Code Generation Techniquesfor
Irregular Architectures

Steven Bashford

Lehrstuhl Informatik X11
University of Dortmund

Report No. 596

November 1995

Code Generation Techniquesfor Irregular
Architectures

Steven Bashford L ehrstuhl Informatik X11
University of Dortmund

Report No. 596

November 1995

Abstract

The fast development of many different ASIPs make demands of rapid availability of dedic-
ated compilers. Fast retargeting isamajor aspect, while fast compilation times are of minor
importance. There are also new demands in the quality of the generated code. Irregular
properties together with fine—grain parallelism given by a target architecture have to be ef-
fectively supported by the compiler. This report is focused on the traditional tasks of code
generation — code selection, register allocation, and instruction scheduling. The mgjor
subject isto expose the tendencies of research of code generation techniquesin recent years,
and survey their features with regards to support for irregular architectures, fine—grain par-
allelism, retargetability, and phase coupling. The report outlines the preferable techniques
involved in code generators. Features of irregular architectures being sufficiently supported
by these techniques are examined. The insufficiencies with regards to irregular architec-
tures are described and approaches to overcome them are described. The essential problems
arising are due to mutual dependencies among the tasks of code generation. Thus, phase
ordering problems and phase coupling approaches are a very important issue of the report.
Retargeting is discussed with regards to retargetability of the described techniques, but also
with regards to the quality of the generated code. Relations of structural and behavioral
models are exposed, addressing the issue of supporting both, the design process of the target
architecture and effective retargeting of all tasks of code generation.

Contents

1 Introduction
11 ScopeoftheReport
12 StructureoftheReport

2 Intermediate Representations
21 Introduction e
2.2 Conceptsof Representation
23 Graph-Based Representations
231 Teminology e
232 ControlFlowGraph
233 Control DependenceGraph.,
234 Def-Use Chains, Data Dependence Graphs and Data Flow Graphs .
235 ProgramDependenceGraph
2.3.6 Globa Unified Resource Requirement Representation
237 OtherWorks
24 SUMMAY . . . oo e e

3 Retargetable Code Generation
31 Introduction
3.2 Machine Operationsand Machine Instructions
3.21 Microoperationsand Microinstructions
3.22 From Microoperationsto Machine Operations.
3.23 MachineOperationPattern
3.24 MulticycleMachineOperations
325 Conflicting MachineOperations
3.26 Encoding of MachineInstructions
3.3 Operation Specification
33.1 Abstract MachineOperations
3.3.2 Intermediate Representation and Machine Operation Petterns
34 Summaryof Notions

4 Code Sdlection
41 Introduction e
4.2 Forma Foundationsof Tree PatternMatchers
421 TreePatternMatching

w -

0 00 00 N o1 Ul

12

CUNIENTO

422 Regular Tree Grammarsand TreeParsing 42
423 FiniteTreeAutomata 45
4.3 Generationof CodeSelectors. oL 48
431 CodeSelector Specifications 51
44 Supportof Architectural Features. L. 55
45 Retargeting: Extracting Code Selector SpecificationsfromHDLs 58
46 SUMMAY o e e e e e 59
Register Allocation 60
51 Introduction e 60
5.2 Foundationsof GraphColoring 61
5.3 Graph Coloring Register Allocators 65
53.1 TheYorktownRegister Allocator 67
532 Piority-BasedColoring. 68
533 OptimisticColoring 70
534 Hierachical Coloring 72
535 OtherApproaches 72
54 Support of Architectural Features. 72
55 Retargeting 76
56 SumMmMary 77
Instruction Scheduling 78
6.1 Introduction 78
6.2 Loca Compaction. e 79
6.3 Globa Instruction Scheduling 83
6.31 TraceScheduling 84
6.3.2 PercolationScheduling 85
6.3.3 RegionScheduling 88
6.4 Support of Architectural Features. 89
6.5 Retargeting InstructionSchedulers 90
6.6 Summary 91
Phase Coupling 93
7.1 PhaseOrderingProblems 93
7.2 SingleCovering (Level-0) 95
7.2.1 Recomputation (Remateridization) 95
722 DedayedBinding 95
7.2.3 Taking into Account Potential Parallelism and Limited Registers . . 96
7.3 DataRouting (Level-1,2) 97
7.4 Integrated Code Selection(Level-3) 98
Timing Constraints 99

Summary 101

Chapter 1

| ntroduction

Application specific integrated circuits (ASICs) were developed for giving highly special-
ized, effective hardware support for certain applications, e.g., audio and video applications.
Application specific instruction set processors (ASIPs) are a trade—off between ASICs and
general purpose processors, with some specific hardware support but still being program-
mable. Thus, developed for the effective support of specific applications, ASIPs contain a
certain degree of flexibility, allowing late changes, error corrections, and readjustments to
related applications. Hence, the increasing usage of ASIPs is motivated by advantages as
late design modifications, design error correction, and reuseability. Optimizing compilers
are demanded for the reuseability of the software developed for certain ASIPs. But as the
development of ASIPsis getting faster, due to the support of sophisticated CAD-tools, such
compilers must be rapidly readjustable to new target architectures. Only few algorithms are
implemented on a certain ASIP, thus, the costs for the development of a dedicated compiler
must be in relationship to its effective usage. In this context the importance of retargetable
compilersisincreasing. Specification modelsfor utilizing the design process are of interest.
|.e., description techniques are required, that support both, the effective retargeting of the
compiler and the adaptation to the design and synthesis of the hardware. There are new
demands in the quality of the generated code. High quality code is important for aspects
like size of the hardware, power—usage, and in the context of timing constraints predicting
a specific response time behavior for an application. Therefore, properties given by the
target architecture should be effectively supported by the compiler. Irregular architectures
with fine—grain parallelism lead to very strong mutual dependencies of the subtasks of the
compiler. A strict ordering of these subtasks often restricts the quality of the produced
code. Thus, an integration (phase coupling) of the tasks is another issue of interest. High
compilation times are of minor concern in this contect.

1.1 Scope of the Report

The report is concerned with retargetable code generation with the aim of high quality code
generation. It constitutes an outline of recent code improving techniques. Thereby, it is
focused on the traditional tasks of code generation: code selection, register allocation, and
instruction scheduling. The primary goal is to expose the following aspects:

1

CAaArFicr L. 1IN TROUDUC TTUIN

¢ Describethebasic concepts, preferabletechniques(incorporatedin code generation),
and thetendencies of resear ch, with regardsto code selection, register allocation, and
instruction scheduling.

e Analysis of techniques with regards to supporting irregular architectureswith fine—
grain parallelism. Thereby, exploitation of the following provided features of the
target machine are of major concern:

— irregular register sets and register classes;

— complex data pathes with restricted interconnection; i.e., not all register sets are
connected with each other, and functional units do not have general accessto all
register sets,

— instruction level parallelism.
I ssues of secondary concern, but also incorporated in this report, are:

— timing constraints given by the target architecture;
— exploitation of features provided by autoincrement/decrement registers.

The basic problems, insufficiencies, and superimposed solutions to solve the problems
are described.

e Theessential problemsarising aredue to mutual dependenciesamong the tasks of code
generation. Thus, phase ordering problems and phase coupling approaches are a
very important issue of the report.

¢ Retargeting of code generation was mentioned to be an important subject; thisitemis
discussed with regardsto:
— retargetability of the described techniques;
— quality of the generated code;
— relations of essential entities of the hardware and specification models.

The last item addresses the issue of supporting the design process of the target archi-
tecture. This requires specification models that enable both

— utilizing the design of hardware together with the synthesis based on the specific-
ation;

— effective retargeting of al tasks of code generation.
Therelations of structural and behavioral (instruction set based) models are discussed.

e Aspects of timing constraints, enforcing a certain timing behavior of the algorithms
(to be compiled), are itemized.

L., oInUCLITURC Ur IE XREFURKI (o]

Front-End Code-Generator

— =

Syntactic Analysig ‘ , < Code Selection
rce Proaram Register Allocation
' ! Instruction Schedulln‘

Semantic Analysis kMachine—(ln)dependem
N\ \Optimizations/ 4

-

‘ \srg

Intermediate Representatign Ma%‘éqmliggﬁgﬁgden ‘ Peephole Optimization%

‘ Target Machine Code

Code Selection
P N
Vs N
IR / N IR
/
Phase Coupling ‘
/

Instruction Schedulings P / Register Allocation
N

S~ @~
IR

IR=Intermediate Representation

Figure 1.1: Phases of a Compiler

The report is not intended as an introduction to code generation. Knowledge about the
basic foundations of code generation techniques is assumed (e.g., [ASU86]). However,
introductionsto the basi ¢ notions and concepts are given in each section. It enablesthe reader
to class notions and concepts, and constitutes a basis for further detailed investigations.
This report constitutes no criticism on code generation techniques. All techniques examined
were basically developed with certain classes of architectures in mind. Certainly, they
produce very sophisticated results with regards to their suppositions. It istried to emphasize
the requirements and problems when irregular architectures with fine—grain paralelism are
incorporated.

1.2 Structureof the Report

Infigure 1.1 an overview of thecompilation processisgiven. Thefront—end performsthe syn-
tactic and semantic analysis of the source program resulting in an intermediate representation
of the source program. Some machine independent optimizations may follow, generating the
final input to the back—end of the compiler. The code generator takes thisinput and generates
target machine code, optionally optimized by asucceeding peephol e optimization. Thereport

“ CAaArFicr L. 1IN TROUDUC TTUIN

isorganized as follows: chapter 2 is concerned with an outline of intermediate representa-
tions and their impact on code generation; a short summary of basic compiler optimizations
isincluded. In chapter 3 the task of retargetable code generation is described. It introduces
the basic terminology and points out the necessary issues of retargeting. Chapters 4 — 6
are related with the traditional code generation phases code selection, register allocation,
and instruction scheduling. These sections are organized as follows. a short introduction of
basic concepts is given; the preferable techniques developed in recent years are described;
their abilities/insufficiencies in supporting features of irregular architectures and fine—grain
paralelism are outlined; approaches to overcome the basic problems and drawbacks are
described; the retargetability of techniques is discussed. Chapter 7 will describe the phase
ordering problems in the context of irregular architectures and instruction level parallelism.
It is concerned with drawbacks of the code generation tasks arising from strict decoupling
and ordering of the code generation tasks. Recent phase coupling approaches are outlined.
In chapter 8 a short summary of timing constraint aspects is given. Chapter 9 summarizes
the major issues of the report.

Chapter 2

| nter mediate Representations

In this chapter an outline of existing intermediate program representations is given, with
priority on graph based representations. The basic notions will be introduced and special
interest is addressed to graph based representations. For the interested reader this chapter
serves as a source for further investigation by several referencesto recent approachesin this
area. The chapter is no introduction to intermediate representations. The reader unfamiliar
to intermediate representationsis refered to [ASU86] or [WM95].

2.1 Introduction
Asshown in figure 1.1, the process of compilation can be divided into the following phases:
e syntactical analysis
e semantical analysis
e program optimizations
e code generation

Thefirst two phases check for the syntactical and semantical correctnessof asource program,
resulting in a certain intermediate representation (IR) of the program, being amenable to
further program optimizations and code generation. The choice of an IR has profound effect
on the design, complexity and implementation of optimizationsin a compiler. Some of the
well known program optimizations are:

e Constant Folding: Operands of an operation are all constants, therefore the result can
be replaced by the computed constant result.

e Copy Propagation: Removing assignments between variables by using the origina
variable whenever possible.

e Code Motion: Operationsare moved to program regionswherethey arelessfrequently
executed, e.g. moving loop—invariant code out of loops.

5

0 CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

e Dead Code Elimination: Elimination of instructions that are known to be never ex-
ecuted.

e Common Subexpression Elimination: Finding operationsthat compute the same result,
keeping the original result available in a certain destination and substituting these
operations by the destination (most prominent technique is value numbering).

¢ Redundancy Elimination: It determines instructions which compute the same result
and eliminates superfluous recomputations.

¢ Strength Reduction: Reducing an expensive operation to a less expensive one.

e Evaluation Order Determination: Reordering of statements to reduce the amount of
registers used to evaluate certain expressions.

e Branch Chain Elimination: Changing of branches that transfers control to another
branch to branch directly to the destination of the second branch.

Good intermediate representations (IR) are of much interest regarding retargetabl e code gen-
eration and there are several desirable characteristics an intermediate representation should
have, respectively:

¢ Machineindependence: The R should be suitable to awide spectrum of architectures,
whichisan important aspect for using it in aretargetable code generator (and prevents
therewriting of the front—end for retargeting acompiler to anew target machine), while
still utilizing a wide spectrum of optimizations.

There are severa levels of abstraction covering the representation of source level
operatorsup to the description of primitive operationson theregister transfer level. The
usage of source level operators has several advantages, e.g. being easy to construct and
easy to understand. It aso offersthe highest amount of portability. Sinceretargetability
istheissue of interest thislevel isthe most adequate to be used. Also, control flow can
be represented at different levels. It can be represented by using the control structures
of the source language or making the branching structure explicit by using conditional
and unconditional jumps. A description of the advantages and disadvantages of the
different abstraction levels and representations can be found in [Bra95].

e Exploitation of parallelism: It should be possible to easily extract potentially coarse
grain (task level) and fine grain (instruction level) parallelism. A program representa-
tion should not only facilitate the detection of parallelism but also should easily enable
program transformations that increase opportunitiesfor parallelism.

e Well—defined: The IR should be well defined and should have a clear operational
semantics making it usable for abstract interpretation (and verification).

e Suitability for subsequent integration of aspects of the target machine with the aim of
enabling easy detection and exploitation of capabilities of the target architecture.

., CUNLLCFTO U REFREOCIN IATITUIN l

2.2 Conceptsof Representation

Two basic concepts of representing programs are distinguished: the first one is the repres-
entation of a program by a sequence of abstract machine instructions. The second concept
relies on graph based representations.

Abstract Machine Instructions Abstract machinesare designed to simplify thecompilation
process for specific language classes like imperative languages, functional languages
or logic programming languages. An abstract machine instruction performs complex
tasks and often fully implements a high level language construct, e.g. procedure calls
or memory management.

A customary intermediate language for imperative languages is the 3—address code
[ASUB86]. Some of the frequently used instructions are

e assignment statements of theformx : =y bop z,x := op y or X: =y,
where bop represents a binary operator and op a unary operator;

e indexed assignmentsx: =y[i] orx[i]: =y;
e unconditional jumpsgot o L;
e conditional jumpsif x relop y goto L.

There are dso instructions for parameter passing and subroutine calls and adress—, and
pointer assignments.

The SECD—machineand the G-machine [FH88] are abstract machinesfor the execution
of functional languages. The WAM (Warren Abstract Machine) is the most frequently
used machine model used for implementing logic programming languages like Prolog.
For more detailed descriptions on abstract machines and abstract instruction sets see
[WM95, Kog9l].

Problems arise, when the level of abstraction is too high. Globa data flow analysis
can become very difficult when details that are necessary for detection of potentially
optimizations are not explicitly presented.

Graph—-Based Representations Ingraph based representati ons certain dependencies of pro-
gram entities are made explicit, e.g. dataflow or control flow. Therefore graph—based
representations offer better possibilities for program analysis and program transform-
ation. In these representations entities of the program are associated with nodesin a
graph where dependencies represent edges between nodes.

In general a program represented by a sequence of abstract machine instructions can be
transformed into a graph—based representation. But determining the dependencies becomes
harder when instructions represent complex tasks.

There are featuresinherent to the represented language that al so effect analysis—, and optim-
ization techniques. Two very important and closely related features are:

Multi Assignment Form Imperative languages usually allow multiple assignments to the
same variable. An IR alowing multiple assignments has impact on the analysis

o] CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

methods used, e.g. a redefinition of a certain variable introduce an anti dependence
that restricts the reordering of statementsin the program.

Static Single Assignment Form Static Single Assignment (SSA) form was recently pro-
posed by [CFRT89, CFR*91]. In an imperative programming language the same
variable can be assigned more than one time. In SSA each variable is only defined
once, therefore every redefinition of a variable and corresponding uses are renamed
uniquely. When control flow is coalescing, more than one definition of avariable can
reach ause of thevariable. Inthiscase thedummy function ¢ isincluded, which selects
one of its parameters, depending on the control flow that was taken during runtime to
reach the ®—function. In the SSA al anti dependencies and output dependencies are
eliminated.

Imperative languages with multi assignments can easily be transformed into SSA
[CF87]. A detailed overview of SSA isgiven in[San94, pp.8-9]. There are also many
extentions of SSA e.g. [Brads).

2.3 Graph—Based Representations

There are many works concerned with graph—based intermedi ate representations which often
resultsin different definitionsof the same notions. Dueto that fact, the definitionsintroduced
here may differ from one or the other definitions given in other works. 1 tried to choose a
common description frame-work for a compareabl e introduction of the entities and features
of the intermediate representations stated.

2.3.1 Terminology

In the following we assume that an assgnment statement is of the form x:=y op z, and a
conditional expression isalogical expression that evaluates to either of the values ¢rue or
false. A definition of a variablev is an assgnment statement with destination v, i.e. v on
its left hand side. The use of variable v is an occurance of v in the right hand side of an
assignment statement or in a conditional expression.

A use of variable v isreachable by a definition of v if the execution of the definition may be
followed by execution of the use of v without intervening execution of any other definition
of variable v.

2.3.2 Control Flow Graph

The control flow graph directly reflects the branching structure of a program. There are
several different definitions of the notion control flow graph. The definition introduced here
differsfrom that given in [ASU86] and is smilar to that given in [SS93].

Definition 2.3.1 Thecontol flow graph (CFG)isadirectedlabeledgraphC F'GG = (N, E.s, 1),
where:

£.90. OURAFA—DASCU REFREOCIN TATITIUINOS J

—_—
Control Flow [start] BB1 ([start |)
| |

Statement Node

— @ =

Conditional Node

1:x:=1

2:y:=2

3: if x=1 then

4: y:=y+l

5. = .. Y. Y

6:..:=...X... stop

(a) Program (b) Statement Level (c) Basic Block Level

Figure 2.1: Control Flow Graph

e N isafinite set of labeled nodes, representing either an assignment statement or a
conditional expression. There are two special, non-Habeled nodes n,., € N and
nstop S N

e F.; C N x N x{T,F U} isasetof labeled edges, representing possible transfer of
control between the nodes.

o 7: N — {START, STOP,COMPUTE,PREDICAT E}isatypefunctionidenti-
fying thetype of anode. 7(n4r) = START and 7(n,,) = STOP.

For every node n € N there exists a directed path from n,,; t0 n and there exists a
directed path from n to n,,. Nodes of type COM PUT E are |abeled with an assignment
statement and have only one unique successor with the corresponding edge labeled with 7
(unconditional). Nodes of type PREDIC AT E are labeled with a conditional expression.
They always have two successors and outgoing edges are labeled with 7" and F', denoting the
flow of control in case the conditional expression evaluatesto ¢rue and false, respectively.

In [ASU86] the CFG is constructed with nodes representing basic blocks. In this case an
edge from node = to node y exigts, if the last instruction of block « is a conditional or
unconditional jump to the first instruction of block y. In figure 2.1 an example program
with its corresponding CFG representation is shown. Figure 2.1(c) shows an equivalent
representation on basic block level. The following definition of basic blocksis based on the
definition of CFGs:

Definition 2.3.2 GivenaC' F'G = (N, E.s, 7). Abasicblock isapath P = [n1,. .., ")
(n1, ..., nmee € N)of maximal length, such that at most noder; hasmorethan oneincoming
edge, and at most ..., has more than one outgoing edge.

CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

A graph consisting of nodes corresponding to basic blocks and edges that denote control flow
between basic block will be called basic block graph.

An advantage of CFGs istheir compact representation and their easy operational semantics.
Although being easy to implement, this approach has several drawbacks. Disadvantages
arise in the context of optimizations where the usage of the CFG leads to unefficient imple-
mentations, i.e. information is passed throughout the complete control flow graph, even in
program regions where it is not needed [PBJS90, JP93].

