operations of the program graph.

2. A set of moveable operations is determined for each node in the program graph. Initially
these sets contain the operations of the subgraph that dominates the corresponding node.

3. Scheduling nodes is performed in top down traversal of the program graph. Migrating
is performed to operations in the associated sets of the scheduled node in ranked order,
until no operation is moveable anymore.

A disadvantage in GRiP (also in contrast to unifiable-op scheduling) is the occurence of
resource barriers. Consider a path [nA; nB; nC]; if there is an operation in nC that is
prevented from moving into nB , because nB is full and the operation would be movable
from nB to nA, then nB is called a resource barrier. These barriers prevent the moving of
nodes through regions of programs with filled resources. Resource barriers can cause that
operations with higher priority have to wait until nodes with lower priority have moved out of
resource barriers. Thus the order indicated by the priority can be violated. This may cause,
that an operation with lower priority may occupy a resource predestinated for an operation
with higher priority stuck in a resource barrier. In [NN92] it is stated, that using adequate
heuristics resource barriers are not likely a problem. The ordering of operations rely on
heuristics. Any heuristic can be used in GRiP, e.g. heuristics used in list scheduling.

Trailblaizing Percolation Scheduling (TiPS)

Trailblaizing Percolation Scheduling [NN93] tries to overcome the incremental feature of
percolation scheduling; only very local transformations are performed, therefore leading to
very large sequencies of transformation for moving operations across larger program regions.
This also has the disadvantage of producing more compensation code then necessary, enforced

88 CHAPTER 6. INSTRUCTION SCHEDULING

by the transformation rules (code explosion). One reason is that transformations are based
on the structure of the control flow graph. Therefore often transformations are applied to
nodes the operation that is moved is not dependend on. The operation could be moved across
regions without visiting any of such nodes.
Trailblaizing is based on hierarchical task graphs (HTGs; see chapter 2) [GP92] represent-
ing the essential dependencies and structure of a program. Trailblaizing extends percolation
schedulings core transformations to exploit the structure of HTGs. By this technique oper-
ations can be moved across large program regions applying only a few transformation rules
and avoiding a high amount of unnecessary compensation code. This also includes moving
operations accross loops, a feature not inherent to normal percolation scheduling.
Trailblaizing improves compilation time by reducing the amount of transformation steps and
also results in performence improvements of the parallelized code by allowing transforma-
tions not enabled in percolation scheduling. Trailblaizing is not dependent on any heuristics
or considerations of resource constraints. These aspects are completly isolated from the basic
algorithm.

Mutation Scheduling

Mutation Scheduling is a complete trade–off between code selection, register allocation and
instruction scheduling. Mutation scheduling is based on trailblaizing percolation scheduling
and also integrates GRiP for taking into account resource constraints.
Using GRiP, operations are scheduled using transformations from percolation scheduling and
TiPS until either

� a true dependence, or

� a false dependency is encountered and dynamic renaming is not possible, i.e. there is
no free register available, or

� a resource dependence blocks GRiP.

Mutation scheduling is then attempt to remove the occuring dependence, by trying an altern-
ative operation for implementing the value considered from the mutation set. More aspects
are discussed in capter 7.

6.3.3 Region Scheduling

Region scheduling is a technique for detecting coarse–grain and fine–grain parallelism. It
was first proposed in [GS90]. The technique is based on a extended form of the program
dependence graph. The scheduler is guided by estimations of present parallelism of the
regions represented in the PDG. The region scheduler repeatedly transforms the extended
PDG, uncovering potential parallelism until an estimate of the parallel capabilities in each
region matches the parallel capabilities of the target architecture, or no transformations
are applicable. The transformations defined for region scheduling can redistribute fine–
grain parallelism among regions by the transfer of machine operations. Thus, overestimated
parallelism in certain regions can be transfered to another region with unsufficient parallelism.

6.4. SUPPORT OF ARCHITECTURAL FEATURES 89

Trace scheduling and region scheduling both use reordering of the program to generate a
schedule that enables parallel execution. In trace scheduling, transformations are applied
based on execution frequency. In region scheduling, transformations are driven by parallel
opportunities, i.e., the available parallelism of the underlying architecture is taken into
account for selecting the next transformation step. The region scheduler can exploit at
least as much parallelism as the trace scheduler [GS90]. In contrast to trace scheduling,
the region scheduler is able to move complete regions to other regions. The drawback of
trace scheduling generating fast schedules for highly prioritized traces at the expense of the
others is avoided in region scheduling. The transformations are directed towards to increase
parallelism. An improved approach of region scheduling was introduced by [AJLS92]. This
approach termed enhanced region scheduling also incorporates software pipelining.
Gupta states, that the technique is architecture indipendent [GS90]. However, in region
scheduling target machine code generation is done after all transformations were applied.
This requires an architecture of idealized structure. The question how irregular register sets
and data paths can be integrated are so far not considered.

6.4 Support of Architectural Features

The original goals of instruction scheduling are exploiting fine–grain parallelism (compac-
tion) or -if no vertical architectures are considered - reordering of A–MOs (evaluation
reordering) with regards to reducing register pressure (with the aim of spill cost reduction).
The approaches introduced in the previous section are basically concerned with the first issue
(compaction).

Common Suppositions

We will have a look at the common suppositions of instruction scheduling:

1. Generally, idealized machine models are considered. I.e., identical functional units
with immediate access to all storage resources are assumed; restricted connectivities
are seldom addressed.

2. Resource constraints are considered with regards to the number of resources that are
available. If all operations can be performed on all functional units (with access
to all storage resources), resource allocation during instruction scheduling does not
constitute any problem. I.e., binding operations to a functional units and determining
storage resources for the operands has no impact on data dependent operations.

3. Conventional scheduling algorithms are confronted with the following decisions:

� choosing an appropriate machine instruction for inserting the operation;

� choosing a machine operation from the data ready set.

90 CHAPTER 6. INSTRUCTION SCHEDULING

New Goals and Problems

The techniques described so far do not take into account the problems arising in the context
of irregular architectures. Like in the section concerned with register allocation, we will now
summarize the new situations, instruction scheduling is concerned with:

1. Neither identical functional units nor general access to storage resources is given.

2. Instruction scheduling is mutual dependent on code selection. A certain covering
can result in a (possibly restrictive) binding of machine resources. Allocating machine
resources by the scheduler indicates that data dependent operations are restricted to
certain machine resources:

� A storage resource, selected for the result of a machine operation may not be
immidiatly accessable to the machine operations that use this value. In this case
additional data movements are necessary, supposed, they are possible.

� It is relevant to consider which operations are available if certain operations can
only be performed on specific functional units.

3. Spilling accross data routes has to be considered. It also has to be taken into account,
that spilling may not be possible from every storage resource! restricted spilling.

4. The strong mutual dependece between functional units and storage resources enforces
the scheduler to make trade–offs between the decisions of

� choosing a functional unit;

� choosing result destinations.

The effects of restricted connectivities are not examined for percolation scheduling and
region scheduling so far. Complex data routes together with their effects on spilling are not
considered in the approaches introduced so far. In [Hei93] some aspects of irregularity are
integrated into a trace scheduler. Approaches considering the stated aspects are concerned
with phase coupling, therefore described in section 7.