2.3.3 Control Dependence Graph

In contrast to the control flow graph, the control dependence graph explicitly shows the
essential dependencies, i.e. the conditional expressions responsible for the execution of a
statement, depending on the value of conditional expressions during program execution.
The notions introduced here are of great importance, e.g. in the transformation of a program
to SSA and in the definitions for other IRs like program dependence graphs (see 2.3.5).

Definition 2.3.3 A node « isa dominator of a node y, denoted by « A, y (« dominates y)
iff every path fromn ., t0 y contains = [ASU86]. A node always dominates itself.

Definition 2.3.4 The set of dominators of a node = form a chain. =z is an immediate
dominator of y iff + /A,y and
Az lNgz ANz Dgy Nz # .

Definition 2.3.5 The dominator tree of a CFG is a tree including the nodes of the CFG,
nsiare 1S the root. A dominator tree has edges between nodes = and y iff = is an immediate
dominator of y.

A node = post—dominatesanode y, = A, y, iff every path fromy to STOP containsz. A
node never post—dominates itself. The reflexive closure of the post—dominance is denoted
by Zp. The least node in the chain of post—dominators of a certain node =« is caled the
immediate post—dominator of x. The set of post—-dominators of = # n,, iS non—empty,
hence all nodes except .., have an unique immediate post—dominator. The post—dominator
tree is a directed graph rooted by n.,,, and an edge from node = to y denotes, that = is an
immediate post—dominator of y. The post—dominator tree can be computed as the dominator
tree over the reversed CFG.

Example 2.1:

The node of type START is a dominator of every node. In figure 2.1 the node of
type PRFE DIC AT F isanimmediate dominator of the nodes associated with statement
4 and 5. Statement 4 is no dominator of statement 5. The node of type STOP isa
post—dominator of every node.

Definition 2.3.6 Givena C' F'GG = (N, E.;, 7). Node = has control dependence on node y
denoted z6%y iff

1. (x,a,tfu) € E,

£.90. OURAFA—DASCU REFREOCIN TATITIUINOS

9] [sop]

(a) Control Flow Graph (b) Control Dependence Graph

Figure 2.2: Control Dependence Graph

2. =(y A,), i.e. y does not post—dominate «, and

3. there exists a non—empty path p = =, a,...,y, such that for any ~ € p with z # =z,
zFyryl,z.

The index ¢ denotes that ¢. is a control dependence relation, to distinguish it from the data
dependencerelation o 4. If 6%y, theny A a. x6%y canalso bestated asy iscontrol dependent
of z.

Definition 2.3.7 Thecontrol dependencegraph (CDG) ofaC'F'GG = (N, E.s, 7) isdefined
asadirected graph C DG = (N, E.4, 7) with labeled edges, such that (z,y,tf) € FE.q iff
z6%y and (v, a,tf) € E.yandtf € {T, F}.

The source of a control dependence edge is a predicate node. Like in the CFG an edge from
apredicate nodeislabeled with 7" or F', indicating the value of the predicate under which the
statement at the sink of the edge will be executed. The construction of the CDG is described
in[GP92].

CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

Control Flow

77777777 >
Data Flow y

Data Flow x

(a) Control Flow Graph (b) Def-Use Chains

Figure 2.3: Def—-Use Chains

Example 2.2:

Infigure 2.2(b) an example of aCDG of the control flow graph in figure 2.2(a) is shown
(the explicit contents of the nodes and the /- abels are omitted). Node 1 has control
dependence on nodes 2 and 3, as these two nodes are only executed if the conditional
expression of node 1 evaluates to true. Node 3 is not control dependent of node 2
because it post—-dominates node 2. Node 9 is a post—dominator of every node except
node stop and itself. Therefore it is not control dependent of any node.

2.3.4 Def—-UseChains, Data Dependence Graphsand Data Flow Graphs

A very customary representation of data flow are def—use chains. Def—use graphs are graphs
that have the same set of nodes asthe CFG, where edges connect each definition of avariable
to all uses of the variable [ASU86].

Definition 2.3.8 Given a CFG. A def—use chain for a variable v is a node pair (ny,n3) €
N x N, such that n, definesv, n, usesv and ny reaches n,.

Definition 2.3.9 Givena CFG = (N, E.5, 7). DUG = (N, Eq,,7) is a def-use graph,
such that (nq, ny) € Fq, iff (n1, n2) is a def-use chain with respect to the CFG.

Example 2.3:
In figure 2.3(a) the control flow graph is augmented with def—use edges for the variables
x and y. Omitting the control flow edges results in the corresponding def—use chains
shownin 2.3(b).
Def—use chains provide partial solutions of the drawbacks of CFGs. Direct information flow
between definitions and uses of a variable is permitted. By this, unnecessary propagation

£.90. OURAFA—DASCU REFREOCIN TATITIUINOS

—_——
[start | Control Flow
77777777 >
Data Flow y Output Dependence
——————— e : >
Data Flow x Anti Dependence

CodeSedlection (a) Control Flow Graph (b) Data Dependence Graph

Figure 2.4: Data Dependence Graph

of information is prevented. Def—use graphs eliminate unnecessary statement orderings,
exposing paralelism.

But also def—use chains suffer from several drawbacks. E.g. they cannot be used for
backward data flow problems (e.g. elimination of redundant computations), because not
enough information about the control flow structure is incorporated. Also, def—use chains
can effect the precision of analysis in forward data flow problems, i.e. they can prevent that
certain sources of optimizations are found that can be determined when using aCFG (eg. in
constant propagation).

Data Dependence Graphs

Data dependence graphs (DDG) are a generaization of def—use chains, that take into
account the execution reordering constraints between nodes that arise by redefinition of
certain variables. The edges of the DDG represent conflicts between two nodes = and y in
the CFG, i.e. exchanging the execution order of the statements associated with the nodes
changes the semantics of the program.

e Flow Dependence: y ison apath from z to n,, in the CFG, such that the definition
x reachesthe use y.

¢ Anti Dependence: y is on a path from = to n,, in the CFG, such that y subsequently
redefinesavariableused in x.

¢ Output Dependence: subsequent redefinition of the same variable.

These dependencies force strict ordering among the corresponding statements to ensure
program correctness. Figure 2.4(b) showsthe DDG of the control flow graph in figure 2.4(a).

CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

Programsthat contain loops must be handled with care. In this case static edges in the DDG
must be distinguished from dynamic edges that order two nodes from successive iterations:

e Loop independent dependence: Dependencies that denote an order of nodes of the
same dynamic iteration.

e Loop carried dependence: Two nodes representing instances of statements in success-
ive iterations.

Data Flow Graphs

Data flow graphs (DFG) represent global data dependence at the operator level. Nodes
in a DFG with no incoming edges represent values and internal nodes represent operators.
DFGs completely abstract from statements and statement ordering. Def—use graphs can be
transformed to a sSimilar representation, where operator nodes are labeled with a (possible
empty) set of variables, representing assignments to the corresponding variables [ASU86].
In[[ASU86] thisrepresentationis used to represent the data flow of abasic block and iscalled
the DAG of abasic block (figure 2.5).

There are extended approaches of dataflow graphsincorporating control flow, which areoften
used in the context of functional languages with semantics based on data flow machines.

tl:=atb
t2 :=c+d
t3 1= e-t2
t4 ;= t1-t3

Figure 2.5: DAG of aBasic Block

2.3.5 Program Dependence Graph

Solutions to overcome the drawbacks of data flow representations use the CFG together
with the DDG (or DFG). However, it is difficult to keep both representations consistent in
the context of program transformations. The problem of maintaining two data structures to
represent the program execution semantics and its dependencies is addressed by the pro-
gram dependence graph. A PDG contains the DDG augemented with control dependence
edges [FOW8Y7]. Therefore it can be stated as the union of the relevant control and data
dependencies. The PDG incorporates the CDG which represents only the essentia control
relationships of a program.

Definition 2.3.10 Theprogram dependencegraph (PDG) isderived fromagiven C F'GG =
(ch, ch, ch), such that
PDG == (di, Ecd7 Edd7 Tpd) \Nlth

£.90. OURAFA—DASCU REFREOCIN TATITIUINOS

=1
: while (i<10) {
j=i+l

N gkwdbkE
=
[
1l
\l
N

Data Dependence

—_——&
Control Dependence

Figure 2.6: Program Dependence Graph

o Neg \ {7stop} C Npa-

e 7,0 : N — {START,REGION,PREDICATE,COMPUTE} is a node type
mapping. In contrast to CFGs, nodes with type COMPUTE have no outgoing edges
and thereis no STOP node.

o F.y C Nyyx Ny x {T,F,U} isaset of labeled edges, such that (ny,ns, L) € E.y
identifies a control dependence from n; to n, with label L.

e Fqi C N,y x N,g x D isasetof labeled edges, such that (nq, ny, D) € Eyq identifies
a data dependence fromn; to n, from a set of data dependencies D, e.g. flow—, anti—,
or output dependencies.

The PDG contai nsthe samenodesasthe control flow graph andisaughmented with additional
nodes called region nodes. These are inserted into the graph to summarize the set of control
conditions for a node and to group all of the nodes that are executed under the same control
conditions together as the successors of the same region node. Each predicate node has at
most one successor node of type REGION labeled with T or F'. Edges from E.; with the
source node isof type REGION are always labeled with U.

Figure2.6 showsasmall programtogether withits program dependence graph representation.
Many of the optimizations operate moreefficiently onthe PDG [FOW87] and a soincremental
program transformations on control flow and data flow are permitted. Detailed descriptions
of PDGsaregiven in [SS93, GP92, FOW87]. There have been effortsto give PDGsaformal
semantics, withthe objectivefor using itinthe correctness proofsof program transformations,

CAAFITCERX £ ITINTERIVIEDIATE REFREOSCIN TATTUINOS

but this has proved to be very difficult [JP93]. Also linearization has been found to be very
difficult using the PDG.

2.3.6 Global Unified Resour ce Requirement Representation

The global unified resource requirement representation (GURRR) augments the program
dependence graph with information about the resource requirementsand resource availability.
It was devel oped to enableabetter integration of register all ocation and instruction scheduling,
while taking into account the real requirements of the target machine [BGS95]. Therefore
this approach also considers important aspects for retargetability. The allocation of specific
resources of the target machineis performed while considering the overall execution time of
the program. Another aim of this approach is to define a common base for a high amount of
optimizations and to overcome the drawback of using several different representation, thus
restricting the degree of phase integration.

A magjor goal isto support instruction level paralelism that is appropriate for a certain target
architecture by detecting regions of the program that are over—utilized, and regions that are
under—utilized with resources. The representation permits to determine the impact of each
decision made with major regards to the execution time of a program.

2.3.7 Other Works

There is a wide spectrum of other IRs and extended approaches of the introduced IRs. An
introduction to this IRs is out of the scope of this paragraph, therefore only some short
remarks on further approaches are given in the following.

Dependence Flow Graph Thedependenceflow graph isageneralization of def—usechains
and SSA, solving some of the drawbacks shown in the context of CFGs, def—use
chainsand PDGs. The dependence flow graph utilizes the propagation of control flow
information, whilebypassing informationsnot rel evant to certain regions[JP93, Joh94].
Also, the dependence flow graph has a well-defined semantics [PBJS90].

Parallel Program Graph The parallel program graph (PPG) is a variant of the PDG. It
contains control edgesthat represent parallel flow of control and synchronization edges
[SS93].

Program Dependence Web The program dependence web (PDW) is an executable pro-
gram representation derived from the program dependence graph and was designed
to support control—driven, data—driven and demand—driven execution. The intention
is to provide a single IR to support multiple styles of programming languages (e.g.
functional and imperative) and multiple architectures (e.g. von Neumann, data flow,
reduction machines) [BMO90].

Hierachical Task Graph The hierarchical task graph (HTG) consists of five types of
nodes:

4. SUNVINIAKT L/

o START and STOP: indicating entries and exitsto HTGs. In contrast to CFGs
asingle HTG may have more than one node of either type ST ART or STOP
according to the fact that aHTG may consist of nodes containing sub—HTGs,

e SIMPLE: containsan instruction;
e COMPLEX: representing asub-HTG;
e LOOP: represent loopswhose body isasub—HTG;

The HTG ismore coarse grained than the PDG. It therefore allows program transform-
ations on a more abstract level. (see [GP92] or [NN93] where the HTG is used for
instruction scheduling).

Restricted Permutation Trees (see[San94]).

24 Summary

Intermediate representations have great impact on the effectiveness of optimization with
regards to either implementation and precision of the performed optimizations. The major
goal isto find asingle intermediate representation to be used, that enables a high amount of
optimizationsto be effectively performed, with special regardsto phase integration. Thereis
alargenumber of intermediate representationsdevel oped inrecent years. Control flow graphs
explicitly reflect the original structure of the source program. Several representations were
developed, for only denoting therel evant dependenciesof aprogram, like def—use chains, data
dependence graphs, and control dependence graphs. Program dependence graphs and data
dependence graphs try to overcome the drawback of using several different representations
for a program. Extentions of the program dependence graphs try to integrate aspects of
fine—graine (instruction level) and coarse grain (task or functional level) parallelism and to
integrate aspects of the resource requirements of the target machine.

Chapter 3

Retargetable Code Generation

The chapter gives an introduction to traditional tasks of retargetable code generation: code
selection, register allocation, and instruction scheduling. A small formal model of machine
operations is defined, getting a common frame-work for the description of the subjects of
code generation tasks. The essential entities necessary for retargeting the tasks are exposed.
The chapter is structured as follows:

e Section 3.1 gives a short introduction of the tasks of a retargetable code generator.

¢ In section 3.2 elementary machine operations are identified. It will be shown how the
entities (i.e. machineresources) of the corresponding target architecture are composed
to yield elementary operations. It is further described how elementary operations are
combined for constituting machine instructions. In section 3.2.1 a representation for
the encodings of machine operations and machine instruction is presented.

e In section 3.3 the elementary entities for retargeting the tasks of code generation
are exposed within operation specifications. The relationship of the intermediate
representation and machine operation is specified.

e Thelast section summarizes the introduced notionsimportant for further reading of the
report.

3.1 Introduction

The task of code generation is the mapping of an intermediate representation IR of a source
program to a target machine program. The aim of code generation is the selection of a
nearly optimal machine instruction sequence making effective usage of features of the target
machine with respect to the semantics of theinitial program. Nearly optimal in this context
means that an optimal solution can not generally be computed because code generation
consists of NP-hard subtasks:

e codeselection isthetask of mapping anintermediaterepresentation IR toasemantically
equivalent sequence of machine executable operations. There are usualy severa
semantically equivalent sequences for representing one program. A problem is the
selection of afavourable instruction sequence.

18

o.L. 1IN TRUUUC TTUIN

Memor

.. ¢
> — Code Generator By ?gim RReRo
@ 0/ Q ?g?add RRR,

Figure 3.1: Retargetable Code Generator

e The goal of register allocation isto map values in the intermediate representation
to physical registers in order to minimize the number of accesses to memory during
program execution. It consist of two subtasks:

— Allocate valuesto registers over acertain life times of the values. In genera the
number of concurrently alive values exceeds the number of registers. Therefore
the register alocator must make decisions upon which valuesto keep in registers,
with the goal of reducing data transfers. In the context of distrubuted register
sets, atask of increasing importance isto alocate values to certain register sets.

— After dlocation, the physical registers where values should reside must be de-
termined. Thisisthe task of register assgnment. During register assignment it
hasto be known which registersare occupied by which values and which registers
are freefor being occupied by new values.

e The traditional task of insruction scheduling is the reordering of machine instruc-
tions with the aim of minimizing spill code. In the context of fine grain parallelism,
instruction scheduling is the task of reordering an instruction sequence for gaining
effective usage of the machines parallelism. This incorporates either the compaction
of parallel executable machine operationsinto one machine instruction for VLIW like
architectures, or the reordering of machine instructions for avoiding pipeline stalls in
RISC like architectures.

A seldom stated task of code generation isresource allocation. It isconcerned with binding
operations and values to machine resources (e.g., functional units and storage resources);
thistask isalso called binding. Resource allocation can hardly be viewed as a separate task
as each of the code generation tasks is concerned with some forms of binding. Register
allocation can be seen as a subtask of resource allocation. Also, resource allocation can be
performed before or after each task of code generation. A retargetable code generator (fig.
3.1) gets an intermediate representation of the source program and a description of the target
machine. The basic task of a code generator isto identify certain patternsin the intermediate
representation as elementary operations, that can be executed on the target machine. Thus,
an important task of the retargetable code generator is to derive a mapping from operations
occuring in the intermediate representations to target machine operations. Functional units
together with the required all ocations of the operands (i.e., the storage resourceslike registers
or memories where the operands must reside) must be determined, and the corresponding

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

encodings of machine instructions must be extracted. 1n some specificationsthisrelationship
between the intermediate representation and machine instructions are explicitly exposed. A
code generator generator (fig. 3.2) uses a specification that explicitly reflects mappingsfrom
patterns occuring in the intermediate representation to the corresponding target machine
instructions. The output of a code generator generator is a code generator that maps the
intermedi ate representation to the specified target machine code. Therearethreebasic classes
for modelling target machines, depending on the details of information that are available for
adesigner:

e behavioral models provide a high abstraction of the hardware. These models are
generaly used in code generator generators. E.g., instruction set models reflect the
relations between the intermediate representation and machine instructions, which are
explicitly specified.

e structural models contain more details and are usually specified by hardware de-
scription languages (HDL) (e.g., VHDL [BFMR92], MIMOLA [Mar93, BBH*94));
generally, more aspects of the target machine can be specified, that cannot be defined
a purely behavioral model (e.g., complex timing behavior). The machine operations
are implicitly inherent and must be extracted from the description. Generally, thisis
restricted to single cycle machine instructions.

e mixed models consist of information from both previousy mentioned models. In
common, instruction set models are enhanced by additional informations, e.g., used
machine resources, size of storage resourcesor encodings of machine instructions.
These are basically informations, necessary for effectively retargeting register aloca
tion and instruction scheduling.

The question of which model should be applied depends either on the informations available
to the designer, but also on the class of architecture being modeled. Asmentioned, multicycle
machine instructionsare hard to be extracted from purely structural models. A behavioral de-
scriptionslacks of informationsfor retargeting register allocation and instruction scheduling.
Itisstill atopic of further research finding adequate description models for both of

e utilizing the design process of architectures, and
e support effective retargeting of all the subtasks of code generation.

In the following section elementary operations of amachine are specialized. It isshown how
they are combined to machine instructions.

3.2 Machine Operationsand Machine I nstructions

To enable an understanding about the interrelations of an intermediate representation and
the target machine code, the elementary operations a target machine is able to execute
are identified. It is shown how this elementary operations are combined to yield machine
instructions. In the following we will define machine operations and machine instructions
based on the terminology developed in the area of microprogramming [DLSM81].

9.2, WIACLAIINE UrFCRATIUNOS AINU IVIACUHATINE ITINOTRUCL TTUINO

Specification I
Memor
Reg: +(Reg,Reg):1 =add Regl,Reg2,Reg3 -
- Reg: -(Reg,Reg) : 1 =sub Regl,Reg2,Reg3 I 'y
= Reg: Main 12 =load Main,Reg ,ﬁ) 'S
Main: Reg 12 = store Main,Reg - - m
N

I (__Code Generator Generator)

b RR.R
— Code Generator —t—

Figure 3.2: Code Generator Generator

3.2.1 Microoperationsand Microinstructions

A target architecture is well-defined by its storage resources (e.g. register sets, memory)
and operations that can be performed. A microoperation (MO) is an elementary operation
executable by the target machine and performed on data stored in one or more storage
resources (possibly distributed on more than one register set) and stores a result into certain
storage resources. Microperations that can be performed in parallel are combined to a
microinstruction (Ml). Microinstructions are controlled by signals from the control word
inthe control unit. The control word can be represented by astring of acertain length (called
its bit width or width) over the alphabet {0, 1, X'}. The X isrepresentative for asignal that
can be either 0 or 1 without changing the semantics of any of the MOs within the MI.

A microinstruction can be partitioned into several logical fields, where a certain set of fields
being responsible for initiating certain microoperations. The control unit can be either
hardwired or microprogrammable. A programmable control unit contains a memory called
the control memory. A sequence of microinstructions constitutes a microprogram that is
stored in the control memory. Thereby, microinstructionsare stored in certain cells of control
memory. A microinstruction stored in cell » of the control memory is called to be mapped
to instruction cycle n. The control memory can be read-only (ROM) or reloadable to load
new microprograms. The actual control word is determined by the microprogram counter .

Example 3.1:

In figure 3.3 a configuration of acontrol unit is shown. It has a bit width of twenty bits.
The notation ¢(m : n) specifies certain bits of the control word, e.g. ¢(10 : 5) denotes
bits 5 to 10 of the control word ¢ and addresses the register file B. ¢(11) controlsthe
ALU F2,i.e. theencoding of ¢(11) determines the operation performed by /2, i.e. *
or + (¢(21) controlsthe ALU F1,i.e, - or+).

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

|
|
! !
c(3:0
(@0, £ ¢ 4, | program| 4, | CONTROL C§4:0) _!
| Incre- |_4 U Counter [7T MEMORY T~
‘ M menter

controller

Figure 3.3: Example Architecture

Example 3.2:

We consider the previous example for illustrating the notions microoperations and mi-
croinstructions according to functional units and storage resources of a simple architec-
ture. In figure 3.4 the control unit and control signals are omitted. The figure shows
an architecture that contains functional units F'1, F'2 and S H. There are three storage
resources: register set A, register set B and thememory M. F'1 can perform an addition
or a substraction of two operands stored in register cells of register set A. The result
is stored into register A. Shifting of the first operand is optional. F'2 can perform an
addition and a multiplication of operands stored in A or B with the result stored into
register B.

MOs are defined as operations performed on datathat resides in storage resources with
results written to storage resources; thus the shifter S H does not constitute a complete
microoperation in this sense. Only in combination with F'1 a complete MO is given.
Operands accessable to F'2 can reside eitherin A or B. Theresultisstoredto B . Data
can be loaded from the memory M to A or B and it can aso be stored to memory M
from A or B. Anillustration of the performable microoperationsis shownin figure 3.5.

3.2.2 From Microoperationsto Machine Operations

If the source language specifiesamicroprogram, thetask of the code generator isto determine
a corresponding microinstruction sequence. In some architectures thisis the only level of
programmability like e.g. some application specific instruction set processors (ASIPS). But
generaly therecan behigher levelsof programmability. Inthiscaseaprogramisasequence of

.2, VIALAIINE UFERATIUNOS AND IVIACLHTINE TINSTRUCLU T TUINO
Memory M
[[

y

A |

\
— \ RegB =

F1 F2

Figure 3.4: Simplified Example Architecture

machine instructions stored in an additional memory. When executed, a machine instruction
initiatesamicroinstruction or asequence of microinstructions. During program execution the
microprogram usually does not change. Changing the microprogram enables the integration
of late design decisions, correction of design errors and reuseability. Also, the modification
of thetarget architecturesinstruction setsis utilized, e.g. instruction sets that support specific
features of programming languages (e.g. WAM or SECD-Machine [Kog91]).

If more abstract levels of visibility of hardware details and of programability are taken into
account, we use the terms machine operation and machine instruction instead of micro-
operation and microinstruction. Generally, a machine operation will denote an elementary
operation on theregister transfer level of the target machine, that is visible from the current
point of view (or level of abstraction). A machine instruction can consist of one or more
concurrently executable machine operations if this paralelism is explicitly visible. For ex-
ample, in a VLIW architecture we have explicit instruction level parallelism. A CISC like
architecture does not offer this kind of parallelism explicitly. However, implicitly a CISC
instruction may be implemented by a sequence of microinstructions.

3.2.3 Machine Operation Pattern

Figure 3.6 showsthe machine oper ation patterns. The patternswill be the basic subject for
relating operators in the intermediate representation with target machine operations. Storage
resources are shaded as in the corresponding architecture in figure 3.4. The representation
is based on the symbols of the operators and storage resources and reflects the data flow of
machine operations. Notationsof acorresponding register transfer language (see [Man93])
is associated with each the machine operation pattern. The notation describes the register
transfer level behavior of the machine operation patterns, but abstractsfrom acertain location
(i.e., address of the denoted storage resource).

3.2.4 Multicycle Machine Operations

The view of machine operations we have considered so far indicates that each machine op-
eration is performed in one machine instruction cycle. Generally, a machine operation can
require several instruction cycles. Thereby it occupies a certain set of machine resourcesin

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

£ O U
Memory M i
oy)

Figure 3.5: Elementary Operations

each cycle. If various machine operations take different numbers of cycles to execute, the
meaning of a machine instruction becomes vague. If we now consider machine instructions
and assume that certain fields within the machine instruction initiate certain machine opera-
tions, the execution time for machine operations have to be taken into account when machine
operations are mapped to certain instruction cycles. The point of view is changed from
considering machine instructions consisting of machine operations to machine operations
that are mapped to certain instruction cycles.

Example 3.3:

Infigure 3.7 () and (b) machine operations with multiple instruction cycles are shown.
In figure 3.7 (b) it isillustrated that certain machine operations can be initiated before
other machine operationsterminated, e.g. M O5, M O6 and MO7.

In the following we will basically consider single cycle machine operations. The problems
that are considered in thisreport are inherent in this restricted model.

3.2.5 Conflicting Machine Operations

We will now discuss demands of concurrent execution of machine operations and introduce
the notion of conflicting machine operations. Thus the point of interest are the reasons that
prevent machine operation from parallel execution. A set of machine opererations can be

9.2, WIACLAIINE UrFCRATIUNOS AINU IVIACUHATINE ITINOTRUCL TTUINO

1)

A« +H>>(A)A) A« -(>(A)A)
@) {97 Y
A — +AA) A < -(AA)
®) (@7 v V\Qy T
[[[/AR
B — +(AA) B — +(B,A) B — +(AB) B — +(B,B)
'\2’ GZ' '\27 UZO
B « *AA) B — *(B,A) B — *(AB) B — *B.B)
° 7 0 1 7
[] []
B-M A-M M< A M~B

Figure 3.6: Machine Operation Patterns

executed in parallel if no resource conflicts occur. A resource conflict occurs, if the number
of available resources accessed is exceeded. For example, each functional unit can only be
used by one machine operation in each machine instruction cycle. Storage resources only
allow write access according to their number of write ports.

Example 3.4:

In the example architecture an addition with shifting of the first operand can never be
executed in parall el with asubstraction, because both operations need the functionol unit
F1. If we assume, that the register sets A is equipped with a single write port, parallel
execution of machine operations involving F'1 and a transfer machine operation from
memory to A would also cause a resource conflict.

Another class of resource conflicts can occur if certain machine operations are controled by
the same fields in a machine instruction word. An encoding conflicts occursif two machine
operations have different encodings for a certain fields. For more details about conflicts and
how to model the detection of conflicts consult [DLSM81, Gas39, Hei93]. If we suppose
single cycle operations, resource conflicts can be mapped to encoding conflicts.

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

@ MO1 MO2 MO3 MO4

(b)

Figure 3.7: Machine Operations with Multiple Instruction Cyles

3.2.6 Encoding of Machine Instructions

This subsection is concerned with a precise notion of encoding machine operations and
machine instructions. How to determine encodings for machine operations from hardware
descriptionsis not considered in this report (see [LM94]).

Definition 3.2.1 A machine instruction string of width w is a string over the alphabet
{0,1, X} denoted by {0,1, X}*. It is of the form a,,_1ay,_2...aq, a; € {0,1, X} for
(w > ¢ > 0). Each isa bit position with associated value «,. A bit range (w; : w,),
w > wy > we > 0, specifies a sequence of bit positions w; ... w, with the associated
machine instruction string a,, . . . a,,, of width wy; — ws + 1.

We assume that machine operations can be mapped to a machine instruction string. X
denotes a signal at the corresponding bit position not effecting the behavior of the machine
operations initiated by the machine instruction, therefore the value can be either 0 or 1. A
machine operation can be encoded by a machine instruction string or by a set of alternative
machine instruction strings. All bit positions not relevant for the execution of the machine
operation should be represented by X's.

Definition 3.2.2 Two machine operations conflict, iff there exists a bit position ¢ in the
corresponding machine instruction strings mis; = @.,_1 . .. ag @and misy = b,,_1 . .. by, SUCh
thatbi 7£ a; ande 7£ XandaISOaZ 75 X.

Thus, two machine operations can be performed if their machine instruction strings do not
conflict. Thiscriteriumisused in the compaction phase of some retargetabl e code generators,
e.g. MSSV [Mar93].

9.2, WIACLAIINE UrFCRATIUNOS AINU IVIACUHATINE ITINOTRUCL TTUINO £l

M achine I nstruction For mat

In the following, aformalism is introduced for defining the machine instruction strings and
reflecting the logical partitioning of machine instructionsinto a certain set of control fields.

Definition 3.2.3 Amachineinstructionformat of widthw isasequence M [F' = [f1, ..., f&]
of fields f; = (id;, m;, SF;), such that (for £ > ¢,57 > 1)

e :d; isafield identifier that denotesthefield f; and :d; # :d; iff: # j;

e m,; defines the highest bit position of field f; with w > m; > 0. The bit range
(m; : my4y + 1) defines the bit positions of field f; with m; > m;y; and dummy
position my,; = —1. Itisrequired that m; = w — 1.

Witheach:d; aset S;;, C {0, 1, X }™ ™+ of machineinstructionsof width m; —m;
is associated.

¢ A field can be further partitioned into subfields; S F; specifies a (possible empty) set
of machine instruction formats for field f;, denoted id; = mif;1|...|mef;,,. Each
mif € {mif;1,...,mif;,,} specifiesamachineinstructionformat of widthm;—m;.

MIF specifies a set of machine instructions denoted M Iy, and me € M Iy pp iff mi =
s10...05, \Ns;, € Szdl For :d; = mifi71| ce |m@f27m the union M]mipi,1 Uu...u M]mipi,ni
isexactly Siq,. Therefore a non-empty set SF; specifies S; = M i, , U...U M1y,

A MIF enables to define the formats for a complete machine instruction set in a compact
representation. A encoding for a certain machine operation is defined by a specific configur-
ation of fields. All fields not relevant for the execution of the machine operation should be
represented by X'’s.

24 14 4 0
MIF = ‘ fieldl = O1|TO|UD field2 = 02|TO|UD| field3
9 8 6 5 3 1 0
= | L4/ | | 2 0=1 t=0
o1 ‘ 0 sh i+-1 res | opl | op ‘ ShO{01,00}
+/- {01}

+* 0§01}
reg-set’{ 0,1} 2
‘ res,opl,0p2}{0,1}2

02 = ‘ ol reg-seti+/x1 res | opl | op2 ‘
1 1 1 1 1

TO = ‘ t Iriwl I reg | mem reg{0,1}2
1 1 1 1
mem{0,1}*
riw 0{0,1}
uD = {x} 10

Figure 3.8: Machine Instruction Format

Example 3.5:

A machineinstruction format for the example architecture (figure 3.4 isshownin figure
3.8. Thefirst field fieldl controls the machine operations that involve the functiona
unit F'1. It can also initiate the transfer machine operations between the memory M
and the register set A. Which of either an arithmetic machine operation or a transfer
machine operation is performed is determined with the value of bit position 24.

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

The machine instruction format is composed from the submachine instruction formats
01,02, TO and U D; fieldl can be composed from either of the machine instruction
formats O1 (specifying the arithmetic machine operations), TO (transfer machine oper-
ations) or UD (no machine operation specified). The subfield sh of fieldl (specified
in O1) controls the shifting of the first operand of F'1. +/— encodes the operation
performed by the functional unit /1. The other fields of O1 specify the addresses of
the operands of the operation, i.e. the locationsin register set A. Field reg — set in 02
determines the sources for the operands. The subfield r/w specified in 7'0 determines
loads or stores of atransfer machine operation. The field field3 is used to control the
program counter for selecting the next machine instruction to execute. It is not further
specified here and is omitted in the following. The machine instruction format allows
to encode two arithmetic machine operations or two data transfers in one machine in-
struction. It alows the encoding of a data transfer between memory and registers and
an arithmetic machine operation within one machine instruction.

Versions and Partial Versions of Machine Instruction Strings

A certain machine operation can be encoded by several distinct machine instruction strings.
Each machine instruction string will be caled a version of the corresponding machine
operation. A machine instruction string denoting the encoding of a subfield of a version
is called a partial version. l.e, partia versions represent the signals of the control word
necessary for controling a certain machine resource, involved in a certain machine operation.

Restricting Machine Instruction Formats

A restricted machine instruction formats reduces a given machine instruction format MIF to
asubset of itsformats. Hereby, the encoding for a certain machine operation can beindicated
by an existing MIF.

Definition 3.2.4 Given a fixed MIF = [(id1,m1, SFL), ..., (¢dg, my, SFy)]. The MIF
restriction of a machine instruction format is defined as

MIF' = [(idy,mq, SFY), ..., (edy, my, SF])]
with associated sets S, , . . ., S;,, , such that
° S;dl - Sid17 cee Szldk - Sidk and

¢ for each non-empty set of subfields SF/ each mif’ € SF! isaredriction of amif €
SF;.

Wedenotearestriction of amachineinstructionformat M 1 F by M T F' = [id} : Sy, ..., id) :
S] and we will omit al fieldsid; : Sig, with f/ = f;.

9.0. UrCRATIUIN OSFECIFICATTUIN

Example 3.6:

In figure 3.9 the restricted machine instruction formats for each machine operation are
shown. The first machine operation defines the machine instruction format of the shift
and add operation. field2isrestricted to contain the undefined operation, i.e. the subfield
only contains X'’s. fieldl isrestricted to the format O 1’ arestriction of the format O1
which containsthe encodingsof theaddition (+/ - = 1) and shifting(sh = 01). The
subfidlds res, opl, and op2 of O1 are kept unchanged.

a) MIF'=[field1:01’ field2":UD]

L-

=[+/-:1, sh:01] O1'=[+/-:0, sh:01]
01'=[+/-:1, sh:00] O1'=[+/-:0, sh:00]

b) MIF'=[field1":UD" field2":02]

‘27?27 ________ ?27

02'=[+/*:1, reg-set:00] 02'=[+/*:1, reg-set:10] 02'=[+/*:1, reg-set:11]

v Y

02'=[+/*:0, reg-set:00] 02'=[+/*:0, reg-set:10] 02'=[+/*:0, reg-set:11]
¢) MIF=[field1:UD’ field2":TO’]
E E
TO'=[riw:1] TO'=[r/w:0]
c) MIF'=[field1":TO’ field2":UD’]
E 5
TO=[riw:1] TO=[r/w:0]

Figure 3.9: Encodings of Machine Operation Pattern

3.3 Operation Specification

An operation specifications specifies the alternative machine operations for implementing a
certain operation on the target machine. The model shown here is an extended instruction set
model and exposes the necessary entities for retargeting code selection, register allocation
and instruction scheduling for single cycle machine operations.

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

In the following a fixed set of functional units of a target machine is assumed, denoted by
FU. Further afixed set of storage resourcesis given, denoted by SR. Witheach sr € SR a
certain set Loc,, of permitted locations (i.e., addresses) is associated. Additionaly, for each
sr € SR thereisaunique symbolic representation to denote sr. Further, we assume a fixed
width m of the machine instruction words and a fixed set of machine instruction strings,
denoted M.

Definition 3.3.1 An operation specification for an operation op is a quadruple OS,, =
(¢d, arity, mos, Viq) and consists of

¢ id: a unigue symbol denoting the operation op;
e arity: denoting the number of operands including the destination involved;

e mos. denotes a machine operation scheme and reflects the behavior of op; for
every operand it contains a template from $1,. .. $arity, representative for certain
combinations of storage resources,

example: $1 «— +($2,$3);

e V;,; represents the set of all machine operations that implement the behavior of the
machine operation scheme; each v € V;,; is a resource machine operation that im-
plements the machine operation scheme occupying the same configuration of machine
resources, denoted by R—-MO; (F, [sr1, ..., $Tarity), @) € Vig CONSISES OF:

— " C FU, the set of involved functional units.

— sr1,..., STeay € S R arethe storage resources where operands of the R—version
reside; each sr; corresponds to thetemplate $: in the machine operation scheme;
the substitution of storage resource symbols for the corresponding templates
$1,...,%arzty in the machine operation scheme congtitutes the machine oper-
ation pattern; the right hand side of a machine operation pattern is called a
machine expression pattern;

— ¢ Ly x ... X Loty — P(M) is an encoding function; it is a mapping from
locations to a set of machine instruction strings; each ; denotes the set of
legal locations for addressing sr; the R—version has access to; it isrequired that
L; C Locs,,; theencoding function mapsa sequenceof locations (11, . . ., lurity) €
Ly x ... X Lgi1y to the corresponding machine instruction string.

There are some special classes of operations called transfer oper ations and noload oper a-
tion. Transfer operations describe data movements between storage resources, denoted by
the machine operation scheme $1 « $2 and the corresponding machine operation patterns.
Noload operations are necessary for architectures providing fine-grain paralelism. They
prevent undesirable side—effects, i.e., the modification of certain storage resources . Noload
operations are denoted by the machine operation scheme $1 . Thismodel so far assumes,
complete control by the machines control unit. Some architectures allow that certain con-
figurations of the machine state are necessary to initiate certain machine operations, termed
residual control. Code generators that produce code for such architectures are concerned

9.0. UrCRATIUIN OSFECIFICATTUIN

with generating code for creating the corresponding machine states. This subject is not fur-
ther addressed in this report. 1n the following we assume non—residual control. Addressing
modes are also not considered.

Other instruction based models for operations can be found in [DLSM81, BHE91, Hei93,
Coh94]. Thenotionsdefined in[DLSM81] were basically introduced for comparing different
compaction methods of machine programs. Informations, utilizing code selection are not
involved. [BHE91, Hei93, Coh94] all take into account multi cycle machine operationsand
extend the model for specifying features of RISC like architectures. [BHE91] only considers
a single machine operation pattern for each operation. In contrast to code selection based
specifications (see section 4) these models are concerned with utilizing register allocation
and instruction scheduling. The models basically differ in the degree of details of machine
resources incorporated, and relations between machine resources described. While they still
can be classifed as behavioral (instruction based models), more and more aspects of structural
models are integrated.

3.3.1 Abstract Machine Operations

An operation specification specifiesthe set of machine operationsthat implement the behavior
given by the machine operation scheme. It defines a hierarchy on this set of machine
operations, each constituting a certain level of abstraction, also exposing a certain degree of
binding machine resources. This degree of binding has much impact for the tasks of code
generation. It can be disadvantegeous if operations are fixed to certain machine resources
by one of the tasks, then restricting subsequent tasks. E.g., if code selection selects machine
operations, all resources are fixed for the operation. There are the following degrees of
binding machine resources:

e An L-MO specifies all storage resources and the locations (addresses) of its operands
and the functional units that perform the operation. It consists of a set of versions,
specified by the encoding function.

e An R-MO defines the set of machine operations, such that each machine operation
occupies the same set of functional units and assumes each operand op; in the same
storage resource sr;; locations are not bound.

e AnSR-MO consists of the union of R—-MOswith the same machine operation pattern.
Each machine operation of an SR—MO assumes each operand op; in the same storage
resource sr;. Whether the functional units nor locations are bound.

e AnU/-MO isthe complete set of mos specified by an operation specification. Thus it
does not bind any machine resource or location.

Other levels of abstraction are possible when the complete set of operation specifications
is analyzed. We assume, that there is a symbolic representation of operations, such that
each set of associated machine operations is uniquely denoted. This incorporates symbolic
representations for storage resources. The symbolic representations are called abstract
machine operations (A-MQOs). R—-MOs, SR-MOs, and /—MOs define specific classes
of A-MOs. The abstract representations for storage resources are called virtual registers.

CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

We extend the notion machine instruction, such that a machine instruction consists of a set
{amoy,...,amo,} of A-MQOs, whereby thereisat least oneset {roy, ..., mo,} of machine
operations that can be executed in parallel, with mo, € amoy, ..., mo, € amo,.