6.5 Retargeting Instruction Schedulers

If we consider the amount of instruction scheduling approaches, the subject of retargeting is
seldom addressed (see section 3.3 page 31). So far, list scheduling and trace scheduling are
the preferable candidate considered in this context. The basic principles of these techniques
do not rely on a specific target machine architecture. However, the selection of a member of
the data ready set relies on heuristics and on a certain ordering for making decisions (choosing
a functional unit, or storage resource). No heuristic effectively supports the complete range
of architecture classes [Hei93]. The order in which decisions are made may have impact
on the code quality. Both, the order of decisions and the heuristic, depend on the features
of the target architecture. The question is, how schedulers can be retargeted to effectively
support this features. The problem of retargeting gets more complicated if the scheduler is

6.6. SUMMARY 91

confronted with partial code selection, i.e., regarding different coverings. In this case, the
selection of equivalent operations and different data routes must also be considered.
Percolation scheduling and region scheduling based schedulers have a modular and hier-
archical concept. Transformation rules constitute the lowest level. Based on this rules, the
selection of rules for moving an operation into a certain machine instructions is adapted. On
top of this, heuristics for choosing operations for moving are implemented. This modular
concept enables a fast modification of the schedular (by hand) with regards to new archi-
tectures that have to be supported. However, retargeting based on automatically adapting
new heuristics is not considered. In [Bea91] an approach based on genetic algorithms is
proposed. Thereby a local list scheduler learns which heuristics are adequate for a certain
target architecture. In [Hei93] a trace scheduler is generated based on analysing the target
architecture and composed from certain subtasks with regards to the following criteria:

� if each functional unit has access to all storage resources, data placement is of no
concern and the selection of a functional unit has priority;

� if functional units have restricted data access, three classes of functional units are
considered:

1. data placement is of no concern: therefore, selection of a functional unit has
priority;

2. data placement is of minor concern: selection of functional unit still has priority,
but direct access to storage resources is examined and incorporated in the decision;

3. data placement is of major concern: promising destinations for the results of
operations are choosen first.

A detailed analyses for further criterea is an important subject of further research. Determ-
ining fine–grained subtasks of scheduling, relevant for supporting certain hardware features
becomes necessary, for utilizing an architecture based composition of schedulers. It is also
necessary to find out how the outlined instruction scheduling techniques can cope with such
decisions. As already stated in section 5.5, retargeting should consist of

� determining adequate techniques and heuristics (e.g., if no parallelism is provided by
the machine, instruction scheduling is merely concerned with evaluation reordering,
for minimizing register usage);

� a good composition of subtasks, constituting the fine-grain adjusted selected technique;

� taking into account the interaction and the coupling with other tasks of code generation.

The field of retargeting instruction schedulers is very scarcely investigated, therefore more
efforts of research are very important in this area.

6.6 Summary

The research area of most interest is the the support for fine–grain parallelism, especially
instruction level parallelism. There are many efforts made in developing global techniques
and integrating

92 CHAPTER 6. INSTRUCTION SCHEDULING

� consideration of resouce–constraints,

� finding adequate solutions for scheduling loops (software pipelining).

The basic drawback is that the impacts of irregular architectures are so far of no much major
concern. There are efforts necessary to examine how these techniques can be augmented
with the requirements arising from irregular architectures and extend the considerations of
resource constraints to mutual dependencies of functional units, their destinations of of the
results, and data dependend operations.
The second major drawback arises in the context of retargeting a scheduler. Heuristics used,
may have fundamental impact on the generated machine code when different target machines
are considered. How the scheduler can be automatically tailored to the requirements of the
considered target machine is very a seldom subject of interest. Therefore, much investigations
for retargeting schedulers seems to be necessary. This involves examinations of the degree of
retargetability of the scheduling techniques and if certain scheduling techniques are restricted
to support only special classes of architectures.

Chapter 7

Phase Coupling

In this section the problems resulting from performing the tasks of code generation strictly
decoupled and in a certain order ae discussed. It is shown that a coupling of these tasks is an
important issue, all the more the features of irregular architectures together with fine–grained
parallelism are incorporated. Problems that have to be solved and approaches concerned with
phase coupling are described. Phase coupling with other optimization tasks is not addressed.
An overview of early works in the context of phase coupling is given in [AM87].

7.1 Phase Ordering Problems

We will first outline the basic issues that lead to phase ordering problems and indicate
an integration for certain tasks of code generation. Code selection and register allocation
can hardly be considered as separated tasks. The selection of a certain machine operation
pattern immediately fixes a certain set of storage resources for the operands. With regards to
instruction scheduling, a certain set of machine resource is fixed in advance. Binding certain
machine resources before code selection will have great impact on the legal coverings (and
may be even impossible). Therefore, each decision determind in one of the tasks effects the
other. The generation of code selectors using tree pattern matching is a very sophisticated
technique. Using dynamic programming, an optimal solution is selected with regards to a
sequential view of program execution. The minimum cost covering selected by the dynamic
programming approach is generally no optimal solution with respect to spill cost reduction
and exploitation of parallelism. The selection of unfavourable machine operations can result
in machine instructions that hardly contain parallelism and results in a high amount of spill
code. An integration of spilling and parallelism aspects into the cost model would enforce
tree pattern matching to consider context sensitive informations. But generally most of these
informations necessary for selecting good code are only available when the code is selected.
E.g., for determining effects on spilling, locations of all the other live values must be known;
but for knowing the locations, the machine operation patterns for implementing operations
have to be known; therefore, a covering has to be selected first. The basic drawback is, that
certain operations and machine resources are fixed (bound) after code selection. Some of these
decisions should be delayed until scheduling. For selecting between different operations and
data routes, the integration of code selection into instruction scheduling becomes of growing

93

94 CHAPTER 7. PHASE COUPLING

importance. Performing instruction scheduling before code selection can be performed for
architectures with identical functional units that have access to all storage resources (e.g.,
region scheduling). Perfoming instruction scheduling before code selection is impracticable
for irregular architectures.
The phase ordering problems between register allocation and instruction scheduling already
occur in absens of distributed register sets: (1) Register allocation tries to reuse as many
registers as possible, therefore adding many additional false dependencies that inhibit the
instruction schedulers ability to reorder machine instructions. (2) Instruction scheduling
tries to parallelize as many machine operations as possible therefore resulting in high register
pressure which increases the amount of interferences drastically. If we perform register alloc-
ation before instruction scheduling (also stated as early register allocation) the instruction
scheduler is inhibited in reordering the instructions by additional false dependencies, i.e.,
anti–, and output–dependencies. This dependencies are resulting from the re–definition of
registers when multiple live ranges are mapped to the same register. This is an immediate
result of the sequential view of statements as represented by the CFG, which is reflected in
the live ranges of values and lead to certain interferences with other values. Non–overlapping
live ranges may be mapped to the same physical register. If register allocation is performed
after instruction scheduling (stated as late register allocation) new interferences may be
introduced between values, thus resulting in possibly many spillings. Additional spillings
mean new spill code, that also has to be scheduled. Therefore, a rescheduling becomes
necessary [BS95].
The interdependence between machine resources and selected code leads to the strong mutal
dependence of code selection, register allocation, and instruction scheduling. Informations
necessary for performing certain code improvements are based on the available machine
resources, related to operations and values:

� spilling is based on interference informations of values, whereby interference itself is
dependend on the locations (i.e., storage resources) of values;

� parallelism is dependend on the machine resources occupied by data independend
operations.

As machine resources are determined by the selected code and only legal coverings should
be considered, tree pattern matching should be performed in advance. Otherwise there is
no basis for constituting code improvements. A utilization of code improvements can be
enabled on certain levels of delayed binding of machine resources:

� Recomputation of values, if this can be performed in parallel to already scheduled code.

� ConstructA–MOs , that bind as less machine resources as possible. A single covering
is selected with conventional techniques. Thereby, a single covering should ensure,
that each combination of machine resources specified by the covering is legal covering
of coresponding machine operations. Hereby code selection is decoupled from the
other tasks. If parallelism is proided by the machine, good trade–offs between transfer
cost reduction (especially spill cost reduction) and exploiting parallelism have to be
found

7.2. SINGLE COVERING (LEVEL–0) 95

� Take different coverings of A–MOs into account. This can be also partitioned in
different levels of coverings (see section 4.4 page 56):

– fixed machine operation patterns but different data routes;

– machine operation patterns only differ in the set of storage resources, thus also
different dataroutes are considered;

– different granularity of covering the operators;

– coverings, where certain operations are exchanged by applying algebraic trans-
formations.

In the subsequent sections an overview of approaches is given that incorporate phase coupling,
classified in the mentioned levels of coverings which are considered. Additional criterea are
the considered architectural features and the degree of retargetability. As stated in the previous
sections, this is concerned with the selection of techniques and their used heuristics, their
combination and degree of integration.

7.2 Single Covering (Level–0)

7.2.1 Recomputation (Rematerialization)

One approach, called rematerialization, embeds code selection partially into graph coloring
with the goal of reducing spill costs [CAC+81, BCT94]. The idea of rematerialization is to
choose the least expensive mechanism to accomplish spilling. This is basically concerned
with detecting situations where a recomputation of a value is more profitable than spilling
the value to memory. In [CAC+81] it is pointed out that certain values can be recomputed
by single machine operations and that certain required operands will always be available for
the computation (e.g., immediate values in the machine instruction or hard coded constants).
Chaitins allocator cannot handle rematerialization of live ranges comprising several values.
An improvement is given in the approach of [BCT94].

7.2.2 Delayed Binding

A–MOs leave a certain degree of freedom to the instruction scheduler, while maintaining
the sequential view of traditional code selectors. An approach by Rainer Leupers, currently
in progress at our institute, extracts SR–MOs from a hardware description specified in
MIMOLA [BBH+94]. A corresponding iburg specification is constructed. The generated
tree pattern matcher selects a minimal cost covering. Local register allocation is performed,
whereby each variable is assumed to be located in memory. Local instruction scheduling is
then performed using an IP–solver that determines an optimal schedule on basic block level,
taking into account given timing constraints. The basic drawback of using an IP–solver is
that large basic blocks cannot be effectively scheduled anymore.

96 CHAPTER 7. PHASE COUPLING

7.2.3 Taking into Account Potential Parallelism and Limited Registers

This subsection is concerned with register allocation techniques that take into account issues
of parallelism and instruction scheduling taking into account the limited amount of registers.
Goodman and Hsu [GH88] compared two methods against both early and late register
allocation. They developed a data dependence graph driven method on basic block level.
They manipulate the schedulers data dependence graph, such that it’s width is no greater than
the number of registers available. Their second method is based on late register allocation
and is called integrated prepass scheduling (IPS). Hereby, a local scheduler is restricted to
use a fixed number of registers for local values (local pseudo registers) of each basic block.
If this register limit is reached, the scheduler tries to free some of the registers, and may
increase the register limit if freeing is not possible. The subsequent local register allocation
can generate spill code which enforces a rescheduling. Bradlee compares two strategies with
graph coloring followed by scheduling. All three strategies are embedded in the retargetable
code generator MARION [BEH91, Bra91, BHE91]. The first strategie is an improvement
of IPS and performes global postpass register allocation. The second one called RASE first
perfomes initial passes of the instruction scheduler for estimatimating local schedule costs,
given a very limited number of registers and then with the maximum number of available
registers. The computed estimations are used in the priority scheme of graph coloring,
followed by a local list scheduler. The MARION system is intended for constructing code
generators for RISC like architectures, based on an instruction set model (including resource
requirements of the instructions). It was developed for analyzing different code generation
strategies, but an automatic selection of strategies is not described. Distributed register sets
are considered, and explicitly advanced pipelines are supported, which requires the support
of complex data routes.
Freudenberger [FR91] describes a method that integrates register allocation into trace–
scheduling. The scheduler takes as many registers from a pool of available registers as
it needs (greedy). It also saves information about which registers contain which values for
the entry and exit points of a trace, i.e., the corresponding nodes the control flow graph,
where control flow branches or coalesces. These informations are used to minimize data
movements in the traces corresponding to the entry and exit points. As trace scheduling is
performed on the crucial paths first, the global aspects of register allocation are incorporated,
by allocating values to registers that are frequently used.
Norris and Pollok [NP93] perform early register allocation and add edges to the to the
interfernce graph to estimate the re–ordering effect of instruction scheduling. They build the
interference graph from the data dependence graph rather than from a linear representation
like given by the control flow graph. Generally the data dependence graph contains more
parallelism than the target machine offers to be executed in parallel. Large interference graphs
are constructed that are hardly to color. Norris and Pollok developed several heuristics to
reduce the amount of parallelism given by the DDG, while maintaining enough parallelism
for utilizing the scheduler. Pinter [Pin93] also constructs an interference by adding additional
edges. Therefore she first constructs a graph from the data dependence graph, where the
transitive closure of all dependence edges are placed into a graph as undirected edges. Target
machine resource conflicts are added that restrict the parallel execution of machine operations.
From this resulting graph, the graph’s complement is constructed and the union with the

7.3. DATA ROUTING (LEVEL–1,2) 97

register alocators interference graph is constructed. This resulting graph is called the parallel
interference graph. Brasier [BS95] proposes a method based on late register allocation
and limits the additional interferences to false dependencies that will limit the instruction
scheduler. Only if spilling becomes necessary during late register allocation it is switched
back to early register allocation. The interference graph of early register is aughmented
with edges from the interference graph of late register allocation. Those edges are added
between nodes (live ranges) in the early interference graph that are exclusively found in the
late interference graph and which are colored with the same color in the early interference
graph. The resulting schedule will be accepted. Further works based on utilizing register
allocation with aspects of parallelism based on graph colloring are [AEBK94, NP94, NP95].
In Bersons approach [BGS94] the data dependence graph is incrementally sequentialized
with regards to global aspects of over and under–utilized regions of resource requirements
(excessive sets and resource holes, respectively). Register allocation is performed on–the–fly,
together with appropriate spilling. Approaches like [ME92, NPW91, NN93] start with an
initial register allocation. During instruction scheduling false dependencies are eliminated
using dynamic renaming [CFR+91]. But allocated registers are never released (e.g., by
spilling).
The aspects of other phases considered in a certain phase are generally based on potential
possibilities of parallelism or resource requirements that are often extremly over- or underes-
timated. Therefore research is merely directed to improve the precisness of estimations. The
problematic issues of irregular register sets are not addressed in the described approaches.
The effects of mutual dependencies of storage resources and functional units are avoided
by either not involving restricted connectivities, or binding resources in advance. However,
initial register allocation with the possibility of incrementally rejecting some of the decisions
during instruction scheduling seems to be a good approach and should be further considered.