Y o

O1'=[+/-:1,sh:00] 02'=[+/*:1,reg-set:10]

Yo

02'= [+/*.1,reg set:01] 02 [+/*1 reg-set:11]

Figure3.10: SR-MOs

9.0. UrCRATIUIN OSFECIFICATTUIN

Example 3.7:

If we consider the example architecture, every R—MO is dso a SR-MO, as ho two
R-MOs have a common machine operation pattern . We have alook at the operation
specification for the addition (machine operation patterns shown in figure 3.10). We
assume that the domain of locationsfor A and B is{0,1,2} for every version, i.e. each
register set has three accessable register cells.

(add, 3,%$1 := +(%$2, $3),
{(F1L,[A A A, (al, a2,a3) ->
[field2:UD,
fieldl:Ol' =[sh:00,+/-:1,res: al, opl: a2, opl: a3]])
(F2,[B, A A]l, (al,a2,al3) ->
[fieldl: UD,
field2: 2" =[+/*:1,reg_set: 00, res:al, opl: a2, opl:a3d]])
(F2,[B,B,A], (a1, a2,al3) ->
[fieldl: UD,
field2: Q2" =[+/*:1,reg_set: 10, res: al, opl: a2, opl: a3]])
(F2,[B, A B], (al,a2,a3) ->
[fieldl: UD,
field2: Q2" =[+/*:1,reg_set: 01, res: al, opl: a2, opl: a3]])
(F2,[B,B,B], (al,a2,a3) ->
[fieldl: UD,
field2: Q2" =[+/*:1,reg_set: 11, res: al, opl: a2,opl:a3]])})

Each encoding function is specified with a restricted machine instruction format. There
arefive R—-MOs, each R—-M O al so representing aS R—MO, because each R-MO belongs
to a different machine operation pattern of the operation specification. We will have a
closer look at the SR-MO

(F2, [B,A A, (al,a2,a3) ->
[fieldl: UD,
field2: 2" =[+/*:1,reg_set: 00, res:al, opl: a2, opl:a3]])

It involvesthe functional unit /2. According to the machineinstruction format defined
for the example architecture, field2 isused to encode the operation +. Therefore +/x
isrestricted to encode the addition. field1 iscompletely setto don't care (X's). A cell
i of astorage resource sr isdenoted by sr[i]. If we further specify certain locations for
the operands assuming that we want to add register A[0] and A[1] and store the result
into register B[2] we will yield the following L—MO version:

1) Locations = (2,0,1) -> B[2] := A[0]+A[1]
2) RF=7] fieldl: UD

field2: Q' =[sh: 00, +/-:1,res: 10, opl: 00, opl: 01]]
3) Encoding = XXXXXXXXXX1001100001

In the following the transfer operation specifications for the exampl e architecture are shown:

(load, 2,%$1 := $2,
{({},[A,M,(a,n’) ->
[field2:UD,
fieldl: TO=[r/w 1, reg:a,memm])
({}[BM, ...)})
(store, 2,%$1 := $2,
{({}, [MA,(a,m ->
[field2:UD,
fieldl: TO=[r/w 0, reg:a,memm])
({},[MB], ...)})

o4 CAAFITCERX O, RECIAROCCIADLE CUULE CCINERATTUIN

3.3.2 Intermediate Representation and M achine Operation Patterns

o\
A3 ~ A1*A2 Bl — A1*A2
@ ® @ @

O, Q)
\v, \U/
a® B2 — A3*B2
/Q\‘
|
/
¥ M, - B2

Figure 3.11: Decomposing Expressions

One basic task of code generation isto decompose the expressions in the intermediate rep-
resentation into machine operation patterns, illustrated in figure 3.11. All variablesoccuring
in the program are mapped to different virtual registers, according to the storage resources
they are required and accessable to data deopendend operations that use them. Additionally,
tempory virtual registers to store intermediate results are intodruced. In intermediate rep-
resentations like 3—address code [ASU86] statements are already decomposed to the form
x 1= binop(y,z) or x := unop(y) (seefigure 3.12). If complex expressions are supported
by the architecture, the decompositions may be to fine—grained. Therefore the introduction
of temporary results should not be incorporated in the intermediate representation. The
decomposition should be based on the machine operations of the target machine (see figure
3.13).

tl:=at+b
a := (atb) + (a*b) - t2 := a*b
a:=tl+t2
@ ® @ @ [t=a+b] [2=aD]
1 @ O 2 -
a® =+t

Figure 3.12: Decomposition of a DAG

3.4 Summary of Notions

Finally the major notions used throughout the subsequent text are summarized: machine
operations are the elementary operations a target machine is able to perform on the visible
register transfer level. A machine operation can be implemented by a set of versions,
each version given by an alternative encoding (if residual control is incorporated, versions

9.4, OSOUNVINVIAKRT Ul NUITUINOS

Aj <M,
— B M,
B, — M, Ay —+(>>A;A))
By — +(A.B))

Bk‘_+(Ak'Bj)\<’j
£

Figure 3.13: Complex Patterns

may be based also one alternative machine states). An operation specification defines the
complete set of machine operations for implementing the specified operation. It also defines
the following abstraction levels of machine operations. R—-MOs, SR-MOs, and A/—MOs.
Further abstraction levels are possible. An .A-MO isthe symbolic representation denoting a
set of machine operations implementing a certain operation. Each R-MO, SR-MO and U/—
MO isan A-MO. A machineinstruction can be either asingle A-MO or aset of concurrently
executable A-MOs.

Chapter 4

Code Selection

This chapter is basically concerned with methods developed in the context of code selector
generators. Tree pattern matching is the preferable technique for code selection. Spe-
cification techniques based on behavioral models are introduced, that can automatically be
transformed to a tree pattern matcher. This is based on formal foundations of mapping
regular tree grammars to finite tree auyomata. A short introduction of these foundationsis
given. Detailed introduction can be found in [FSW94, WM95]. The last two sections of this
chapter are related to supported and unsupported features (of the architectures of interest),
using tree pattern matching and with aspects of retargetability, respectively.

Aspects, leading to problems in the context of the architectures of interest are exposed.
Finaly, relations relations between structural and behavioral models are shown. Thereby, the
issue of interest is yielding regular tree grammars from structural models. The chapter is
organized as follows:

e A general introduction to code selection is given, followed by by the introduction to
the formal foundations of code selector specifications. This includes an illustration
how these specifications can be transformed automatically to tree pattern matchers.

e Section 4.3 is concerned with existing code selector generators. The major improve-
ments of specification techniques are outlined introducing term rewriting rules.

e Section 4.4 is related to the supported and not supported features of non—regular
architectures, when using the introduced specification techniques and tree pattern
matching. The basic problems to solve in this context lead to the integration of code
selection with either register allocation or instruction scheduling considered in chapter
1.

e In the fina section 4.5, the relations between structural and behavioral moddls are
outlined. The point of interest is, yielding specifications for generation of tree pattern
matchers from structural models.

4.1 Introduction

Code selection is the task of mapping the intermediate representation of a program to a
sequence ob .A-MOs (a common level of abstraction are SR-MOs). Also graph based

36

4.4, 1IN TIROUUUCTTUIN of

L

A<M,

_>
Aj~M,
load Ai,a Aj~My Ao
load Ajb g Aj-My e Bi — M,
load Aic Bi —M¢ A~ +>ALA)
sh_add Ak,Ai,Aj A= +(>>AA)) "
add Bk,Ak,Bj By~ +(Ak.Bj) \

By — +(Ax.By)

Figure4.1: A Covering of an Expression Tree

or term based representations are possible outputs of a code selector. Most of the recent
code selection techniques are performed on tree based intermediate representations of a
program (e.g., DAGs; see section 2). It isassumed that common subexpressions (CSES) were
extracted and assigned to fresh variables. Each occurence of a certain CSE is substituted
by the corresponding variable. Code selection can be performed on expression level, and
statement level, but also on basic block level (e.g., datadependence graph or def—use chains
[ASUS86]). In the following we will be smply talking of input trees. Informally, a code
selector tries to cover an input tree with machine operation patterns, such that there is no
overlapping of patterns. This can be aslo seen as a decomposition into machine operation
patterns. The storage resources of results of selected machine operation patterns must always
correspond to the use in the input tree. 1.e, that they are either identical or there exists
a sequence of data transfers, that move the operand to the required storage resource. A
covering that guarantiesthisiscalled alegal covering. Generally there exists more than one
legal covering for agiven tree. Conventional code selectors select the cheapest solution with
respect to agiven cost model. The task of finding a covering for an input tree for a fixed set
of machine operation patterns is stated as tree pattern matching. The technique used for
selecting the cheapest covering is incorporated into the tree pattern matching process and is
based on the dynamic programming approach introduced in [AJ76].

ChaArFic 4 CUDE oOCLEC TTUIN

Figure 4.2: Some Legal Coverings of an Expression Tree

Example 4.1:

In4.1 acovering for theexpression (>>(a) +b) * ¢ from machine operation patterns of
the architecture in figure 3.4 (page 23) is shown. The patterns are associated with SR—
MOs (here notated in register transfer language notation). Values are mapped to virtual
registers. The SR-MOs are sequentialized with respect to their data dependencies, also
shown in figure 3.4. This sequentialization is not generally necessary, therefore either
of the tree based or sequentialized form of versions can be passed to subsequent phases.
An assembler like notation is aso given in the figure. In figure 4.2 a set of possible
coverings of machine operation patternsis shown. It isassumed, that the variableswere
allready loaded to storage resource A.

If the target machine is specified by a structural model, the machine operation patterns have
to be extracted from the specification. In behaviora models they are explicitly represented
by rules. These rules are based on regular tree grammars. Such atree grammar can be
automatically transformed into a tree pattern matcher by a code selector generator. The
tree grammar specifies the set of all input trees that can be covered. Only legal coverings
are selected by the tree pattern matcher. The principles of tree pattern matchers can be
constituted on finite tree automata [FSW94, WM95]. Tree pattern matchers are able to find
the complete set of coverings for an input tree, with respect to a given tree grammar. To
enable the selection of minimum cost coverings, tree grammars are augmented with costs.
These grammars are then called weighted tree grammars.

4.2 Formal Foundationsof Tree Pattern Matchers

So far the notions tree pattern matching, covering, and tree pattern matcher were introduced
informally. In this section the formal foundations of tree grammars are described. The
relationship to machine operation patterns are exposed to utilize an imagination of what
entities are described by regular tree grammars, and also how they are described. Finally,
the construction of finite tree automata from regular tree grammars is shown. A detailed
introduction can be found in [FSW94, WM 95].

a4.Z. FURIVIAL FUUNUATIUNOS U TIRCE FAT TERIN VIATCOCACROS

4.2.1 TreePattern Matching

The notions pattern and tree pattern matching will be constituted on a term based represent-
ations now. However, in the following the notions expression term and expression tree will
be used as synonyms.

Definition 4.2.1 A ranked alphabet is a finite set ¥ of operator symbols together with a
ranking function p : ¥ — N,. ¥ denotesthe set {a € X|p(a) = k}. The homogeneous
treelanguage over X, Ty, isthe smallest set 7" such that

.ZogT

o Ifty,... .t areinT thena(ty,... 1) fora € ¥, isinT.

Example 4.2:

Y ={+,>>,clwithp(+) = 2,p(>>) = 1, p(c) = 0. ¢ represents a constant value.
L egal termsthat can be constructed aree.g. +(¢, >> (+(¢, ¢)))or >> (+(¢, >> (¢))).

There are no restrictions to the operands of operators except that the number of operands of
an application of an operator o must be equal to p(0). An operand can be any legal term of
Ty,.. The following definition enables to distinguish operands of different sorts and restricts
the structure of terms.

Definition 4.2.2 A signature Sigs over a ranked alphabet ¥ is defined as Sigy, = (S, ¢),
where S isa finite set of sort symbols and ¢ is a type function defining the type of a certain
o € ¥, such that ¢(0) = (s1,...,5,0),5) With s1,...,5,0),s € S. ¢(0) will be denoted
aS0 : 81,...,5,0) — s if ¢(0) = s thiswill be denoted as o :— s. Aterm of sort s is
inductively defined as:

1. oiscalled a constant of sort siffo € ¥y and o : — s;

2. ift sy, 8,4 — sandty, ... 1, aretermsof types, ..., s, respectively, then
t(ty,...,1,4) isatermof type s.

T denotes the set of all terms of sort s and Tx, = U7 isthe set of all termsover S.

Signatures restrict the structure of terms, i.e., the way that terms can be constructed. The
notionsoperator symbol and sort symbol reflect that signatures denote pure syntax. Generally
the notions sorts and operators are used in the context of a certain interpretation and reflect
the semantical level of description. In the following we will use sorts and sort symbols, and
operators and operator symbols as synonym notions.

ChaArFic 4 CUDE oOCLEC TTUIN

Example 4.3:
Signature EX
Sorts:
sh, n
Qperators:
c : ->n
+ : sh,n->n

>> : n -> sh

Thetypefunctionrestrictstheleft operand ! of aterm +(!,) tobeof theform >> (¢) for
any term ¢ of sort n. +(>> (¢), c¢) isalega term of sort n but +(c, ¢) and +(+(c, ¢), ¢)
are not.

Definition 4.2.3 Given a signature Sigy. V; isa set of variables of rank 0 and of sort s and
V = UsesVs. Amember of Ty (V) := Tyuv iscalled a pattern. A patternis called linear
if no variable occurs more than once. Two patterns are said to be equivalent, if they are
identical up to variable renaming.

Example 4.4:

If we consider the example signature and the sets V,, = {X,Y} and V;, = Z, then
>> (X)and +(Z,+(>> (X),Y)) are legal pattern. +(X,Y) isno lega pattern
because the variable X isnot of sort sh. A pattern defines a set of terms such that any
term of thisset can be constructed by replacing the variableswithin with the pattern by a
term of the corresponding sort. In the case of non-linear patterns, equal variables must
be substituted by the same term.

We now define the meaning of pattern matching. Therefore, substitution for variables must
be further specified.

Definition 4.2.4 A substitutionisamapping©® : V' — Tx(V). © isextended to a mapping
O:Ts(V) = Tu(V)bytO :=20ift = xandt® := a(H10,...,,0)fort = a(ty,... 1x).
A substitution © isalsowritten [t1\x1, ..., ;\x;] for aset of variables x4, ...,2; C V, such
that ;0 = ¢, for 1 <¢ <j.

Definition 4.2.5 Apattern = € Tx(V) matchesatreet if thereisa substitution © such that
7O =t.

Example 4.5:

AssumethatV,, = {X,Y}andVy, = {Z}. Then+(Z, X),>> (YV)and+(>> (X),Y)
are legal patterns. +(>> (X),Y) matches +(>> (¢),+(Z,¢)) with substitution
[AX, +(Z, e)\Y].

Definition 4.2.6 An instance of the tree pattern matching problem consists of a finite set of
patterns 1" = 7,...,7, C Tx(V) together with an input tree ¢t € Ty. The solution to the
tree pattern matching problem for thisinstanceis the set of all pairs(n,¢) such that pattern
7, matchest/n.

a4.Z. FURIVIAL FUUNUATIUNOS U TIRCE FAT TERIN VIATCOCACROS

The tree pattern matching problem consistsin finding all positions of subtermsin an expres-
sion tree represented by aterm ¢, that can be matched by a certain pattern.

Definition 4.2.7 An algorithmthat returns a solution for every input tree ¢ € T+, for thetree
pattern matching problem (7', ¢), T'= m, ..., 7, C Tx(V), iscalled atree pattern matcher
for 7.

Definition 4.2.8 An algorithmthatonevery T' = r,..., 7, C Tx(V) returns a tree pattern
matcher for 7" is called a tree pattern matcher generator.

Most tree pattern matchers work on linear patterns. Therefore, they do not have to check
for common subexpressions. But there are approaches that also work with non-linear pat-
terns. First, one can introduce tests for equality for subtrees, but this may not be efficient
because the pattern matcher has to visit some subtrees severa times. Second, a pattern
matcher can execute all equality testsin advance [DST80] (for further discussion on common
subexpressions consult [ASU86]).

If each variablethat occursin acertain patternisreplaced by its corresponding sort (assuming
asymbolic representation of that sort), a pattern can be regarded as the formal counterpart of
amachine operation pattern and we observe the following correspondences:

1. storage resources correspond to the sortsin signatures,

2. the sort of a pattern corresponds to the destination storage resources of a machine
operation pattern (e.g. the sort of +(>> (X), X) isn and the destination storage
resourceof B « +(>> (A), A) is B);

3. operatorsin the signature correspond to operators in the machine operation patterns,
but they also represent constants and variables.

The basic differences are that:

1. transfer machine operations do not have a corresponding entity; they can only be
specified by introducing extra operators with the purpose of sort casting, i.e., mapping
asort to another sort;

2. machine operation patterns allow that the same machine expression pattern can be
assigned to different storage resources; in the terminol ogy of sortsthisassignsdifferent
sorts to the same pattern (or term); a solution to overcome this again would involve
sort casting operators.

As signatures themselve do not incorporate constructs for the specification of complex
patterns, for specifying machine operation patterns, additional constructs are necessary.
A common frame-work for introducing storage resources and complex machine operation
patterns together with transfer machine operations is given by regular tree grammars, aso
overcoming the introduction of extra sort casting operators.

ChaArFic 4 CUDE oOCLEC TTUIN

4.2.2 Regular Tree Grammarsand Tree Parsing
Definition 4.2.9 Aregular treegrammar G isatriple (N, ¥, P) where

e N isafinite set of nonterminals,
e Y isaranked alphabet of terminals,

e Pisafiniteset of rulesof theform X «— ¢ with X € NV andt € Tx,(N).

If we consider regular tree grammars with regards to machine descriptions, the terminals
of aregular tree grammar represent operators, constants and variables of the intermediate
representation. The nonterminals correspond to the storage resources.

Example 4.6:

In figure 4.3 the regular tree grammar for the example hardware in 3.4 is represented.
A, B, and M denote the nonterminals. All variables occuring in the intermediate
representation are mapped to the operator var. Such abstractions from certain sets (like
variablesor constants) can be madeif the valueshave no impact on the matching process.
If certain values must occur in a pattern (e.g. the constant 0 in a pattern +(0, X)) a
specific operator can be specified.

A — +(>>(A).A) B — +AA)
A — -(>>(A)A) B — +(B,A)
A~ +(AA) B « +(AB)
A~ -(AA) B — +(B,B)
B « *(AA)
B-M B « *B,A)
A-M B — *AB)
M~ A B — *B,B)
M~B
M — var

Figure 4.3: Regular Tree Grammar

A signature can be easily transformed to a tree grammar by observing the following corres-
pondence:

Definition 4.2.10 Letp : X «— ¢ bearule of P of a grammar (N, X, P). P isof type
(X1,...,X,) — X, if thej-th occurence of a nonterminal int is X;.

The nonterminals correspond to the sorts of a signature. The drawback of signatures, only
being able to express transfer machine operations by introducing extra sort casting operators
is not inherent to regular tree grammars. In regular tree grammars the specification of data
movements is embedded in the specification technique given by the following class of rules:

Definition 4.2.11 Letp : X «—— ¢ bearuleof P of a grammar (N, X, P). Piscalled a
chainruleist € N, otherwise a non-chain rule.

a4.Z. FURIVIAL FUUNUATIUNOS U TIRCE FAT TERIN VIATCOCACROS

In figure 43 M «—— A, M «— B, A «— M, and B «—— M are chain rules. They
represent the data movements between certain storage resources. Nonterminalsare also used
for factoring with the purpose of reducing the amount of tree grammar rules necessary for
specifying a certain target machine.

Example 4.7:
In figure 4.4 an exampleis shown for the grammar in figure 4.3, where factoring is used

to reduce the number of combinations of operands accessable to the functional unit £72.
The nonterminal O summarizes all possible sources of operandsto /2.

A < +(>>(A),A) 0-A
A < -(>>(A)A) 0-B o }
— t N —~ _ -
ﬁ~ -((ﬁ,:\)) A -7 I BeHAA) |
q -7 _-TB<+BA)
B M B +00) | B +AB) |
AcM B « *(0,0) ' B +BB)
M A e } B — *AA) |
M~ B N \\\‘ B‘_*(B’A) ‘
o B-YAB)
M ~ var \\‘ B:*(B,\B) |
\Lfffflﬁ

Figure 4.4: Factoring

We will no specify the notion covering. It describes, how a covering of a certain expression
tree is constructed with respect to given regular tree grammar. We assume that each rule of
the tree grammar can be identified by a unique symbol p, denoted by p : X «— .