7.3 Data Routing (Level–1,2)

Data routing incorporates register allocation into scheduling, due to distributed register sets.
Coverings are considered, containing fixed functional units for operations, but differ in data
routes between definitions and uses. The aim of data routing is the selection of good routing
paths for values, with regards to exploiting instruction level parallelism. The BULLDOG
Compiler of Ellis [Ell86] and the CBC [Har92] perform local scheduling together with greedy
register allocation on the fly. Hereby, good spill decisions are not considered. The approach
proposed in [LCGM94] tries to overcome this lack by examining various data routes with
regards to global spilling and recomputation. Functional units are bound in advance. Pattern
matching is performed during scheduling by combining partial versions (see section 3.2.6
page 28) of machine operations to complete versions (bundling). Hereby, complex patterns
accross basic block boundaries are taken into account. The approach takes into account the
problematics of irregular register sets and is integrated in the synthesis and retargetable code
generation system CHESS.
An approach combining delayed binding of functional units with consideration of different
data routes is proposed in [Hei93]. Irregular register sets together with fine–grain parallelism
are taken into account. Storage resources are composed to more abstract storage resources.

98 CHAPTER 7. PHASE COUPLING

It is ensured, that definitions and the corresponding uses of values are always reachable. The
code selector performs traditional tree pattern matching with dynamic programming. A trace
scheduler is generated from a machine specification to guide the order of the choices the
trace scheduler has to make with respect to the requirements of the target machine. The trace
scheduler perfomes register allocation on–the–fly.

7.4 Integrated Code Selection (Level–3)

The approaches described here perform code selection during instruction scheduling. In-
cremental tree hight reduction (ITHR) partially integrates code selection into instruction
scheduling. ITHR changes the structure of expressions according to associative or distributive
properties of operators. Incremental tree hight reduction was used to change the structure of
expressions during instruction scheduling [NPW91].
The retargetable code generator MSSQ embedded in the MIMOLA software system per-
forms code selection within local instruction scheduling. A set of coverings is generated
for each assignment statement. Each covering constitutes of L–MOs , represented by the
coresponding versions. The versions are constructed from partial versions during pattern
matching (bundling). The partial versions are extracted from the structural description of the
hardware (specified in MIMOLA). Variables are pre–allocated to certain storage resources,
defined by the user. Temporary values are located to register cells on–the–fly during pattern
matching, i.e., during partial version determination. Each temporary register cell can be
only assigned in one version. The selection of versions is performed during local compac-
tion. Transformation rules enable to consider algebraic transformation during compaction.
Spilling and global optimizations are not considered in this approach.
Mutation scheduling is based on trailblaizing percolation scheduling. It integrates code
selection and register allocation into instruction scheduling. Each value in the program
is assosiated with a set of functional equivalent expressions, each using a different set of
resources of the target architecture. The sets are called mutation sets. During instruction
scheduling one of this alternatives is selected. If the resources for a selected expression
are occupied, another expression (mutation) is selected. The mutation sets can change
dynamically during scheduling to contain expressions that may become available for a value.
When a value is evaluated into a register, a reference to that register is added to the mutation
set. If a value is spilled, a load entry with the corresponding location is added. Initial register
allocation is performed like in [ME92, NPW91, NN93] incorporating dynamic renaming
for eliminating false dependencies. But in contrast to these approaches spilling is also
integrated. If recomputation of a value has more advantages the recomputation of a value is
selected [NN94]. In contrast to rematerialization, every equivalent expression can be selected.
Incremental tree hight reduction is incorporated. The applied heuristics can be easily adjusted
(by hand), due to the modular concept of percolation scheduling based approaches. However,
the problematic issues of irregular register sets again are not of interest.

Chapter 8

Timing Constraints

This chapter is concerned with code generation for given timing constraints. I.e., the gen-
erated code must either fulfill a certain timing behavior specified by the designer (explicit
timing constraints), or the code generator has to take care for timing constraints predicted
by hardware components (implicit timing constraints). Explicit timing constraints are be-
comming of increasing importance in the context of real time systems (RTS). Implicit timing
constraints are due to e.g. certain delay times of machine operations or maximum duration
times a machine resource will hold a certain value (e.g. transient resources).
The runtime of certain program regions depends on the length of the final machine instruction
sequence, and this sequence is only known after the final scheduling phase. Therefore, the
analysis of timing constraints is commonly integrated into scheduling. There are the following
basic research areas in the context of timing constraints:

� Modelling of explicit timing constraints and formal analysis if these constraints are
feasible (cp. [Hon94, KM90b]).

� Scheduling with regards to explicit constraints. I.e., reordering the program by moving
instructions from overloaded program regions (not fulfilling certain constraints) to
non–critical program regions, with respect to given timing constraints (cp. [Hon94]).

� List scheduling with regards to given implicit timing constraints. So far, there are
some extensions of list scheduling, incorporating the management of implicit timing
constraints. This is achieved by labeling the edges of the data dependence graph with
timing informations, i.e., each edge (n; n0) is associated with a tuple (min;max). This
indicates, that if n is scheduled in instruction i, n0 has to be scheduled in instruction
i0, such that i +min � i0 � i+max. List scheduling will not always result in valid
schedules, if not all max values are set to infty, even if they exists a solution. There
are several techniques proposed for increasing the likelihood of generating a valid
schedule (consult [Bea91] for details):

– absolute timing

– foresight scheduling

– incremental foresight scheduling

– lookahead scheduling

99

100 CHAPTER 8. TIMING CONSTRAINTS

Generally, code generation is involved for yielding the timing estimations for certain program
fragments. Thus, the results obtained extremely depend on the code quality of the incor-
porated code generators. So far, we have not found existing approaches, integrating explicit
timing constraints into code generation techniques, except the one exposed in [Hon94]. But
here, timing constraints are analysed on a more coarse–grain and abstract level. There are no
efforts made to generate high quality code. The feasibility of constraints is gained by moving
insructions from critical regions to uncritical regions. This is performed by using an adapted
version of trace scheduling.
There is some further research necessary to find out which techniques, developed in the
real–time–system community, are adaptable to utilize code generation, especially instruction
scheduling techniques.

Chapter 9

Summary

There is a high amount of techniques and superimposed improvements concerned with code
selection, register allocation and instruction scheduling. These techniques were generally
developed with regular classes of architectures in mind. With such suppositions, very
sophisticated results are gained.
The major research areas and tendencies of investigation can be outlined as follows:

� Tree pattern matching is the preferable technique concerned with code selection. Tree
pattern matchers can construct the complete set of coverings with respect to a regular
tree grammar in effective time. Dynamic programming is incorporated for finding an
optimal solution with regards to a given cost model.

� The common technique used for register allocation is graph coloring. It can cope with
distributed register sets and register classes.

� The basic research issues for instruction scheduling are global techniques: trace
scheduling, percolation scheduling and region scheduling were developed mainly for
utilizing instruction level parallelism. The integration of resource constraints and
software pipelining are the major research topics for improvements.

� A major research area is the support of architectures that provide instruction level
parallelism. Global techniques are required for effectively exploiting the available
parallelism. As traditional register allocation techniques rely on a strict ordering
of statements, the pre–allocation of registers may restrict the scheduler. A post–
allocation can lead to spill code that also has to be scheduled. For overcomming this
mutual dependence, recent approaches are concerned with phase coupling of register
allocation and instruction scheduling.

Irregular architectures indicate a strong mutual dependence of code selection, register
allocation and instruction scheduling and indicate hard problems with regards to global
optimizations, due to the strong interdependence of code selection and resource allocations:
A certain covering may restrict the subsequent tasks, because of an unfavourable binding
of resources, due to the selected A–MOs. Therefore, binding should be delayed as long as
possible. Effective delayed binding enforces the consideration of certain coverings. Thus,
phase coupling of code selection with register allocation and instruction scheduling is an

101

102 CHAPTER 9. SUMMARY

important issue for supporting the generation of high quality code. Delayed binding of
machine recources indicates, that several informations required for global optimizations are
uncertain (e.g., locations of values, which are nececassry to determine interference). Thus,
global optimizations are very hard to perform with traditional models, based on certain, static
factors. Transformations performed during optimizations are usually based on global static
factors. The major problem occuring is, that application of a transformation can completely
destroy the suppositions responsible for performing the transformation. So far, approaches
that address the features of irregular architectures avoid to incorporate all the problems
caused. Either a certain problematic feature is not considered, certain global optimizations
are not performed, or certain machine resources are bound in advance, thereby avoiding the
problematic mutual dependencies. However, the described approaches were not developed
for solving all the occuring problems.
For providing the complete integration of tasks with regards to all features of irregular
architectures the following efforts seem to be required:

� Formal classification of coverings and specification of their features. Good represent-
ations must be developed including informations necessary for global optimizations,
together with techniques for traversing coverings while incrementally updating the
associated informations.

� Developement of incremental techniques, that take into acount global aspects like over
and under–utilization of machine resources in program regions (approaches like muta-
tion scheduling [NN94] and those proposed by Berson et alias [BGS94, BGS95] seem
to be a good basis for further investigation). Thereby, the mutual dependencies of func-
tional units and storage resources have to be regarded. Incremental approaches seem
to be necessary, as each transformation performed during optimization can have much
impact on factors that are necessary for further decisions and estimations. Questions
have to be answered, how global optimizations should deal with uncertain informations.

� Integration of intelligent backtracking for rejecting unfavourable decisions should be
considered.

Approaches described in chapter 7 should constitute the basis for further investigations. Many
partial problems were solved and it should be examined how these solutions can be extended
and/or combined for achieving a full integration. Furthermore, research is necessary for
supporting autoincrement and autodecrement registers and ring buffers. This seems to be a
very scarcely investigated area.
If we consider retargeting, tree pattern matching techniques were developed with the aim
of fast retargeting. The target machine is specified by a behavioral model (instruction set
model) based on regular tree grammars. Structural models can be converted to regular tree
grammars. Additionally, they include informations for utilizing effective resource allocation,
necessary for retargeting of register allocation and instruction scheduling. Graph coloring
and instruction scheduling techniques can be regarded as potential retargetable. But this
retargetability is rather viewed with regards to fast adaption than with regards to code quality.
Retargetability considered is basically concerned with the application of a certain technique
that cope with a high amount of common aspects of various target architectures. Questions

103

about retargeting register allocation and scheduling techniques with regards to an automatic
selection of appropriate techniques (and incorporated heuristics) are of minor interest and have
still to be examined. For supporting an adequate retargeting of code generation techniques
the following investigations are necessary:

� Classification of techniques with respect to effective support for architecture classes.
As stated, a certain and effective technique will not support the range of architecture
classes with the same degree of code quality. Therefore, it is necessary to find out
which techniques utilize which architectures, and which do not. Thus, the various
approaches developed with regards to certain architectures are very valuable sources
for such investigations.

� A decomposition of the tasks of code generation into fine–grained subtasks, whereby
each subtask is responsable for certain decisions. The decomposition should enable
the observation of effects due to a reordering or exchanging of some of the subtasks,
with regards to the code quality.

� Find criterea for determining a certain architecture class. Techniques (or rules) for
composition of the corresponding code generation tasks must be developed. It has to be
determined if global or local techniques should be applied, or trade–offs between local
and global techniques are desirable. With regards to phase coupling, determination of
the degree of integration and interaction of tasks is necessary.

Furthermore, questions have to be answered, if effective retargeting of techniques can be
performed automatically. Semi–automatcally support up to fully integrated user interactions
should also be taken into account. Specification models are required for supporting both
effective retargeting of all code generation tasks (with regards to high code quality) and
design process together with synthesis. At least, such models should be convertable to
common models. Behavioral models lack of effectively utilizing retargeting of all tasks,
while multi cycle instructions are difficult to be extracted from structural models. Thus,
adequate trade–offs are necessary. Investigations should be concerned with the following
questions:

� What informations are necessary to support effective retargeting?

� How should they be represented (specified), with regards to design and synthesis
support?

� Adaption (extraction, conversion) and relations to other existing models?

With regards to timing constraints, generally, code generation is involved for yielding the
timing estimations for certain program fragments. Integration of explicit timing constraints
(timing behavior of the system) into code generation is no issue of interest. Timing constraints
are analysed on a more coarse–grain and abstract level. However, due to the amount of
approaches, there is some further research necessary to find out which techniques, developed
in the real–time–system community, are adaptable to utilize code generation.

Bibliography

[ADK+95] Guido Araujo, Srinivas Devadas, Kurt Keutzer, Sharad Malik, Ashok Su-
darsanam, Steve Tjiang, and Albert Wang. Challenges in code generation.
In Peter Marwedel and Gert Goossens, editors, Code Generation for Embedded
Processors, chapter 3, pages 48–64. Peter Marwedel and Gert Goossens, 1995.

[AEBK94] Wolfgang Ambrosch, Anton Ertl, Felix Beer, and Andreas Krall. Dependence
conscious register allocation. In Juergen Gutknecht, editor, Programming Lan-
guages and System Architectures, volume 782, pages 125–136. LNCS Series,
Springer–Verlag, Zurich, Switzerland, March 1994.

[AGT89] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code gener-
ation using tree matching and dynamic programming. ACM Transactions on
Programming Languages and Systems, 11(4):491–516, October 1989.

[Aik88] A. Aiken. Compaction–Based Parallelization. PhD thesis, Department of Com-
puter Science, Cornell University, Ithaca, New York, 1988. TR 88–09–22.

[AJ76] Alfred V. Aho and S. C. Johnson. Optimal code generation for expression trees.
Journal of the ACM, 23(3):488–501, 1976.

[AJLS92] Vicky H. Allan, J. Janardhan, R.M. Lee, and M. Srinivas. Enhanced region
scheduling on a program dependence graph. In MICRO–25, pages 72–80, 1992.

[AM87] Vicky H. Allan and Robert Mueller. Phase coupling for horizontal microcode
generation. In MICRO–20, pages 115–125, 1987.

[AM95] Guido Araujo and Sharad Malik. Optimal code generation for embedded memory
non–homogeneous register architectures. In ISSS’95, Princeton University,
1995. Submitted to Intl. Symp. on System Synthesis.

[AN88a] Alexander Aiken and Alexandru Nicolau. A developement environment for
horizontal microcode. IEEE Transactions on Software Engineering, 14(5):584–
594, May 1988.