Definition 4.2.12 Given a regular tree grammar G = (N, X, P)anda X € N. A X-
derivationtreefor atreet € Tx(/NV) isaderivationtree U € Tp(N) satisfying the following
conditions:

o [TV ¢ Nthent = V.
e If U ¢ N then ¥ = p(Uy,...,¥,) for somerulep : X «—— ' € P of type

(X1,...,X,) — X, suchthat t = t‘[t;\ X1,...,t,\X,] and ¥, is the X-derivation
tree for ¢;.

An X-derivation for acertain term represents one possible covering for that term. Converdly,
it also reflects the necessary application of grammar rules for constructing a certain input
tree. An example of a B-derivationis shownin 4.5.

Definition 4.2.13 (Language of Grammar) For X € N thelanguage of (i relativeto X
is defined as:

L(G,X):={te1x|3V € Tp(N) : U isa X-derivation treefor ¢}.

a4 ChaArFic 4 CUDE oOCLEC TTUIN

a A — +(>>(A),A) I8 O~A
b: A — -(>>(A),A) kk OB
C: A < +AA)
d: A < -(AA)
e: B~M I B ~ +(0,0)
f. AcM m: B « *0,0)
g M~ A
h: M B
i M « var
Tree B-derivation

A<M

— \
e:B <M eB M
a:A « +(>>(A),A) A < +(>>(A)A
o~ A kO-B a H>DA \
0 <A \ k:O B
m: B « *0,0)

Figure4.5: B—Derivation

The language of a grammar specifiesthe set of terms that can be covered. This set should be
the set of all expected terms of the intermediate representation. Thereforeit isimportant that
the regular tree grammar completly specifies this set. Otherwise a code selector could fail in
trying to cover certain terms of the intermediate representation.

Definition 4.2.14 (The Tree Parsing Problem) Aninstance of thetreeparsing problem con-
sists of a regular tree grammar G together with a nonterminal X € N and an input tree
t € Tx,. The solution for thisinstance isthe set of all X-derivation trees of G for ¢.

Thetreeparsing problem consistsin finding all possible coverings of agiven input term, with
respect to a certain storage resource.

Definition 4.2.15 (Tree Parser) Atreeparser for aregular tree grammar (i isan algorithm
that, for every input tree ¢, returns the solution of the parsing problem for given nonterminal
X.

a4.Z. FURIVIAL FUUNUATIUNOS U TIRCE FAT TERIN VIATCOCACROS

Definition 4.2.16 (Tree Parser Generator) Atreeparser generator isan algorithmthat, for
every regular tree grammar G, returns a tree parser for G.

The difference between the tree matching problem and the tree parsing problem is, that a
solution of the tree parsing problem resultsin a set of complete coveringsfor agiventree. In
contrast to this, asolution to the tree matching problem returnsaset of positionswhere certain
pattern match a given tree. Note that atree parser not necessarily must be implemented by a
parser, e.g. LR-parser or LALR-parser. The definition only sayswhat the algorithm does and
not how it doesit. In the following we will use the notion tree pattern matcher as a synonym
for tree parser, as the aim of atree pattern matcher isto find a complete covering.

4.2.3 Finite Tree Automata

The principles of tree pattern matchers can be congtituted on finite tree automata. In this
subsection only the basic notions and principles of tree automata can be described. It is
illustrated how regular tree grammars are transformed into a corresponding tree automaton
accepting the language specified by the grammar.

Definition 4.2.17 Afinitetreeautomatonisa4-tupleT A = (Q, ¥, 6, Q) where
e () isafinite set of states;
e Yy C () isasetof fina accepting states;
e Y isafiniteranked input alphabet;
o § C Uj»Q x X; x Q7 isthe set of trangitions.

A tree automaton A iscalled deterministiciif for every « € ¥, and every sequence ¢4, . . ., &
of statesthereisat most onetransition (¢, a, ¢1, . . ., qx) € 6. Inthiscase 6 can be written as
a partial function.

The following definition specifies the computation of afinite tree automaton 7' A for determ-
ining if agiven input treeisin the accepted language. The language L (7' A) accepted by 7' A
consist of all trees for which an accepting computation exists.

Definition 4.2.18 Let X be a ranked alphabet and () a finite set of states. The extended
ranked alphabet isdefined as ¥ x) and it’soperators consist of pairs of operators from X
and states.

Let ¢ €) A g-computation ¢ of the finite tree automaton 7'A on the input tree ¢t =
a(ty,....tx) isinductively defined as a computation tree @ = (a,q)(®q,..., D) € Txyo
where ¢ isthe ¢;-computation for the subtreest;, suchthat (¢, a, ¢1, . . ., g) iSthetransition
fromé. ¢ iscalled accepting if ¢ € Q.

The transitions of the automaton correspond to the types of the operator symbols, given by
the input aphabet of a tree automaton. An Automaton A, for the pattern matching problem
that matches a single linear pattern = € Ty, (V') is constructed as follows. First we assume
that there is an unspecified state |, for every sort s € S. Every variable of sort s in 7 is
replaced by L. A, = (Q,, X, 6,,Q,) isdefined as

ChaArFic 4 CUDE oOCLEC TTUIN

o (), :={s|sisasubpatternof 7} U { L |s € S};
o (=T,

o (Lya,Ly ... Lsyy) €é fordlac X, andif s € Qy ands = a(sy,...,s;) then
(s,a,81,...,8k) € ;.

For every tree of sort s thereisa | ,.—computation and for atreet thereis apattern = thereis
at — —computaion if and only if 7 matches?.

The automaton can be extended to accept aset 1" = 7,...,7, of patterns. Determining
which patternsmatch atreet consists of computing all accepting states of the tree automaton.
A method to determine this set by one computation can be obtained by means of subset
construction, yielding a deterministic tree automaton performing all possible computations
concurrently.

The approach can further be extended to g—computations that represent X-derivations of a
giventreegrammar G = (N, Y, P)and X € N foracertaintreet [FSW94]. Thetree parsing
problem for a regular tree grammar is therefore reduced to the problem of determining all
accepting computations of afinite tree automaton. A tree automaton can be constructed that
performsall possible X—derivation simultaniously and findsall possible coverings during one
computation.

Tree automata can be further extended to select the a minimum cost derivation, when given
a weighted regular tree grammar, by integrating the costs into the transitions of the tree
automaton. These automata are the called weighted tree automata. For further details of
constructing tree automata from regular tree grammars consult [FSW94, WM95].

The basic principle of determining the coveringsisnow illustrated in asmall example, using
the factored tree grammar introduced in fig 4.4. The example schematically shows a bottom
up computation, i.e. deriving the compuation tree starting at the leafs of the input tree and
applying the rules of the tree grammar.

Example 4.8:

Asaready stated, variables are mapped to theterminal var. Thereforetherules : M
var is the only rule applyable for the leafs, shown in figure 4.6 (a). The leafs of the
input tree are associated with the applied rules. In the next step shown in figure 4.6
(@), al chainingrules X — M are applied. Chaining rule represent e—transitions of the
automaton, therefore consuming no operators. We assume that each node of the input
treeis associated with the set of storage resources 5 R that are reachable sofar. In figure
4.6 (b) thisset consistsof M for each leaf. We also assume that each node is associated
with the rules that match the node and a set C'R of chaining rules (shown in the dark
gray shaded boxes). Theset C' R issuccesivly constructed fromtheset S R. Initidly this
set is empty and the set S R contains the destination nonterminals of the non-chaining
rulesthat matched the considered node. Successively all chainingruleser : X — Y are
addedto C' R, suchthat cr ¢ CRandY € SR; whenthechaining ruleisadded SR is
updatedto S RU { X }. Theset S R denotesthepossible X — derivations for X € SR.
It aso denotes the set of all data movements with corresponding pathes for the value
associated with the node (i.e. the value of the subtree whoseroot is the node considered.
In figure 4.6 the possible data movements are shown in the grey shaded areas.

a4.Z. FURIVIAL FUUNUATIUNOS U TIRCE FAT TERIN VIATCOCACROS al

{M,A,B,0}

fo0ow>»
Pttt
5w>§§

Figure 4.6: Determining the Coverings

In the next step we travers theinternal nodesin abottom—up manner. Aruler : X «— p
with type X1,..., X,, — X matches at anode » if the pattern p matches the subtree
at the node » and each X; € S'R; of the corresponding operand nodes (figure 4.7 step
(cd)). Infigure 4.7 (c) there are two possible rules matching the node +(a, b). Again,
all possiblechaining rules are added in the mentioned way.

Intheexamplewesee, that an input treeiscovered with non-chaining rulesand chaining rul es.
The non—chaining rules cover certain patterns for the input tree. The chaining rules don’t
cover any pattern. They represent the possible data movements from the storage recources
where the machine operations (corresponding to the patterns of the non—chaining rules) will
store their results. Therefore the set S R,, of a certain node » in the input tree denotes the
set of al possible storage resources to which a value can be computed. Additionally, the
set C'R,, implicitly contains the set of all possibe pathes from storage resources to storage
resources of S R,,. Thisaso denotes the set of possible spill pathes.

If all statements of abasic block are covered separately the storage resources of used variables
should be takeninto account. After all input treesare covered, the S R sets should be reduced
to the necessary amount. It should only contain those storage resources that are incorporated
in the machine operations that will use the value, all storage resources from machine opera-
tions that produce this value and all storage resources involved in data movements between
definition and usage. The final tree contains all legal coverings for the input tree. In figure
4.8 the main aspects of a code selector generators and its corresponding formal foundations

ChaArFic 4 CUDE oOCLEC TTUIN

(c) {M,A,B,0} {M,A,B,0}

{M,A,B,0}

{M,A,B,0}

Z=Z00wW>»
I T R N
w>E>ZZ

< OO0Owxr
Tt
w IrZIZ

1

(d)
Figure4.7: Determining the Coverings

are summarized.

4.3 Generation of Code Selectors

Many efforts have been made for gaining efficient tree pattern matchers and efficient code
selector generators. There are various approaches in recent years. Initiated by the work of
Graham-Glanville[GR77] LR-parsing techniqueswhere used for pattern matching, whereby
the target machine specification was defined by a context free grammar. A parser generator
was used for generating the code selector. A very good summary of first approaches using
grammars and attributed grammars for specifying code selectors can be found in [GFH82].
Limitations of the approaches are also shown. The basic problem is that input trees of
ambiguous grammars were not covered propriately. Best cost coverings were only approx-
imated. Tree pattern matching with dynamic programming [AJ76] constituted a solution
to this problem (figure 4.10). The pattern matching process is based on tree parsing using
weighted bottom—up tree automata.

The pattern matching process is generally based on tree parsing using weighted bottom—up
tree automata. There are severa techniques for implementing tree automata, e.g. state
transition tablesor decision trees. Theinformations computed by dynamic programming can

4.0. OOCINERATIUIN Ur- CUDE oCL CC TUROS

\\\\\\\ \ Regular Tree Grammays— — _
M . J ™
achine Operation ~
N > ‘

Pattern N

¥ - - } N
\

\
(Specification)I) \
' C tchtion of
ons
I (__ Code Selector Generator) Tree Automaton

y

/

v ~ N\
e N
e AN l\
Dynamic Programminy & Tree Pattern Matching // \\
Y)
[\
s ;oo
e / \

-7 y \

PR Tree Automata |

_ - V4 f ‘

|
)

Figure 4.8: Foundations of Code Selector Generator

be generated at compile-compile time and can be integrated in state transition tables (figure
4.11) [PLG88, Hen89c, Hen89a, Hen89b, FSW94]. One disadvantage of thisapproach isthe
loss of expressiveness, i.e. the costs are restricted to constants (e.g. burg).

Many code-selector generators use tree pattern matching and dynamic programming. They
produce tree pattern matchers that make two passes over expression trees. The first pass
is bottom up and finds a covering with minimum costs. The second pass is top down and
produces the fina output of the code selector, i.e. a representation of the target machine
program. Examples for code generator generators based on this model are: BEG[ESL89],
Twig[AGT89], burg [FHPO2b], iburg [FHP924], and CBC [FHKM94]. The informations
computed by dynamic programming can be generated at compile-compile time and can
be integrated in state transition tables [PLG88, Hen89c, Hen89a, Hen89b, FSW94]. One
disadvantage of this approach is the loss of expressiveness, i.e., the cost model of the tree
grammar is restricted to constants (e.g., burg).

e BEG tree pattern matchers are hard coded and mirror the tree patterns like recursive
decent parsersmirror their input grammars. Dynamic programming isused at compile

ChaArFic 4 CUDE oOCLEC TTUIN

- (Spe(;ification)I) \\

1 I (__ Code Selector Generator) ‘ ‘

I
Code Selector)——= ?g? //
=

Figure 4.9: Code Selector Generators

y
Dynamlc Programmln Tree Pattern Matchln

Selecting the Minimum Finding the Set of Covers
Cost Cover

Figure 4.10: Dynamic Programming

time to identify the minimum cost cover.

e Twig matchers use a table-driven variant of string matching. This representation
identifiesall possiblematchesat thesametime, resultingin ahigher overhead. Dynamic
programming is used at compile time.

e burg uses BURS (bottom-up rewrite system) theory [PLG88] to move dynamic pro-
gramming to compile-compiletime. A main disadvantage of BURS s, that costs must
be constants; systems that delay dynamic programming to compiletime allow arbitrary
cost model's permitting dynamic computations of costs associated with rules. Thisalso
allowsto propagate context-sensitive informations from subtrees.

e iburg reads burg specifications. In contrast to burg it perfoms dynamic programming
at compiletime and like BEG it is hard-coded. It is simpler than burg and is amenable
for user defined modifications.

4.0. OOCINERATIUIN Ur- CUDE oCL CC TUROS

move to compile-compile time

I [Code Selector Generatb‘r

\J
(Code Selecto (Tree Pattern Matching (== Dynamic Programlng,%gi]cr

constant costs———— complex costs

Figure4.11: Moving Dynamic Programming to Compile Time

e CBC [FHKM94] isbased on a machine description based on the hardware description
language nML. The machine specification is tranformed to an iburg specification and
the code selector is generated by an extended version of iburg. CBC was developed in
the context of irregular architectures. The maor differences to classic code selectors
are:

— handling of complex data paths;

— taking into account the different word length of storage resources (termed type
handling);

— considersinstruction level paralelism by delayed binding of machine resources,

— handling of DAGs, thus also considering common subexpressions during code
selection;

— machine based description.

C'BC daso tries to take into account common subexpressions that additionally tran-
scends basi ¢ blocks by atechnique called heuristic node duplication. Hereby a control
dataflow graphismodified in order to create more complex machine operation patterns
across basic block boundaries by node dupplication, but only at places where thiswill
lead to improved code.

4.3.1 Code Selector Specifications

The major goa in the research of specification techniques is gaining more expressiveness.
There are several approaches to extend the specification techniques for gaining more ex-
pressive power, making specifications more readable, and easier to develop. Oneam isa
comfortable incorporation of algebraic rules. They cannot be expressed appropriately using
regular tree grammars, while maintaining a readable structure of the grammar rules. The
specification of algebraic rulescan blow up thesize of the patternsof therules. Thus, therules
gain unreadability and are hardly to understand. Term rewriting rules allow the specification
of algebraic rulesin an intuitive notation, that is easy to understand and preventsthe designer
from errors. Restricted sets of term rewriting systems, can be transformed automatically to
regular tree grammars. Therefore, conventional tree pattern matchers can be used for driving
the task of code selection.

ChAaArFic 4 CUDVE oCLEC TTUIN

4)

Regular Tree Grammars

Reg: +(Reg,Req): 1 = add Regl,Reg2,Reg3
Reg: -(Reg,Reg): 1 =sub Regl,Reg2,Reg3
Reg: Main : 2 = load Main,Reg
Main: Reg : 2 = store Main,Reg

Figure 4.12: Tree Reduction Rules

*(+(>>(vary),varp),vare) — *(+(>>(M),vary),varc)

Figure 4.13: Reduction Sequence

Tree Grammar Based Approaches

The common specification techniquesused are based on weighted regular treegrammars. Tree
grammarsarerepresented by aset of treereductionrulesof theform X « pattern|cost] : action.
The action part is used to generate the final output of the code selector, e.g., a sequence of
A-MOs. Generally, it initiates some user—defined procedures that emit target machine code.
The notion tree reduction rules reflects a view of the tree parsing process as the reduction
of a certain input tree to a certain nonterminal, by using the rules of the tree grammar as
rewriting rules. A pattern detected in the input treeis replaced (or better substituded) by the
nonterminal on the left hand sight of the corresponding rule. A reduction sequence is shown
infigure4.13.

Treegrammarsareambiguous, i.e. thereexistsmorethen onecovering for acertain expression
tree. Each covering represents correct code, but with differently code quality given by the
costs of the rules. A very good summary of first approaches using grammars and attributed
grammars for specifying code selectors can be found in [GFH82]. Recent approaches based
on regular tree grammars are e.g. BEG, Twig,burg and iburg. The following extended BNF
grammar defines the format of burg and iburg specifications:

gr anmar = {dcl} Wo{rul e}
dcl = Ustart nonterm
| % erm {i d=i nt eger}
rul e = nontermtree = action [cost];

4.0. OOCINERATIUIN Ur- CUDE oCL CC TUROS

/" 1) Machine Specification ~\ [/ 2) Mapping I
~ N ran - e)
add(Reg,Reg) - Reg :1 A - +(A,0)
sub(Reg,Reg) - Reg :1 A -~ -(A0)
load(Main) - Reg 12 +(A,B) -~ add(A,B)
store(Reg) - Main :2 -(A,B) - sub(A,B)
var - load(Main)

_ Y, \ J
_ AN /
Figure 4.14: Term Rewriting System
pattern ::= ternm(pattern, pattern)
| term pattern)

| term

| nont erm
action = integer
cost = integer

The declaration part dcl defines the nonterminals and the ranked aphabet defining the
terminals of the regular tree grammar. The tree reduction rules differ a little from the
introduced format. The costs are optional and are given after the action. The actions are
specified by integersthat are associated with user-defined actions for emitting corresponding
machine instructions. A burg specification only permitts costs given by constants. The cost
of acovering are then defined as the sum of al costs associated with the machine operation
patterns of the covering. Iniburg arbitrary cost computations are alowed.

Term Rewriting Rules

Recent approaches try to extend the expressive power of the specification techniques. A
common aspect of most approaches is the integration of term rewriting rules. Regular tree
grammars are augmented with a set of term rewriting rules, permitting concise definition of
algebraic rules.

Term rewriting rules allow to transform the structure of the input tree by rewriting a certain
complex pattern to a new (generally semantically equivalent) complex pattern. Thus new
patternscan be matched, not occuringintheinput treewithout rewriting, which are effectively
supported by certain machine operations available on the target machine. Additionaly itis
possible to substitute nontermina or terminal symbols with complex patterns. Such rules
enable to insert patterns that do not necessarily have to be determined when generating the
input tree. E.g., if thereisa set of alternative addressing modes for specifying an operand,
a proper mode can be selected during code selection. These rules enable to incorporate
decisions into code selection, that usually are due to other tasks of code generation or the
front—end.

BURS theory introduced by Pelegri—LIopart [PLG88] alowsto specify term rewriting rules
fulfilling the restriction of being k—burs aso called finite-burs. This restriction requires that

fo ChaArFic 4 CUDE oOCLEC TTUIN

every reduction sequence must be reduced to j—normalform in finite steps (see [PLG88]).
A rewriting rule of the form « — b(«) does not fullfill this restriction. Thus, rules like
A — plus(A,0) are not supported.