[AN88b] Alexander Aiken and Alexandru Nicolau. Perfect pipelining: A new loop
parallelization technique. In European Symposium on Programming, volume
300. LNCS Series, Springer–Verlag, 1988.

104

BIBLIOGRAPHY 105

[ASU86] Alfred V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, New York, 1986.

[BBH+94] Steven Bashford, Ulrich Bieker, Berthold Harking, Rainer Leupers, Peter Mar-
wedel, Andreas Neumann, and Dietmar Voggenauer. The mimola language
version 4.1. Internal Report, University of Dortmund, September 1994.

[BCT91] Preston Briggs, K. Cooper, and L. Torczon. Aggressive live range splitting.
Technical report, Rice University, 1991.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428–455, May 1994.

[Bea91] Steven John Beaty. Instruction Scheduling Using Genetic Algorithms. PhD
thesis, Department of Mechanical Engineering, Colorado State University, Fort
Collins, Colorado, Fall 1991.

[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register
allocation and instruction scheduling for RISCs. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 122–131, Santa Clara, California, 1991.

[Bel66] L.A. Belady. A study for replacement algorythms for a virtual–storage computer.
IBM System Journals, 5(2):78–101, April 1966.

[Ben94] Manuel Enrique Benitez. Register Allocation and Phase Interactions in Retar-
getable Optimizing Compilers. PhD thesis, University of Virginia, May 1994.

[BFMR92] Jean-Michel Berge, Alain Fonkoua, Serge Maginot, and Jaques Rouillard. VHDL
Designers Reference. Kluwer Academic Publishers, 1992.

[BGG+89] D. Bernstein, D. Goldin, M. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon,
and R. Pinter. Spill code minimization techniques for optimizing compilers. SIG-
PLAN Notices, 24(7):258–263, July 1989. Proceedings of the ACM SIGPLAN
’89 Conference on Programming Language Design and Implementation.

[BGS94] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Resource spacling: A
framework for integrating register allocation in local and global schedulers.
Working Conf. on Parallel Architectures and Compilation Techniques, August
1994.

[BGS95] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Gurrr: A global unified
resource requirements representation. SIGPLAN Notices, 30(4):23–34, April
1995. Proceedings of the ACM SIGPLAN on Intermediate Representations
IR’95.

106 BIBLIOGRAPHY

[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The Marion system
for retargetable instruction scheduling. SIGPLAN Notices, 26(6):229–240, June
1991. Proceedings of the ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation.

[BMO90] R.A. Ballence, A.B. Maccabe, and K.J. Ottenstein. The program dependence
web: A representation supporting control–, data–, and demand–driven interpret-
ation of imperative languages. In Proceedings of the SIGPLAN’90 Conference
on Programming Language Design and Implementation, pages 257–271, June
1990.

[Bra91] David G. Bradlee. Retargetable instruction scheduling for pipelined processors.
PhD Thesis 91-08-07, Dept. of Computer Science, Univ. of Washington, 1991.

[Bra95] Marc Michael Brandis. Optimizing Compilers for Structured Programming
Languages. PhD thesis, ETH Zurich, 1995.

[Bri92] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice
University, Houston, Texas, April 1992.

[BS95] Thomas S. Brasier and Phillip H. Sweany. Craig: A practical framework for
combining instruction scheduling and register assignment. In PACT’95, Limas-
sol, Cypros, 1995.

[CAC+81] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markenstein. Register allocation via coloring. Computer Languages, 6(1):47–
57, January 1981.

[CDN94] Andreas Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioning of variables
for multiple register-file vliw architectures. In Proceedings of the International
Conference on Parallel Processing, pages I 298–301, 1994.

[CF87] Ron Cytron and Jeanne Ferrante. What is a name? - the value of renaming
for parallelism detection and storage allocation. In Proceedings of the Sixteenth
International Conference on Parallel Processing, pages 19–27, University Park,
Pennsylvania, 1987. The Pennsylvania University Press.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth F.
Zadeck. An efficient method of computing static single assignment. SIGPLAN
Notices, pages 25–35, January 1989. Proceedings of the ACM SIGPLAN ’89
Conference on Programming Language Design and Implementation.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth F.
Zadeck. Efficiently computing the static single assignment and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

BIBLIOGRAPHY 107

[CH84] F.C. Chow and J.L. Hennessy. Register allocation by priority–based coloring.
SIGPLAN Notices, 19(6):222–232, June 1984. Proceedings of the ACM SIG-
PLAN’84 Symposium on Compiler Construction.

[CH90] Fred C. Chow and John L. Hennessy. The priority-based coloring approach to
register allocation. ACM Transactions on Programming Languages and Systems,
12(4):501–536, October 1990.

[CK91] David Callahan and Brian Koblenz. Register allocation via hierarchical graph
coloring. SIGPLAN Notices, 26(6):192–203, 1991. Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementa-
tion.

[Coh94] William Eden Cohen. Automatic Construction of Optimizing, Parallelizing Com-
pilers from Specification. PhD thesis, Purdue University, December 1994.

[DeW76] D.J. DeWitt. A Machine–Independent Approach to the Problem of Optimal Ho-
rizontal Microcode. PhD thesis, Department of Computer and Communication
Science University of Michigan, Ann Arbor, MI, 1976.

[DLSM81] Scott Davidson, David Landskov, Bruce D. Shriver, and Patrick W. Mallet. Some
experiments in local microcode compaction for horizontal machines. IEEE
Transactions on Computers, C-30(7):460–477, July 1981.

[DST80] P. J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common
subexpression problem. Journal of the ACM, 27(4):758–771, 1980.

[DT76] S. Dasgupta and J. Tartar. The identification of maximal parallelism in straight–
line microcode. IEEE Transactions on Computers, C–25(10):986–992, October
1976.

[Ell86] J.R. Ellis. Bulldog: A compiler for vliw architectures. The MIT Press, Cam-
bridge, Mass., 1986.

[Emm92] H. Emmelmann. Code selection by regular controlled term rewriting. In
R. Giegerich and S.L. Graham, editors, Code Generation: Concepts, Tools,
Techniques ,Workshop in Computing Series, pages 3–29. Springer–Verlag, Ber-
lin, Heidelberg, 1992.

[EN89a] K. Ebcioglu and T. Nakatani. A new compilation technique for parallelizing
loops with unpredictable branches. In 2nd Workshop on Programming Lan-
guages and Compilers for Parallel Computing, 1989.

[EN89b] K. Ebcioglu and Alexandru Nicolau. A global resource–constrained paral-
lelization technique. In Proceedings of the 2nd International Conference on
Supercomputing, pages 154–163, 1989.

108 BIBLIOGRAPHY

[ESL89] Helmut Emmelmann, Friedrich-Wilhelm Schröer, and Rudolf Landwehr. BEG
– A generator for efficient back ends. SIGPLAN Notices, 24(7):227–237, July
1989. Proceedings of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation.

[FH88] Field and Harrison. Functional Programming. Addison–Wesley, 1988.

[FHKM94] Andreas Fauth, G. Hommel, A. Knoll, and C Mueller. Global code selection
for directed acyclic graphs. In Peter A. Fritzson, editor, Compiler Construction,
volume 786 of LNCS, pages 128–141. Springer–Verlag, Eddinburgh, U.K., April
1994. 5’th International Conference, CC’94.