The approach of H. Emmelmann aso incorporates term rewriting rules [Emm92]. In his
approach, the machine instructions are represented as terms also. |.e, that not only the
intermediate representation is term based. The intermediate representation is mapped to a
legal target machine term by applying rewriting rules, describing the transformations from
the intermediate representation to target machine terms. The regular tree grammar is used to
definethe set of legal target machineterms. Only termswith an existing covering with respect
to the machine grammar are legal target machine terms. |.e., that the target machine term
must be reducable to a nonterminal of the grammar. The specification technique allowes
to specify terms rewriting rules like A — plus(A,0). The code selector keeps track of
the termination of applying such rules. The two specification parts are transformed into a
conventional pattern matching based code selector specification. Therefore all techniques
known to build generators can be used. This also reflects, that it is possible to express the
algebraic rules by regular tree grammars. But the specification by term rewriting rules is
much more concise. The specification seemsto be more naturally and easier to develope with
regards to specify correct rules. Infigure 4.15 the basic issues and their interdependemncies
areillustrated.

4.4 Support of Architectural Features

Thissectionisconcerned with examining what featuresof irregul ar architecturesare coped/not
coped by tree pattern matching. We will first consider what features are expressable using
regular tree grammars. Thereafter, aspects that are coped by the tree pattern matcher are
examined. Regular tree grammars enabl e to denote the following aspects:

e distributed register sets: each storage resource is denoted by a certain nonterminal
symbol; therefore the set of distributed storage resourcesis specified by the according
nonterminals;

e special purposeregisters. e.g., address register can be specified by assuming that they
represent a certain storage resource. Thisis achieved by introducing a corresponding
nontermina for denoting the register or registers. Uses and definitions in machine
operation patterns that have access only to such special registers are specified with the
corresponding nonterminals.

e register classes: achainingruleof theform X «—— Y candescribeatransfer operation.
It may al so denote asubset rel ation between certain setsof registers. Hereby ahierarchy
of register classes can be defined. Thisallowsto restrict machine operationsto certain
register access.

e complex data routes: complex data routes are detected in the tree pattern matching
process. Only coverings with legal connectivities are selected. Thus the tree pattern
matchers checks the reachability of definitions and uses.

4.4, OUFFURIT UrARUATTECTURAL FCATURECOS

Regular Tree Grammars

Reg: +(Reg,Reg): 1 =add Regl,Reg2Reg3
Reg: -(Reg,Reg) :1 =sub ReglReg2,Reg3
Reg: Main :2 =load Main,Reg
Main: Reg :2 =store Main,Reg

Term Rewriting Systems

add(Reg,Reg) - Reg :1 +AB) - +(B,A)
sub(Reg,Reg) - Reg :1 A - +(A0)
load(Main) - Reg :2 +(A,B) - add(A,B)
store(Reg) - Main :2 -(A,B) - sub(AB)

Specification Technique
Regular Tree Gramma

Term Rewriting Systemg/

I Code Selector Generatb‘r4 L mclve_tg compile-compile time

=~
~
~

N
Code Selecto} (Tree Pattern Matching (= Dynamic Programln(ﬁggu\ff

finite __ - constant costs———— complex costs
tree automata —— =

Figure 4.15: Code Generator Generators

Example 4.9:

Consider the registersin figure 4.16. Theregister R set is subdivided into the register
classes A and B each denoting a certain subset of the main register set. Theleft operand
of theshi f t _add operation must residein register set A, the right operand in register
set B or in the Akku. The addition has access to the complete register set R. To
enabl e the pattern matcher to match operands of the addition that were produced by the
shi ft _add operation two chaining rules are introduced: R — A and R — B; they
denote that either A and B belong to the complete register set. They can be regarded
asvirtua transfer operations. Data movements to memory can only be performed from
Akku. Therefore atransfer operation from the register set to Akku exists.

General Problems

With respect to a sequential view, data routes leading to minimal costs are selected. Spilling
costsarenot considered during tree pattern matching. Inirregular architectures, complex data

ChaArFic 4 CUDE oOCLEC TTUIN

ZE--M

| Memory
[>>—

Figure 4.16: Irregular Register Sets

paths may induce a spilling accross a route of register sets. Spilling can have much impact
on the quality of the selected code. In order to compute spill costs effectively, knowledge of
the locations of other values and the order for executing subtrees is necessary. Thisimplies,
that the costs of subtrees of a certain node are not independent anymore. But: this violates
the condition of the input tree to be executable contiguously, a necessary supposition for
perfoming dynamic programming. Ananaloguousproblem arisesin the context of instruction
level parallelism, which cannot be supported appropriatly by tree pattern matching. The
minimal cost covering must not be optimal with respect to parallelism. Again, the problem
is, that dynamic programming is based on the supposition, that an optimal solution of an
input tree can be constructed from optimal solutionsfor the subtrees[ASU86, AGT89]. If the
target machine allows certain subtrees of an operator to be executed in parallel, the necessary
supposition is violated.

The basic problem is the consideration of global, context sensitive and mutual dependent
information, which has to be accessable when selecting a certain covering (see figure 4.17).
Statements for determining the quality of spilling and exploiting parallelism are based on
informations of the complete covering. |.e., theinformationsthat are necessary for selecting
an appropriate covering are only known when a covering is selected (a quite unsatisfying
situation). The consequence is the selection of a certain covering, which can restrict the
subsequent tasks of code selection.

Overcoming the Problems

A solution for partially overcoming the problemsisto delay the binding of machine resources
as long as possible, while preserving the traditional scheme of tree pattern matching. For
each operation an A-MO is selected, offering a set of possible machine operations. This
enabl es the subsequent tasksin choosing among a set of machine resources. Another solution
is the integration of code selection into subsequent tasks. Tree pattern matchers are able to
effectively compute the complete set of coverings for a given input tree, with respect to a

4.4, OUFFURIT UrARUATTECTURAL FCATURECOS ol 4

—— —— — — —_— —_— —_—- — —_— —_— —_— —_— — — — —

— ‘ ~ ~
spill cost\ context sensitive informations/ exploit
reductio | parallelisry

Figure4.17: Mutual Dependencies of Code Selection

given tree grammar. In the following we give avery coarse-grain, hierarchical classification
for subsets of SR—MOcoverings :

1. level-0: asingle covering of SR—MOsis considered.
2. level-1: the set of coverings differsin storage resources of definitions and uses.

3. level-2: the set of covering differsin data routes between definitions and uses. 1.e,
additional transfer operations occur between definitions and uses.

4. level-3: if the target machines offers machine operations that implement complex pat-
terns (like (>> (a), b)), different granularities of coverings are considered. Algebraic
transformations are considered, such that the set of operationsincorporated in an input
tree changes (eg., ¢ + a — 2 * a).

The levels can be further partitioned, by considering certain functional units allowed for
certain operations, or restricting the length of data routes between definitions and uses. It
should alwaysbe taken care of what is mend by theterm code selection. Selection of machine
resources of levels 0 and 1 is generally stated as resource allocation and not code selection.
Often, the selection of coverings of level—-2 is aso not considered as code selection. The
notion code selection is generally seen as selecting between coverings of level—-3, as thisis
concerned with selection of different operations.

Approaches

The approaches based on integrating code selection are concerned with phase coupling,
therefore described in section 7. In[AM95] irregular architectureswith no parallelism (i.e,,

ChaArFic 4 CUDE oOCLEC TTUIN

pipelining or instruction level parallelism) and single register sets and one main memory are
considered (called [1, oo] model). For thismachinemodel, register allocationisautomatically
performed by tree pattern matching. If instruction scheduling and spilling are disguarded,
the code selection for expression treesis optimal with respect to a sequential cost model and
the machine model. The storage resources of operands and the data routes are determined
by the matching process. The costs of data movements are taken into account by the costs
associated with the chaining rules. However, an unfavourable selection may still result in too
many spillings that might compensate the saved costs of the optimal covering. To prevent
spilling an instruction scheduling approach is proposed that produces spill free schedules for
expression treesif the target architecturefulfillsthe RTG Criteria (see [AM95] for details).
There is still some research necessary, for which classes of target machines, extending the
[1, 00] model, still effective code is produced. One continuation of the approach isto extend
the algorithmto [NV(M)] models, i.e., N classes of registerswith M registers available.

45 Retargeting: Extracting Code Selector Specifications
from HDLs

The automatic generation of code selector specifications from structural models is an im-
portant issue. Generally this means to map the structural model to a behavioral model, and
consists of the following basic tasks:

¢ the machine operation patterns must be extracted to generate the tree grammar rules;

e residual control and addressing modes of operands must be determined and have to be
embedded into tree grammar rules;

e the aternatives for implementing control flow have to be extracted (conditional and
unconditional jumps); this is basically due to analysing the interconnections of the
program counter and the controller;

¢ The encodings (machineinstruction strings) that are necessary to initiate the machine
operations must be determined (see[LM94]). Thisalso incorporates NOLOAD (NOP)
operations, which are necessary for preventing side effects unwanted.

It may happen, that operations of the intermediate representation are not available on the
target architecture. Such operations must be converted to machine executable operations.
Additionally, types of the operands have to be taken into account. Thisisvery important in
the context of register sets with different bit width.

The C'BC' [FHKM94] transforms a machine description specified in nM L into an iburg
specification. The intermediate representation (CDFG) is transformed in advance, such that
operations in the CDFG are expanded into machine executable operations (MEOSs) available
on the target machine. This set is determined by analysing the machine specification during
the retargeting process. In the terminology used in [FHKM94] the machine operations are
called chains or data path operations (DOs). All machine operation patterns are generated
by the nML front—end and represented by so called match—replace—pairs that include aterm

4.0. SOUNVINVIAKT

representation to that a matched machine operation pattern is rewritten. From this an iburg
specification is generated.

If we consider extended techniques like term rewriting rules a question is, if it is possible to
extract them from structural models. A more general question is, what kind of information
can be extracted from a structural model at all? What informations have to be added by
the user? These also incorporates questions about how informations have to be represented
(formal representation). Remaining questions are concerned with the support of auto—
increment/decrement registers.

46 Summary

The main fields of interest in the area of code selection are:
e Fast retargeting to new target machines;
¢ the developement of efficient code selectors and code selector generators,
e gaining more expressiveness of specification techniques.

The preferable technique for code selection is tree pattern matching assuming a tree based
intermediate representation. Tree pattern matchersare ableto find all possible coveringsfor a
certain expression tree and they also find aminimum cost covering by dynamic programming.
The specification for code selectors is based on regular tree grammars. The principle of
constructing tree pattern matchersis based on constructing finite tree automata from regul ar
tree grammars.

Supported features of irregular architectures are:

¢ heterogeneousregister sets
e register classes
¢ data routes

Instructionlevel parallelism and spill code minimization cannot be exploited appropriately by
traditional tree pattern matching techniques. The major problem isan appropriate integration
of code selection with the other tasks of code generation.

The preverable specification techniques for retargeting can be classified as a behavioral spe-
cification model. Structural models generally allow amore precise and detailed specification
and can be transformed to behavioral specifications. Therefore techniques developed for
tree pattern matchers are available for code generators based on structural specifications.
Remaining questions are concerned with the relations between extended specification tech-
niques and structural models. Integration of specific architectural features into tree pattern
matching is another issue for further investigations.

Chapter 5

Register Allocation

The prefered technique for register allocation is graph coloring. Thus, this section ismainly
concerned with approaches based on graph coloring. The section discusses the supported
features of irregular architectures and basic drawbacks. The basic notions like live range,
interference, and liverange splitting are shortly intodruced (for detailssee[Bri92]). Problems
in the context of irregular architectureswith fine—grain parallelism are shown. Someremarks
on retargeting register allocatorsare given. The subsequent sectionsare structured asfollows:

¢ An introduction to the basic notions and principles of graph coloring is given in the
following two section.

e In section 5.3 an overview of the basic classes of graph coloring techniques are de-
scribed, disgarding approaches concerned with phase coupling.

e Section 5.4 discusses the problemsarising in the presence of non—regular architectures.
Like in code selection solutions of the arising problems are basically concerned with
phase integration, which are described in chapter 7.

e Finaly, section 5.5 is concerned with common aspects of the retargetability of register
alocators.

5.1 Introduction

The task of the register allocator is to make effective usage of registers provided by each
architecture, which is essential for producing high quality code. Register alocation consists
of two components: theregister allocator determines which values are stored in registers at
each program point; the register assigner determines the physical register (location) where
avalueresides, that was allocated to aregister.

In conventional code generators, the code selector maps values to virtual registers (level-0
coverings of R-MOs or SR-MOs). Using this strategy, the register alocator must assign
physical registers of the target machine to virtual registers. There are the following levels
register alocation can take place:

e local register allocation: The local register allocation techniques are restricted to
expressionsor statementsof basic blocks. Vauesareloaded to registersat thebeginning

60

2.£. FUUNUATIUINOS U GRAFMT CULURIING

of abasic block and stored to memory at the end of abasic block. Minimal path costs
is a technique based on finding minimal paths in a DAG. Graph nodes represent
the configuration of values residing in registers and edges are labeled with costs
corresponding to the number of 1oads and stores required to change the configuration,
acording to the pair. Belady’s optimal page replacement algorithm, developed for
operating systems can al so be used to perform optimal local register allocation [Bel66].
Use counts developed by Freiburghouse is based on keeping track of the amount that
avirtua register will be referenced in the future [Fre74].

e global register allocation: Global register alocation methods transcendends basic
block level taking into account the control flow structure of a procedure. Techniques
are e.g., Packing algorithms (see [Ben94]), probabilistic register allocation [PF92], a
combination of local and global alocation, and graph coloring [Bri92], a combined
allocation and assignment technique.

5.2 Foundationsof Graph Coloring

A valueis atyped quantity that can reside either in a register, in memory, or, when it can
be computed by a sequence of instructions, in program code. The definitionsintroduced are
based on the CFG representation of aprogram. A variablex isdefined at apoint inaprogram
if avalueisassigned toit. A variableisused when itsvalueis referenced in an expression
(also see section 2.3.1).

Definition 5.2.1 A variable = is live at a node n if there exists a path from ng.,,; t0 n
containing a definition of «+ and there is a path from» to a use « of « (v # n) containing no
redefinition of x.

Definition 5.2.2 The live range LR, of a variable = is the set of all nodes LR, =
{n1,...,np} suchthat x isaliveat n, (1 <: < k).

Definition 5.2.3 Two variables » and y interfere iff they are smultaneoudy alive, i.e. the
intersection of their live rangesisnot empty: LR, N LR, = 0.

Definition 5.2.4 Theinterferencegraph isan undirceted graph /G = (N, E), such that N
is a set of nodes corresponding to live ranges of variablesand (LR, LR,) € E if x and y
interfere.

Two variables that interfere cannot occupy the same physical register. Two nodes »; and
n; with (n;,n;) € E are caled neighbors. The number of neighbors of a certain node n is
called itsdegree denoted by n°. A propper assignment isamapping from live rangesinto the
available registers of the target architecture, such that no neighbors of the interference graph
are mapped to the same register.

CAAFITCER O, REUIOSICER ALLUCATIUN

a b c¢c d (1,25}
1 a:.=2 | | {4} 2.3}
2: b :=a+2 a
3 c :=atbh |
4: d =2*b |
5: a:=c+d (3,4,5}

Figure5.1: Live Ranges and Interference Graph

Example 5.1:

Figure 5.1 shows an example program and an interference graph with its corresponding
live ranges associated. We see that the nodes of variable « and d do not interfere
because the intersection of their live ranges is empty. Remark: it should become clear
at this point, that the definition of interference is based on the ordering of the program
statements.

The problem of finding a propper assignment for an interference graph /¢ is reduced to
the problem of finding a £—coloring for /. 1.e. amapping of nodes to & colors, such that
neighbors will always have different colors. If & is choosen to be the number of available
machine registers than a £—coloring can be mapped easily to a propper assignment.

Definition 5.2.5 (Graph k—Colorability) Let ¢ = (N, £') beagraphwith a set V of nodes
andaset £ C N x N of edges. Furthermore, let there be a set of £ colors. G isk—colorable
iff thereisafunction f : N — {1,... &k} suchthat f(u) # f(v) for (u,v) € E.

It has been shown, that the problem of finding a k—coloring for fixed £ > 3 is NP-complete
[GJ79], therefore a heuristic method is used to search for a coloring. This method can't
guarantee to find a k—coloring for a k—colorable graph. The heuristic is based on the
following observasion: if anode p exists with n neighbors (p° = n) and n < k, then there
exists acolor different from p’s neighbors. We eliminate p from the graph which resultsin a
smaller graph /G’. The problem is therefore reduced to a smaller problem. If all nodes can
be eliminated in this way, there exists a k—coloring for the graph.

Example 5.2:

In figure 5.2 a 3—coloring of the interference graph from 5.1 isillustrated. The set of
colorsis{r, g, y} (red, green, yellow). A 2—coloring does not exist for this graph.

If a k—coloring cannot be found some live ranges are spilled. Let therebealiverange LR,.,
such that the set of colors assigned to its neighborsis {1, ..., k}. Thereisno color left for
LR,. Therearethree approachesto solve this problem:

e 1 is mapped to memory and all references to = access memory. This method cannot
be taken for load—store architectures and is a so not the best solution if « isfrequently
used.

2.£. FUUNUATIUINOS U GRAFMT CULURIING

[}

@Hé@@eﬁ

©

Figure5.2: A 3—Coloring of a Graph

e Theintroduction of spill code stores alive range after each definition of avariable and
reloadsit before every use of the variable.

e The last solution introduces spill code only at certain points of its live range and
loads it back at certain points. Hereby some of the nodes in the live range can be
eliminated. Generally the live rangeis splitted into a set of new, diguntive live ranges.
Each new live range constitutes a new node in the interference graph generaly with
less interferences then the origina live range. This thechnique is called live range
splitting. Chow and Hennessy used thisidea[CH84].

Spilling anode (or splitting a live range) results in a new interference graph. Therefore the
register allocator must iteratively spill some nodes and color the new resulting graph. In
contrast to include spill code for every occurence of avariable, live range splitting may avoid
spilling when not necessary. Introducing spill code for every occurence can be seen as the
extreme case of live range splitting. Unfortunately live range splitting is very difficult, i.e.
determining live ranges to split and picking places to split them. Finding optimal solutions
is NP-hard for both problems.

04 CAAFITCER O, REUIOSICER ALLUCATIUN

Example 5.3:

In figure 5.3 the splitting of the live ranges of variables a and ¢ from the graph in figure
5.2 is demonstrated. The splitting results in a spill—free 2—coloring of the resulting

graph.

{1,2,5}
4} {23}
{3,4,5}
1: a:.=2
2: b :=a+2
3: c :=atb {1,2}
. = %]
4: d :=2% {5} 2 ”
5: a :=c+d
6: ‘=c*a 4 2
{4} i {2,3}
O CE
/’— - . ey
/ rl ~
/ N
/ {415} I’l \
~_\ \
1 rL:=2 B R 1 3
20 r2:=rl+2 AN PE
3: rl:=rl+r2 34,5}
4: r2:= 2*r2
5: r2 :=rl+r2
6: . i=rlRr2

Figure 5.3: 2—Coloring of a Graph by Live Range Splitting

In the former example there are two classes of live range splittings. The first class splitts
the live ranges where a use is followed by a definition. Hereby no insertion of spill code
is needed, as the value is redefined anyway. The second class splitts between to uses of a
variable and may need the insertion of spill code when the assigned register is overwritten.
In our example no spill code was necessary, because the value of the variable ¢ stored in
register r1 was not overwritten because of the availability of register 2. There are some
approaches using a more coarse grained representation of live ranges based on basic blocks,
i.e. theliveranges are not constructed from the nodes of the CFG, but from the nodes of the
corresponding basic block graph (e.g. [CH84]). An overview isgivenin figure 5.4.

An antagonosic task to live range splitting is coalescing of liveranges. Thisisperformed for
variable copyingslikex : = vy. Inthiscasetheliverangesof « and y can be coalesceded to

2.0. ORAFA CULURIING REUCIoITERN ALLUCATUROS

/ N\
| nodes of CFG_ | or | nodes of Basic Block Graph |
\ < g /

RN
def-use spill-free spill
Live Ranges Live Ranges Live Ranges

Figure 5.4: 2—Coloring of a Graph by Live Range Splitting

one live range by the union of the two live rangesof = and y. Thisresultsin assigning = and
y to the same physical registers. A very good overview of the advantages and problems of
live range splitting and coalescing isfound in [Bri92]. Due to the fact that optimal solutions
cannot effectively be computed (while it not can be shown that P = N P), researchers are
concentrated with finding efficient heuristics to solve the spill problem, i.e. minimizing the
amount of spilling.