[FHP92a] C. Fraser, R. Henry, and Todd A. Proebsting. Engeneering a simple, efficient
code-generator generator. ACM Letters on Programming Languages and Sys-
tems, 1(3):213–226, September 1992.

[FHP92b] C. Fraser, R. Henry, and Todd A. Proebsting. BURG – fast optimal instruction
selection and tree parsing. SIGPLAN Notices, 27(4):68–76, April 1992.

[Fis81] J.A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, C–30(7):478–490, July 1981.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depend-
ency graph and its use in optimizations. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, July 1987.

[FR91] Stefan M. Freudenberger and John C. Ruttenberg. “Phase Ordering of Register
Allocation and Instruction Scheduling”. In Robert Giegerich and Susan L. Gra-
ham, editors, “Code Generation — Concepts, Tools, Techniques”, Proceedings
of the International Workshop on Code Generation, Dagstuhl, Germany, 20-24
May 1991, Workshops in Computing, pages 146–172. Springer-Verlag, 1991.
ISBN 3-540-19757-5 and 3-387-19757-5.

[Fre74] R.A. Freiburhouse. Register allocation via usage counts. Communications of
the Association of Computer Machinery, 17(11):638–642, November 1974.

[FSW94] Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata for
code selection. Acta Informatica,Springer-Verlag, pages 741–760, 1994.

[Gas89] F. Gasperoni. Compilation techniques for vliw architectures. Technical report,
Courant Institute of Mathemathical Science, New York University, March 1989.

[GFH82] Mahadevan Ganapathi, C.N. Fisher, and J.L. Hennessy. Retargetable compiler
code generation. Computing Surveys, 14(4), October 1982.

[GH88] J. Goodman and W. Hsu. Code scheduling and register allocation. In Proceedings
of the ACM SIGPLAN ’88 Conference on Programming Language Design and
Implementation, 1988.

BIBLIOGRAPHY 109

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability: A guide
to the theory of np–completness. W.H. Freemann & Co, 1979.

[GP92] Milind Girkar and Constantine D. Polychronopoulos. Automatic extraction of
functional parallelism from ordinary programs. IEEE Transactions on Parallel
and Distributed Systems, 3(2):166–178, March 1992.

[GR77] S.L. Graham and R.S.Glanville. A new method for compiler code generation.
Conference Record of the Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 231–240, 1977.

[GS90] Rajiv Gupta and Mary Lou Soffa. Region scheduling: An aproach for detecting
and redistributing parallelism. IEEE Transactions on Software Engineering,
16(4):421–431, April 1990.

[GSS89] Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique
separators. Proceedings of the ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation, pages 264–274, July 1989.

[Har92] R. Hartmann. Combined scheduling and data routing for programmable asic
systems. In Proceedings of EDAC’92, pages 486–490, March 1992.

[Hei93] Werner Heinrich. Formal Desciption of Parallel Computer Architectures as a
Basis of Optimizing Code Generation. PhD thesis, TU Munich, 1993.

[Hen89a] R. Henry. Algorithms for table–driven code generators using tree pattern match-
ing. Technical Report 89–02–03, Computer Science Department, University of
Washington, Seattle, WA 98195 USA, 1989.

[Hen89b] R. Henry. Encoding optimal pattern selection in atable–driven bottom–up tree
pattern matcher. Technical Report 89–02–04, Computer Science Department,
University of Washington, Seattle, WA 98195 USA, 1989.

[Hen89c] R. Henry. Performance of table–driven code generators using tree pattern match-
ing. Technical Report 89–02–02, Computer Science Department, University of
Washington, Seattle, WA 98195 USA, 1989.

[Hon94] Seongsoo Hong. Compiler–Assisted Scheduling for Real–Time Applications: A
Static Alternative to Low–Level Tuning. PhD thesis, University of Maryland,
1994.

[JM86] M.S. Johnson and T.C. Miller. Effectiveness of a machine–level global optim-
izer. SIGPLAN Notices, 21(7):99–108, July 1986. Proceedings of the ACM
SIGPLAN’86 Symposium on Compiler Construction.

[Joh94] Richard Craig Johnson. Efficient Program Analysis Using Dependence Flow
Graphs. PhD thesis, Graduate School of Cornell University, 1994.

110 BIBLIOGRAPHY

[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis.
SIGPLAN Notices, 26(6):78–89, 1993. Proceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design and Implementation.

[KM90a] K. Knobe and A. Meltzer. Control tree based register allocation. Technical
report, COMPASS, 1990.

[KM90b] Davis Ku and Giovanni De Micheli. Relative scheduling under timing con-
straints. 27th ACM/IEEE Design Automation Conference, pages 59–64, 1990.

[Kog91] Peter M. Kogge. The Architecture of Symbolic Computers. McGraw–Hill, 1991.

[LA83] J. Lah and D.E. Atkins. Tree compaction in microprograms. In Proceedings of
the 16th Annual Workshop on Microprogramming, pages 23–33, 1983.

[Lav62] S.S. Lavrov. Store economy in closed operator schemes. Journal of Computa-
tional Mathematics and Mathematical Physics 3, 1962. 1(4):687–701.

[LCGM94] Dirk Lanner, Marco Cornero, Gert Goossens, and Hugo De Man. Data routing:
a paradigm for efficient data–path synthesis and code generation. In Proc. 7th
IEEE/ACM Int. Symp. on High–Level Synthesis, May 1994.

[LDSM80] D. Landskov, S. Davidson, B.D. Shriver, and P.W. Mallet. Local microcode
compaction techniques. ACM Computing Surveys, 12(3):261–294, 1980.

[LH86] J.R. Larus and P.N. Hilfinger. Register allocation inthe spur lisp compiler.
SIGPLAN Notices, 21(7):255–263, July 1986. Proceedings of the ACM SIG-
PLAN’86 Symposium on Compiler Construction.

[Lin83] J.L. Linn. Srdag compaction – a generalization of trace scheduling to increase
the use of context information. In Proceedings of the 16th Annual Workshop on
Microprogramming, pages 11–22, 1983.

[LM94] Rainer Leupers and Peter Marwedel. Instruction set extraction from pro-
grammable structures. In Proc. EURO-DAC 1994. 1994. http://ls12-
www.informatik.uni-dortmund.de/publications/brief.html.

[Man93] M. Morris Mano. Computer System Architecture. Prentice Hall Internal Editions,
1993.

[Mar93] Peter Marwedel. Mssv: Tree–based mapping of algorithms to predefined struc-
tures. Technical Report Report No. 431, Department of Computer Science,
University of Dortmund, January 1993.

[MB83] D.W. Matula and L.L. Becks. Smallest–last ordering and clustering and graph
coloring algorithms. Journal of ACM, 30(3):417–427, July 1983.

[ME92] S. Moon and K. Ebcioglu. An efficient resource constraint global scheduling
technique for superscalar and vliw processors. In MICRO, December 1992.

BIBLIOGRAPHY 111

[Nic84] Alexandru Nicolau. Parallelism, Memory Anti–aliasing, and Correctness Issues
for a Trace Scheduling Compiler. PhD thesis, Department of Computer Science,
Yale University, New Haven, Conn, December 1984.