The subsequent section outlines basic classes of graph coloring techniques, disgarding ap-
proaches concerned with phase coupling. 1n section 5.4 the problems arising in the presence
of irregular architectures are discussed, followed by a discussion of retargeting register
allocators.

5.3 Graph Coloring Register Allocators

One of the first approaches on memory allocation and graph coloring was published in
[Lav62]. A summary of early approaches can befound in [Bri92]. The first implementation
of a global register allocator via graph coloring was done by Chaitin et alias (Yorktown
register allocator) [CAC*81]. Chow and Hennessy (C&H) described a technique based
on a combination of local register alocation and graph coloring (priority—based register
allocation). There are the following critereafor distinguishing the two approaches.

1. Abstraction levels;

(8) Chaitins alocator performes allocation on A-MOs, and C& Hs approach is per-
formed on source code.

(b) Chaitins defines the granularity of live ranges on A-MOs, in contrast to C&Hs
live ranges based on basic blocks.

2. Allocationmodel: Chaitin assumesvaluesinregisters. C&H assume, that valuesreside
in memory in advance.

3. Priority estimations and Coloring: In Chaitins alocator, priority estimations are used
to select a candidate for spilling among the set of constraint live ranges. A live range
iscalled constraint if its degree exceeds the number of available registers for the live
range. In C&Hs approach, the priority estimation denote the benefits for allocating a

CAAFITCER O, REUIOSICER ALLUCATIUN

value to aregister. Due to their allocation model, they do not spill live rangesin the
sence of Chaitinsallocator. They consider constraint live ranges and color the onewith

the highest priority first, thereby reducing the set of colors constituting candidates for
the interfering live ranges.

4. Live range splitting versus spilling: If there are no register candidates left for a live
range, C&H sallocator performslive range splitting. All nodes which are uncolorable
are not allocated to registers. Chaitin includes spill code for every definition and use

of avariable.
/ Use Counts’ y
I /
local 4 ———T T T T T T T T T \
P - ocal / il _ _ |
\ Page Replacemenf/ TN y Packing Algorithms
\ 27 (RA) . / -
- \ 4 - —
e <
’I Minimal Cost Path > global '
L / —aprobabilistic (Proebstiny ,'
—————— - /
/ ——————_ _ ____ _
/ (\

(Graph Coloring

cost savmg k<ng, \
@ k>=n »‘ al ocatlon
coloring uncolorable
“new iteration ‘ _ -7 Iocal allocation

Yorktown
Allocator

Chaitin et alias

values in !
registers

Priority- Based
Allocator

Chow & Hennessy,
live ranges values in
on basic blocl memory

limited valuesi
size

control structure
sensitive

(o
[{ Callahan & Koblenz) |

hierarchical
approaches || | @, _—— — = ——

| { Meltzer & Knobe) |
A\ 2/

k>=n _ registers
\,, delayed splll decision . /

improved
a) coloring & b) spillin
priority heuristics

Bernstein

Figure5.5: Hierarchy of Register Allocation Techniques

Johnson & Miller

There are several approaches improving Chaitins method [GSS89, BGG*89, Bri92], and
Chows and Hennessys method [LH86, IM86]. An overview of register alocation techniques

2.0. ORAFA CULURIING REUCIoITERN ALLUCATUROS O/

and their dependencies is shown in figure 5.5. The improvements can be characterized as
follows:

1. Reducing spill costs by

e increasing probability of £—colorability. These approaches have in common to
use a modified improved heuristic to color the graph, such that the set of graphs
that are colorable but not colored by Chaitin’s approach is decreased.

— improved priority estimations, also with regards to selecting nodes to color
[BGG*89];
— delaying spilling decissions (optimistic coloring [Bri92, BCT94]).

e improved live range splitting. The developement of good splitting heuristics
is one field of interest in this research area (e.g., [BCT91, CK91]). Itisadso
concerned with integrating live range splitting into Chaitin’s approach, instead of
inserting spill code for every definition and use.

2. Consideration of control structure: thisis achieved by an appropriate mapping of the
loop structure to priority estimations and/or live range splitting heuristics. There are
approaches of hierachical coloring algorithmsthat take into account the nestings of the
control structure by coloring nested regions bottom—up [KM90a, CK91].

3. Efficiency of register allocators[GSS89].

Recent approaches take into acount instruction level paralelism. These approaches are
concerned with phase coupling and outlined in section 7. Subsequently the basic approaches
and improvements to this approaches are outlined.

5.3.1 The Yorktown Register Allocator

[Renumbeye(Build)-+(Coalescg—+Spill Costy+(Simplify }»(Select)

Figure5.6: Chaitin’s Register Allocator

Figure 5.6 shows the tasks of Chaitin register allocator which consists of seven components
(als0 see [BCTY)):

Renumber Chaitins register allocator defines a live range for each new definition of a
variable. At auseit unions al the live ranges that reach the use, thus coalescing live
rangeswhere control flow coalesces. Theliveranges are statement based and represent
def-use chains. All live ranges are uniquely named.

Build constructs the interference graph.

CAAFITCER O, REUIOSICER ALLUCATIUN

Coalesce attemptsto shrink theliveranges. Two liverangescan be combinedif the definition
of avariable corresponding to the live range is a copy of the other (eg. x : = y)and
they do not otherwise interfere. By combining two live ranges the corresponding copy
instruction can be eliminated.

Spill Costs computes an estimation of the costs that are added if thevalueis spilled for each
liverange. Thisis estimated by computing the additional loads and stores to spill the
value, with each machine operation weighted by c¢* 107, where ¢ isthetransfer machine
operation cost on the target machine and d is the statements |loop—nesting depth.

Simplify chooses a node with degree n < k, removes it from the graph together with
its corresponding edges, and places the node on a stack. If there is no node with
degree n < k anode to spill is choosen according to the computed spill costs, with
regards to minimize spill costs. The node is removed from the graph together with its
corresponding edges and is marked to spill. If al nodes are removed from the graph
and there are nodesthat aremarked for spilling, Spill Codeisinitiated, otherwise Select
(seefigure 5.6).

Spill Code isinvoked if nodes were marked to spill. Spill codeisinserted at the correspond-
ing places in the CFG (or program). Each marked live range is decomposed into it
elementsresulting in many live rangeswere aload isinserted before each use of avari-
able and a store after every definition. Therefore the structure of live ranges changes
and register allocation restarts. The task of simplify together with the computation of
the spill costs can be denoted as the all ocation task.

Select is performed when no live ranges are marked for spilling. It colors the nodes on the
stack in the reversed order Simplify removed them from the graph. A node is popped
from the stack, inserted into its position in the graph and gets a color different to that
of its neighbors that were sofar inserted by Select.

The task of simplify is reflected by the |eft reduction sequence of figure 5.2 and select isthe
reconstruction shown on theright side of 5.2. Simplify only pushes anode to the stack when
it can prove that a node can be colored. If ssimplify does not find a node to color, it selects a
node to spill. The metric for picking candidates for spilling is avery important task. Asthe
interference graph abstracts completely from the loop structure of the CFG the nestings of
values are mapped to the spill costs. The node with the smallest ratio of spill costsischoosen.
Thus, the loop-structureistaken into account by the selection of the next spill candidate. The
aim of selecting anodefor spillingis, to spill avaluethat is used very infrequently, such that
spill costs can be minimized. Several heuristics for making good choices were developed
and are summarized at the end of the section.

5.3.2 Piority—Based Coloring

In the approach of [CH84, CHI0] graph coloring is performed after alocal allocation phase.
The task of local allocation is to estimate the saving costs for a value that is allocated to
aregister. The analysis is performed on basic blocks. Chow and Hennessy assume that
all variables are located to memory a priory. If avalue is assigned to a register, first uses

2.0. ORAFA CULURIING REUCIoITERN ALLUCATUROS

of values not preceeded by a definition of the value must load the value from memory to
registers. If the valueismodified in the basic block it must be stored back to memory if itis
live at the end of the basic block. The saving costs are computed by regarding the amount of
execution time that is saved by accessing a value in memory in contrast to accessing it in a
register, for each basic block:

1. maxsave = (loadsave * u) + (storesave * d);

2. minsave = (loadsave * u) + (storesave * d) — (movecost * n);

such that

e loadsave isthe execution time saved when a value is assigned to a register compared
with the corresponding memory reference. « isthe number of usesin the basic block
considered.

e storesave iSthe execution time saved when avalue is assigned to a register compared
with the corresponding storage to memory for adefinition of avariable. d isthe number
of definitionsin the basic block considered.

e movecost isthe execution timefor loading and storing a value at the beginning and at
the end of abasic block. Thereby n iseither 0,1 or 2, depending on if the initial load
or the storage at the end of the basic block is necessary.

The global saving costs for a value are computed as the sum of the saving costs of all basic
blocks contained in the values live range. In the coloring algorithm live ranges with negative
saving costsaremarked for spilling, evenif they could be allocated to aregister indicating that
allocation to aregister does not result in any saving for thislive range and should be avoided
for the live range. Chow and Hennessy distinguish between constrained and unconstrained
live ranges. Unconstrained live ranges denote nodes in the interference graph with degree
n < k.

The first tasks of the register alocator are to compute al live ranges, to construct the
interferencegraph and to seperate all unconstrained nodesfromthe graph. The unconstrained
live ranges are not colored until the very end because it is certain, that unused colors can be
found for them. In contrast to Chaitinsregister allocator, the priority—based register allocator
tries to color constrained live ranges, i.e live ranges that are marked for spilling in Chaitins
register allocator. The alocator performesthe following steps:

e For each constrained live range the compl ete saving costs are determined.

¢ All live ranges with negative saving costs are deleted from the interference graph and
are marked as noncandidates.

e All live ranges that are uncolorable are removed and marked. An uncolorable live
range consists only of program points where all available registers are occupied by
other live ranges.

[AY) CAAFITCER O, REUIOSICER ALLUCATIUN

¢ Theliverangewith the highest amount of saving coststo which acolor can be assigned
isdetermined. A color is selected, not being in the forbidden set of the live range, i.e.
that there is no neighbor that received this color. The forbidden sets of al neighbors
of the selected live range are updated. It is checked if any neighbor must be splittet,
what isthefact if the set of available registers of the neighborsliverangeis equal toits
forbidden set. For al new live ranges (resulting from splitting) compute there saving
costs.

e Continue with this procedure until all constrained live ranges are colored or there are
only uncolorable live ranges | eft.

Splitting is performed by seperating out acomponent of theoriginal liverangethat isaslarge
aspossible. This hasthe effect of avoiding the creation of too small live ranges.

5.3.3 Optimistic Coloring

[Renumbeye(Build)-+(Coalescg—+Spill Costy+(Simplify }»(Select)

Figure 5.7: Optimistic Coloring (Briggs Allocator)

A basic drawback of Chaitin's allocator is that it pessmistically assumes that all of the
neighbors of a certain live range will get different colors. If this situation occurs the live
range cannot be colored, but this must not necessarily happen. This can be illustrated, by
observing asimple example.

Figure 5.8: Diamond Graph

Example 5.4

Figure 5.8 shows the diamond graph which is 2—colorable as seen on theright side. If
Chaitin’sapproach isused, it will select one of the four nodesfor spilling, because there
isno node with degree n < 2. Therefore the graph will not be 2—colored. It issaid, that
the register allocator over spills.

The suppositionthat aliverange L R, will get acolor isapproximated by has L. R,. degreeless
than & in Chaitin’s register allocator. Thisis a sufficient but not necessary condition. In the
examplewe have seen that alive rangemay have £ neighborswith lessthan 4 col orsoccupied.

2.0. ORAFA CULURIING REUCIoITERN ALLUCATUROS L

The problemisthat spilling decissions are madeto early in the coloring algorithm. A solution
to overcome this drawback is the approach from Briggs, that combines a coloring heuristic
from [MB83] with Chaitins mechanism for cost—guided spill selection. Two modifications
in Chaitins register allocator are necessary [Bri92):

1. Smplify: All nodeswith degree less than & are removed in arbitrary order and pushed
to a stack. If there are remaining nodes with degree greater (or equal) then & a spill
candidate is selected. The node is removed from the graph but is not marked for
spilling. The node is pushed to the stack in spite of its degree and it is optimistically
assumed that that a color will be available for the node. Thus nodes are removed in
the same order asin Chaitin’s register allocator, but spill nodes are incorporated in the
stack.

2. Select: The detection of necessary spilling is delayed until the Select task. Select may
discover, that no color isavailablefor the actual live range popped from the stack. The
live rangeis left uncolored and Select continues. Any uncolored live range must be a
node, that Chaitins register allocator would also spill.

If any live ranges remain uncolored spill code is inserted and register allocation is
restarted with the resulting interference graph.

Infigure5.7 the structer of Brigg'sregister allocator isshown. The decision of spilling occurs
inthe select task. Defering the spill decisions eliminates unproductive spillings and provides
a stronger coloring heuristic, thus increasing the set of £—colored graphs. In figure 5.9 the
coloring of the diamond graph using Brigg's approach is demonstrated.

5.3.4 Hierachical Coloring

Callahan and Koblenz [CK 91] approach isal so an extension of Chaitin’swork. It decomposes
the CFG into atree of tiles reflecting the control structure of a program. Tiles are visited
bottom—up and a local interference graph is created and colored with pseudo registers for
each tile. The interference graph of atileis passed to it’s parent tile and is incorporated into
the parent tile's interference graph. In atop down pass all pseudo registers are assigned to
physical registersand spill codeisinserted whereit isrequired. This must not necessarily be
where decision to spill were made by graph coloring. The allocation of registersis sengitive
to local register usage while maintaining the global aspects of register alocation. In eachtile
registers are allocated by using standard graph coloring.

5.3.5 Other Approaches

There are several approaches for improving Chaitins method (e.g. [GSS89, BGG*89] and
Chow and Hennessys priority—based graph coloring method (e.g. [LH86, IM86]). Proebsting
and Fisher propose an approach not based on graph coloring [PF92] called probabilistic
register allocation. Probabilistics are used as a heuristic measure to drive the allocator. No
register assignment is performed. Probabilistic register allocation may be used for utilizing
good spilling decisions during graph coloring.

(4 CAAFITCER O, REUIOSICER ALLUCATIUN

-

! 0 8
(2)
()

Figure 5.9: Coloring the Diamond Graph

5.4 Support of Architectural Features

Distributed register sets congtitute no problem for graph coloring if the storage resources
of values are known. Live ranges of values that reside in different register sets will not
interfere. Register classes can aso be incorporated in graph coloring, by extending the
notion of interference. The set of storage resources where avalue may residein, is assigned
to every node in the interference graph. The notion of interferenceis extended in the sense,
that live ranges only interfereif the intersection of the associated sets is not empty [Bri92].

Common Suppositions

To outline the problems occuring in the context of irregular architectures, we first consider
the original goals and suppositions made for performing conventional register allocation:

1. The original goal was the minimization of transfer costs of data. Reduction of spill
costs should seen as a special form of this task (e.g., Chow and Hennessy do not
consider spilling, due to their allocation model).

2. There are the following common suppositions:

2.4, OUFFURIT Ur ARUATTECTURAL FCATURECOS ro

¢ Allocating avalue to aregister is based on certain priority estimations; they rely
on static factors (with regards to a certain program) like the number of uses of
a value, corresponding nesting depth, and the costs for loading/storing a value
from/to memory.

e Candidatesfor spilling are determined by priority estimations. Generally, spilling
to memory is considered and direct memory access is assumed.

¢ Liverangesarebased on afixed execution ordering of the statements of aprogram.
Conflicts occur if too many live rangesinterfere at certain points of the program.

New Goals

One motivation of providing distributed storage resources is to increase multiple storage
resource access. This can only be supported effectively if accessed values are properly
distributed to storage resources. Therefore, a new goal of register allocation is an adequate
distribution of valuesto register sets. Theoriginal goal isalso concerned with new tasks, e.g.,
finding adequate data routes for minimizing tranfer costs. A distribution to storage resources
should al'so utilizeminimizing spill costs. The support for auto— ncrement/decrement register
isan additionally new task for register allocation. Values used for addressing of subsequent
memory cells are candidates to be allocated to such special registers.

Mutual Dependencies

In figure 5.10 the dependencies of goals and tasks of code generation are shown. The new,
problematic situations that occur can be outlined as follows:

1. Allocation to register sets cannot be disconnected from code selection. The storage
resources, that values are all ocated to, depend on the machine operation patternsrel ated
to the operations. Mutual dependence between the storage resources and operations
isgiven. If code selection resultsin a covering of machine operation patterns, storage
resources are fixed in advance. Thus, there is no choice for distributing values. A
preallocation is quite difficult, because the mutual dependencies have to be taken into
account — mutual dependence of register allocation and code selection.

2. Spilling must not necessarily be performed to memory. It can be impossible to spill a
value directly to memory — complex spill routes and restricted spilling.

3. Spilling across dataroutes can involve the spilling of other values. Therefore, the spill
costs of avalue depend on the values concurrently aliveand their locations — dynamic
spill cost estimations.

4. Concepts based on fixed execution ordering are not adequate for utilizing parallelism
provided by the machine:

(8 Informations for minimizing spill costs are based on strict ordering of state-
ments and often allow the generation of unnecessary false dependencies. False
dependenciesrestrict theinstruction scheduler in exploiting available parallelism.

4

CAAFITCER O, REUIOSICER ALLUCATIUN

Y
Y

/indicate mo\e
/ spilling

| .
/Spilling acros3 rangeg A h \
data routes, \

—distribution to™

ference™® > storage resources .\
_— utilize ~~__ \“*\\

\

N N

-~
\)

Q N a) spill code, that has to be schedulgd; 4 /

\ b) restrictions, by infroducing unnecessary

\ \ false dependencies /
o
evaluation reordering , utilize

N

for minimizing spilling ™~ P < compaction
~ - B -
= — -

Figure 5.10: Mutua Dependencies of Register Allocation

(b) If register alocation is concerned with taking parallelism into account it has to
make some estimations about the available parallelism. An over—estimation of
available paralelism leads to a high amount of interference, that can lead to a
high amount of spill code. This may result in worser code, than the uncom-
pacted program. For making exact estimations about the interference, instruction
scheduling has to be performed before register allocation. By this more exact
estimation about available parallelism are made, but spill codeis not considered.
It is determined in the (so called) late register allocation phase, thusleading to a
rescheduling. Again, the additional spill code can lead to worser code — cyclic
dependencies. estimationsarebased on factor sthat change, when estimation
based transformationsare applied.

5. Insomecasesitisunecessary to avoid spilling or moreexpensivedatatransfers, because
they can be performed concurrently with other machine operations. Thereforethey can
be integrated into the generated schedule without producing extra costs — trade—off
between exploiting parallelism and transfer cost reduction.

6. A very important issue is the distribution of values to storage resources for exploiting
parallel execution. Thiscan only be performed appropriately, when register alocation
is moved into instruction scheduling. As this will indicate a selection of certain
machine operation patterns, code selection is aso embedded. Moving code selection
into scheduling makesit difficult to perform global register alocation, because certain
storage resources are not determined, when a certain machine operation is scheduled

2.4, OUFFURIT Ur ARUATTECTURAL FCATURECOS ro

— uncertainty of storage resources for certain values. Therefore, incremental
techniques are required.

The new task of distributing valuesto storage resources basically constitutes aphase coupling
problem. Section 7 isconcerned with this subject. Aditionally, an adequate technique taking
parallelism into account has to make good trade—offs between exploiting parallelism and
preventing spill code. In the following, recent approaches trying to solve some of the
problems and not concerned with phase coupling are described.

Approaches

In the following, some approaches are outlined trying to solve some of the mentioned prob-
lems. More approaches concerned with phase coupling aregivenin section 7. Itismentioned
in advance, that the basic remaining problems are the distribution to storage resources and
adequate coupling with code selection. The support of auto—increment/decrement registers
seemsto be also a very scarce investigated area, with regardsto retargeting.