[Nic85] Alexandru Nicolau. Percolation scheduling: A parallel compilation technique.
Technical report, Department of Computer Science, Cornell University, Ithaca,
New York, May 1985.

[NN92] Steven Novack and Alexandru Nicolau. An efficient global resource constrained
technique for exploiting instruction level parallelism. In Kang G. Shin, editor,
Proceedings of the International Conference on Parallel Processing, pages II
297–301, August 1992.

[NN93] Steven Novack and Alexandru Nicolau. Trailblaizing: A hierarchical approach to
percolation scheduling. Technical Report TR–92–56, Irvine University, August
1993.

[NN94] Steven Novack and Alexandru Nicolau. Mutation scheduling: A unified ap-
proach to compiling for fine–grain parallelism. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers
for Parallel Computing, volume 892 of LNCS, pages 16–30. Springer–Verlag,
Ithaca,NY,USA, August 1994.

[NP93] Cindy Norris and L. Pollok. A scheduler–sensitive global register allocator. In
Proceedings of Supercomputing’93, 1993.

[NP94] Cindy Norris and L. Pollok. Register allocation over the program dependence
graph. SIGPLAN Notices, 1994. Proceedings of the ACM SIGPLAN ’94 Con-
ference on Programming Language Design and Implementation.

[NP95] Cindy Norris and L. Pollok. Register allocation sensitive region scheduling. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT’95), 1995.

[NPW91] Alexandru Nicolau, R. Potasman, and H. Wang. Register allocation, renaming
and their impact on parallelization. In Languages and Compilers for Parallel
Computing, volume 589. LNCS Series, Springer–Verlag, 1991.

[PBJS90] Keshav Pingali, Micah Beck, Richard Johnson, and Paul Stodghill. Depen-
dence flow graphs: An algebraic approach to program dependencies. http://cs-
tr.cs.cornell.edu/TR/CORNELLCS:TR90-1152/Print, September 1990.

[PF92] Todd A. Proebsting and Charles N. Fisher. Probabilistic register allocation. In
Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 300–310, June 1992.

[Pin93] S.S Pinter. Register allocation with instruction scheduling. In Proceedings of
the ACM SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 248–257, 1993.

112 BIBLIOGRAPHY

[PLG88] Eduardo Pelegrí-Llopart and Susan L. Graham. Optimal code generation for
expression trees: An application of BURS theory. In Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages,
pages 294–308, San Diego, California, January 1988.

[PLMS95] Pierre G. Paulin, Clifford Liem, Trevor C. May, and Shailesh Sutarwala. Flex-
ware: A flexible firmware developement environment for embedded systems.
chapter 4, pages 67–84. Kluver Academic Publishers, 1995.

[RT74] C.V. Ramamoorthy and M. Tsuchiya. A high–level language for horizontal mi-
croprogramming. IEEE Transactions on Computers, C–23(8):791–801, August
1974.

[San94] Nandakumur Sankaran. Program optimizations via locality. Master’s thesis,
Graduate School of Clemson University, December 1994.

[SDJ84] B. Su, S. Ding, and L. Jin. An improvement of trace scheduling for global
microcode compaction. In Proceedings of the 17th Annual Workshop on Micro-
programming, pages 78–85, 1984.

[SS93] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classi-
fication. In Uptal Banerjee, David Gelernter, Alex Nicolau, and David Padua,
editors, Languages and Compilers for Parallel Computing, volume 768, pages
633–655, Portland, Oregon, USA, August 1993. Springer LNCS.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison Wesley, 1995.

[YST74] S.S. Yau, A.C. Schowe, and M. Tsuchhiya. On storage optimization of horizontal
microprograms. In MICRO � 7, pages 98–106, Pao Alto, CA, October 1974.
Proceedings of the 7th Micro Programming Workshop.

Index

X–derivation tree, 44
q-computation, 46
non-chain rule, 43
3–address code, 7

abstract machine operations, 33
assignment statement, 8

basic block, 10
basic block graph, 10
BEG, 52
behavioral models, 21
binding, 20
bit position, 28
bit range, 28
bundling, 100
burg, 52

CBC, 52
chain rule, 43
chains, 60
CHESS, 100
CISC, 25
coalescing, 66
code generation, 5
code selection, 19
code selector generator, 39
compaction, 20
compensation code, 87
conditional expression, 8
conflict, 28
contol flow graph, 9
control dependence, 11
control dependence graph, 11
control memory, 22
control unit, 22
control word, 22

data dependence graph, 13

data flow, 12
data flow graph, 14
data path operations, 60
data ready, 84
data ready set, 82
def–use chain, 12
def–use graph, 12
defined, 63
definition of a variable v, 8
dependence flow graph, 16
dominator, 10
dominator tree, 10
dynamic programming, 39

early register allocation, 96
encoding conflicts, 27
encoding function, 32

finite tree automaton, 46

global register allocation, 63
GRiP, 88
GURRR, 16

hierarchical task graph, 17
hierarchical task graphs, 90
homogeneous tree language, 40
horizontal, 81

iburg, 52
immediate dominator, 10
immediate post–dominator, 10
insruction scheduling, 20
instance, 42
instruction cycle, 22
instruction set models, 21
integrated prepass scheduling, 98
interfere, 63
interference graph, 63

113

114 INDEX

late register allocation, 96
linear pattern, 41
list scheduling, 81
live range, 63
live range splitting, 65
live variable, 63
local compaction problem, 82
local register allocation, 63

machine expression pattern, 32
machine instruction, 25
machine instruction format, 28
machine instruction string, 27
machine operation, 25
machine operation pattern, 32
machine operation patterns, 25
machine operation scheme, 31
match, 41
microinstruction, 22
microoperation, 22
microprogram, 22
microprogram counter, 22
MIF restriction, 30
migration, 88
MIMOLA, 100
mixed models, 21
MSSQ, 100
mutation scheduling, 100

noload operation, 32

operation specification, 31
overspilling, 72

parallel program graph, 17
partial version, 30
pattern, 41
peephole optimization, 3
percolation scheduling, 81, 87
perfect pipelining, 86
phase coupling, 95
pipeline stalls, 20
post–dominates, 10
post–dominators, 10
probabilistic register allocation, 73
program dependence graph, 15, 81

program dependence web, 17
program optimizations, 5

ranked alphabet, 40
reachable, 8
real time systems, 102
region scheduling, 81
register allocation, 20
register allocator, 62
register assigner, 62
register assignment, 20
register transfer language, 25
register transfer level, 25
regular tree grammar, 43
regular tree grammars, 39
rematerialization, 97
residual control, 32
resource allocation, 20
resource barriers, 90
resource conflicts, 27
resource machine operation, 31
RISC, 20
rise limit, 84
RTG Criteria, 59

semantical analyses, 5
signature Sig�, 40
software pipelining, 86
structural models, 21
subset construction, 47
substitution, 41
syntactical analyses, 5

timing constraints, 102
trace scheduling, 81
transfer operations, 32
tree hight reduction, 100
tree pattern matcher, 42
tree pattern matcher generator, 42
tree pattern matching, 39
Twig, 52
type of a rule, 43

use of variable v, 8
used, 63

value, 63

INDEX 115

version, 29
versions, 33
vertical, 81
virtual registers, 33
VLIW, 20, 25

weighted tree automata, 47
weighted tree grammars, 39