Storage Resource Abstraction

In [Hei93] storage resources are combined to new abstract storage resources by introducing
corresponding new nonterminals and machine operation patterns. It must be ensured, that
each storage resource belonging to an abstract storage resource is accessible to the set of
functional units, with respect to the machine operation patterns where the corresponding
nonterminals occur in. A storage resource of the set of storage resourcesdenoted by the
abstract storage resource, is either

e directly accessible, or

¢ reachablefrom all directly accessable storage resources contained in the set.

By this, traditional tree pattern matching can be performed producing a single covering of
A-MOs. This covering leaves some freedom to the register allocator in distributing values
to those storage resources, denoted by corresponding abstract storage resources.

Exploiting Distributed Storage Resour ces

An approach trying to distribute values for exploiting parallelism proposed in [ADK*95]
is based on extended versions of graph coloring but is restricted to distributed memories.
Therefore it is not confronted with restricted data paths and register connectivities. The
goal isto maximize the number of parallel move operations between registers and memory.
Late register allocation (i.e., register alocation after instruction scheduling (see chapter 7)) is
performed which assigns symbolic registersto physical registers and variablesto distributed
memory banks.

In [CDN94] an approach is proposed called hypergraph coloring and also performs late
register allocation. The task of register allocation is delayed until after scheduling, because
informationsabout the concurrently alivevalues are necessary. They assumeidealized VLIW
like architectures, such that every functional unit isconnected to every register set. Therefore
no restrictions of connectivities and non of the problems of interest do occur.

[A°] CAAFITCER O, REUIOSICER ALLUCATIUN

Register Classifications

Paulin [PLM S95] adopts a method whereby a number of overlapping register classes for a
given target architecture can be specified. The code selection task is concerned with handling
machine operation patterns (Paulin uses the term micro—instruction patterns) with register
classes. In contrast to tree pattern matching described in section 4 the pattern do not contain
nonterminals for denoting different storage resources or register classes. Instead there are
specific write and read terminals annotated with register classes specifying a certain set of
registers. Theregister candidatesfor avalue are determined by theintersection of theregister
classes annotated to connected definitions and uses. Empty intersection indicates that a
register move is necesssary. These register moves are determined after matching. It isquite
clear how reachability is checked to yield alegal covering of the input tree. The approachis
based on an improved |eft—edge algorithm. Even if Paulin states to overcome the drawbacks
of graph coloring, it is not quite clear which drawbacks are really solved. The intersection
sets are determined by the matching process. Therefore the possible locations for values are
determined. Live ranges are a'so known before register allocation. Register classes can be
handled by graph coloring aswell. Therefore, the aspects considered by Paulin can be coped
by graph coloring.

5.5 Retargeting

If conventional register allocation techniques are considered, retargeting seems to be of no
problem at afirst glance. However, this is generally related to consider retargetability as
using the same algorithm for a wide range of architectures, without the need of modifying
it. This aspect of retargetability does not take into account, that certain architectures are
utilized by a specific technique, while other architectures are not. A good retargetable code
generator should also select aregister alocator suitable for the target architecture, regarding
and exploiting the specific features of a machine. There are three factors that should be
considered:

1. Heuristics: Register allocation techniques are based on heuristics for selecting candid-
ates for coloring or spilling. There are various heuristics developed in recent years.
An adequate heuristic has to be determined during retargeting.

2. Amount of registers. An architecturemay contain only very few, few, or many registers.
If only very few register areavailable, global register all ocation seemsto be unnecessery
or even undesirable. Depending on the amount of registers, either local techniques,
trade—offsbetween local and global techniques, or global techniqueshaveto be selected.

3. Phasecoupling: Withregardsto other code generation tasks, specific featuresindicatea
certain ordering and/or integration of these tasks. This must also be seen in the context
of other well known optimization techniques (e.g., constant folding, code motion
[ASUS86]), which are not considered in this report. The selection of a good register
allocation technique has to take into account the mutual dependencies of selected
technique with other tasks, i.e., the order of phases and the degree of integration.

92.0. OSOUNVINVIAKT rr

E.g., aregister alocator that tries to reduce register usage will drastically constrain
instruction scheduling for instruction level parallelism.

A detailed analysisof retargetabl e register alocation inthe context of other optimizationsand
phase ordering isgiven in [Ben94]. Investigationsin finding critereaand analys s techniques
for classifying architectures are necessary, that enable the selection of adequate register
allocation techniques and corresponding interaction with other optimization tasks.

5.6 Summary

Graph coloring is the most popular subject of research. Graph coloring is able to handle
distributed register sets, if the locations of values are known. A more important task is an
appropriate distribution of valuesto registers. Inthe context of restricted interconnections of
storage resources and functional units, this becomes a very difficult task, due to the strong
mutual dependence to code selection and instruction scheduling. Therefore, a complete
integration of code selection, register allocation and instruction scheduling is an important
subject for further investigations (so far, there are few approaches, shown in chapter 7). Re-
targeting of register allocation should be concerned with the selection of adequate techniques
and corresponding interaction with other optimization tasks.

Chapter 6
| nstruction Scheduling

In this chapter the basic classes of instruction scheduling developed in recent years are
described. The foundations of compaction techniques for microcoded architectures are
described. These techniques constitute a basis for many subsequent instruction scheduling
techniquesfor instruction level parallelism. Thebasic drawbacksareinthe context of irregular
architectures are discussed. Some new aspects of retargeting schedulers are outlined. We
will discuss the following topics:

e Section 6.2 will introduce the formal foundations of local compaction and the basic
local compaction methods.

¢ Insection 6.3 the classes of global scheduling techniques are described and compared.
All these techniques are concerned with fine—grain parallelism. However, no spe-
cialized techniques concerned with code generation for RISC like architectures are
included.

e Section 6.4 emphasizes the basic problemsarising when irregul ar architectures have to
be taken into account.

e Remarks on retargeting schedulers are given in section 6.5.

6.1 Introduction

Instruction scheduling is the task of reordering the machine instructions generated from
a source program, with the aim of getting a machine program with less execution time
and less code space. In the absence of parallelism the reordering of machine instructions
utilized the task of register alocation for minimizing register pressure. In recent years
thereisincreasing interest in architectures with instruction level parallelism. The main task
of instruction scheduling is to find a mapping of machine operations to instruction cycles
that effectively exploits the available paralelism of the target machine, while maintaining
the semantics of the original program. Compaction is a subtask of instruction scheduling.
The aim of compaction is to combine machine operations into machine instructions , such
that parallelism is effectively supporting program execution. 1f machine resources were not
strictly bound by previous tasks, compaction is concerned with the mapping of operations

78

0.2, LUCAL CUNVIFACITIUIN ra

to machine resources. Early works were developed in the context of microcoded machines,
termed compaction techniques. A summary of this work’s can be found in [DLSM81].

A few classes of instruction scheduling techniques have evolved in the last years. There are
four basic classes of scheduling techniques: Local list scheduling techniques are performed
on basic block level, i.e., the machine instructions are restricted to contain only machine
operations from the same basic block. Trace scheduling [Fis81] is an extended list schedul-
ing technique not restricted to basic block boundaries and employs branching probabilities
to select the most likely execution path of a program. The selected path (trace) is the re-
garded as if it was a basic block. To preserve program semantics when moving machine
operations across conditional jumps, compensation code has to be inserted. Percolation
scheduling aso isaglobal scheduling technique based on four semantic preserving program
tranformation rules performed on the program flow graph (similar to the control flow graph)
[Nic85]. Percolation scheduling reduces the generation of superfluous compensation code;
code explotion isamajor draw back of trace scheduling. Region scheduling is atechnique
based on the program dependency graph and allows movements of machine instructions over
wider program regions than percolation scheduling [GS90]. Region scheduling redistributes
available parallelism, such that machine resources are fully utilized. Thisis also achieved
by applying semantic preserving transformation rules on the program dependence graph.
Region scheduling can also be used for coarse grain scheduling on source code level.

6.2 Local Compaction

As introduced in section 3, a machine instruction is composed of machine operations . If
only one or very few machine operation can be performed in parallel, the target machineis
said to bevertical (e.g., RISC). If many machine operations can be combined in one machine
instruction , the machine is said to be horizontal. In the context of vertical and horizontal
machines instruction scheduling has to solve two different tasks:

1. If thetarget machineis of vertical nature, it still can offer some fine grain parallelism,
as given by the principle of pipelining in RISC machines. The major tasks of the
scheduler is to minimize register pressure for avoiding spill code, and keeping each
stage of the pipeline busy.

2. Inhorizontal machines an amisto parallelize as many machine operationsas possible,
with regards to effective program execution. Avoiding spill code is not a basic aim of
compaction. In some situations the generation of spill code can lead to more efficient
programsif spilling can be done in parallel with other operations.

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

There are no uniquely definitions that distinguish compaction from instruction scheduling.
In [Gas89] formal definitions of the local compaction problem is given asfollows:

Definition 6.2.1 (L ocal Compaction Problem) Given:
1. amachine M and a set of m machine resources R;

2. aresource configuration vector R € N™, where the kth entry (1 < k£ < m) of Rt
gives the number of units of resource ;. € R available in the machine configuration;

3. aset of operations O = {op1,...,op}

4. aduration function d : O — N where d(op;) denotes the number of machine cycles
op; takesto execute;

5. aresource usage function Ro : O x Ny — N*. Ro(op;,z)(k) gives the number of
units of resource r;, needed in the xth time step of operation op;;

6. a data dependence graph DDG imposing a partial ordering on O;

7. adelay function 6 : £ — N, defined on the edges of the DDG. ¢ = (op;, op;) and
e € E; é(e) isthe delay that has to be respected before scheduling op; as soon as op;
has been schedul ed.

The local compaction problem consists in finding a schedule o : O — N such that:
1. minimality: o isof minimal length, and
2. dependence congtraints: Ve = (op;,op;) € I : a(op;) — o(op;) > 6(¢e), and

3. resource constraints:
V(0 <t < length(o)): (Zé‘:l ﬁo(opj,t —o(opj))) < ﬁM

Informally, the problem that compaction tries to solve, is to place machine operations into
as few machine instructions as possible, congtituting the final schedule. Legal schedules are
determined using the data dependencies reflected by the data dependency graph (see section
2.3.4 page 2.3.4). The definition considers multicycle machine operations. Conflict analysis
determines wether or not a machine operation can be placed within a machine instruction,
without violating data dependencies and resource constraints of the target architecture. En-
coding conflicts are not determined in this defintion of the compaction problem. Finding
an optimal solution for the compaction problem has been shown to be NP—complete by
[DeW76].

The next candidate which is selected for being scheduled is taken from the data ready set.
These set includes machine operations whose with no predecessors in the data dependence
graph, or whose predecessors already have been scheduled. In thefollowing we outline some
of the decisions a scheduler has to make. These decisions are made in both local and global
compaction techniques.

0.2, LUCAL CUNVIFACITIUIN

e choosing an appropriate cycle: using list scheduling techniques the scheduler has not
much freedom in selecting other cycles than the actual cycle. Linear analysis dways
chooses the earliest cycle for placing a microoperation. Instead of placing a new
microoperation at the rise limit, one could think of placing it at the end of thelist.

e choosing a machine operation from the data ready set: there are several critereafor
selecting the next machine operation from the dataready set, e.g.:

— prefer machine operation with the maximum path in the DDG,;
— select machine operations from critical path first;
— timing constraints;

A summary of heuristics for selecting the next microoperation to schedule is given in
[Beadl].

It is advantageousto delay the binding of certain machine resources until compaction. Inthis
case, the candidatesin the dataready set are A-MOs. The following additional decisions are
necessary:

e choosing a functional unit: thisrequiresthat code selection has not selected a specific
machine operation for implementing a certain operation in the intermediate represent-
ation. If architectures are used offering more than one functiona unit (e.g. VLIW
architectures or some DSPs) it must be determined which functional unit is occupied.
If the set of functional units is identical and each functional unit has access to all
storage resources this is no big problem. Section 6.4 is concerned with the subject if
these idealized assumptionsare not present. If thereismore than one possible machine
operation that can be placed within a microinstruction it can be advantageous to delay
the decision of which machine operation to choose as long apossible.

e choosing result destinations: i.e. selecting a storage resource and alocation where the
result of a machine operation is stored in. This again requires that code selection has
not selected a specific machine operation. If register allocation was performed before
instruction scheduling or afunctional unit has already been selected, thereis generally
less freedom for the instruction scheduler (see section 6.4).

Early compaction techniques where developed for microcoded machines. Many principles
developed for compaction techniques can be found in recent scheduling techniques. In
[LDSM80] the basic compaction techniques are described, e.g., linear analysis [DT76],
critical path [RT74], branch and bound [Y ST74], and list scheduling. These techniques are
described do not consider timing constraints and assume single cycle microoperations:

Linear Analysis[DT76]: This approach starts with an empty list of microinstructions. It
attemptsto place microoperationsinto existing microinstructionsin thelist in the order
they appear in the basic block. If there is no microinstruction the microoperation
considered can be placed in without violating the resource constraints of the target
machine; anew micronstructionisinserted into the list (completely don’t care) and the
microoperationisplacedintoit. Thescopeof microinstructionswhereamicrooperation

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

can be placed reaches from the last microinstruction in thelist to that microinstruction
the microoperation is data dependent on. This location is denoted as the rise limit.
Thus the rise limit denotes the earliest microinstruction the microoperation can be
placed in, in spite of any resource constraints. Now a microinstruction is searched
where the microoperation can be placed in, searching from the rice limit back to the
end of thelist. If no microinstruction can be found that accepts the microoperation a
new and empty microinstructionisplaced at thericelimit. By thismicrooperationsare
placed as early as possible. If no rice limit is found and no microinstruction accepts
the microoperation, the new microinstruction is inserted in front of the actual first
microinstruction in thelist.

Critical Path [RT74] : The minimal length of the list of microinstructions is the depth of
the DDG, i.e. itscritical path. An early partition of microoperations is constructed,
placing all microoperations that occur at the same level in the DDG into the same
microinstruction, in spite of any resource conflicts. An analogous late partition is
constructed. All microoperations having the same position in the list of the early and
inthelist of the late partitioning constitute the critical path. From these two partitions
acritical path partition is constructed (for details consult [LDSM80]).

Branch and Bound [YST74]: A tree is constructed which nodes represent microinstruc-
tions. A path from the root to a certain leaf corresponds to one possible ordering of
microinstructions. Thetree branchesin that cases when thereis morethan onepossible
microinstruction that can be placed at the point in thetree. If the algorithm finds a path
with the length of the critical path it hasfound an optimal answer. Generally heuristics
are applied for not constructing a complete tree (that would take exponential time).

List Scheduling This is a specia case of branch and bound, where only one branch is
constructed (followed) at every node. List scheduling starts with an empty list of
microinstructions. Microoperations are placed into the last microinstruction of the list
if they are

1. dataready, and

2. they have the highest priority (computed by some weighting heuristics) among
the set of data ready machine operations, and

3. they can be placed into the last microinstruction.

If no microoperation from the data ready set can be placed a new microinstruction is
placed at the end of the list. The weighting heuristic has great impact upon the final
schedule.

The compaction methods rely on heuristics to reduce the search space of possible schedules
with the aim of pruning solutions representing no good results. List scheduling is the most
popular technique used in local instruction scheduling techniques, because there exists a
known bound on the time it takes to execute. It has complexity O(n?) [LDSM80, Gas39].
List scheduling produces good results in the presence of adequate heuristics and is easy to
implement. A detailed introduction to compaction methods, list scheduling, and a summary

0.0. GLUDAL INoOIRUCTTUIN OUACUULIING

of heuristics can be found in [Bea91]. Instruction scheduling techniques considering timing
constraints between machine operations are summarized in chapter 8.

6.3 Global Instruction Scheduling

‘ Branch and Bound

‘Local List Schedulin— Local Compaction ﬂ Critical Path

7
globalﬁite/n ion Linear Analysis
Ve
Trace Scheduling

—
—
—
—
—

improvements ~ ~ — _
\ based on elementary ~ T — _
\ | transformation rules - - - == — _

\

Percolation Scheduling (PS)

)
// Enhanced Region Scheduling//
-/

Unifiable-Ops N —— T 7 T Software Pipelining _ —~ -~ ,
e U -7 P 4
- I Enhanced Pipelined PS Perfect Pipelining’ R
_ — N - / _ P e
D [- - /
/. tAanratal ¥ — — — — — — — — = e
GRip-canbe ntearaled Tiog (rraiblaizing PS) Loop-Handling- -
(Global-Resource -~ —-—-—-———__ _ _ Transformations _ -

Constraint Scheduling)

T~

Mutation Scheduling (MS)

Figure6.1: Hierarchy of Scheduling Techniques

The techniques of the last section are local scheduling techniques operating on basic block
level. A disadvantage is that basic blocks generally offer a more limited degree of instruc-
tion level parallelism. Therefore architectures that offer a high amount of paralelism are
not supported appropriatly. Recent research has succeeded in overcoming the basic block
boundaries. Infigure 6.1 an overview of the basic scheduling techniques and their improve-
mentsis shown, including the local compaction techniques. These techniques are discussed
in the subsequent shsections. The basic issues of investigationsin scheduling techniques and
their superimposed and enhanced approaches are:

e improvementsin effectively support of instruction level parallelismisamajor goal of
all approaches;

o4 CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

e taking resource constraintsinto account is becoming of much interest; e.g., percolation
scheduling assumes unbounded resources; many efforts are made to integrate the
consideration of arestricted number of machine resources [EN89b, ME92, NN92];

e considerations of over—, and under—utilized regions of a program with respect to the
underlying target architectures are made [GS90, BGS95];

e integration of scheduling accross loops.

e Adapting global scheduling techniques for advanced RISC architectures (remark: this
topic was out of the scope of this report and is therefore not involved, but should not
beignored in further research).

Other issues of improvements are avoiding the generation of superfluous compensation code
and integrating transformations rules that allow the movement of operations accross large
program regions. Upto region scheduling, the basic scheduling techniques can only handle
acyclic code. Inregion scheduling, loops are compacted by unrolling itsbody. Thisapproach
can be very inefficient with regards to code space. Therefore another class of scheduling
techniques based on software pipelining has been developed. Hereby a new iteration of
the loop is started before the preceeding iteration has completed. Extended versions based
on percolation scheduling and region scheduling where developed to incorporate software
pipelining (e.g., perfect pipelining [AN88b], enhanced pipelining percolation scheduling
[EN89a], and enhanced region scheduling [AJLS92)).

6.3.1 Trace Scheduling

Trace scheduling was originally developed by Fisher [Fis81] asatechnique for global micro-
code compaction. Trace scheduling uses a programs basic block graph (see section 2.3.2).
Nodes of the graph are the basic blocks. Edges represent the possible control flow. The
scheduler partitions the basic block graph into an ordered set of non—overlapping loop—free
pathes called traces. The first trace is the most frequently executed trace, the second oneis
the trace with the next highest frequency, and so on. The set of traces is exhaustive, i.e. the
basic block graph iscovered completely by the set of traces. Execution frequenciesare either
extracted from profiling information or estimated from loop—nesting and branch prediction.
The scheduler repeatedly picks traces consisting of uncompacted basic blocks. It now treats
the trace as a single basic block and performs list scheduling. It is based on the data
dependence graph to determine the legal reorderings of machine instructions. The scheduler
determines the data ready set, which contains al machine operations whose predecessorsin
the DDG have aready been scheduled. A machine operation of the dataready set is selected
for scheduling and is assigned to the earliest cycle it can be placed in without causing any
resource conflicts.

If compaction is restricted to basic blocks, reordering is uncritical, but for traces consisting
of many basic blocks the branches have to be taken into account. Multiple conditiona or
unconditional jumps may |leave the trace and there may be multiple nodes of the trace that
represent entry points from outside into the trace. To preserve data dependencies, the sched-
uler has to take care of moving machine instructions accross conditional and unconditional

0.0. GLUDAL INoOIRUCTTUIN OUACUULIING

jumps. If machine instructions are moved from above a conditional jump to below it, it has
to be ensured that this operation is also executed on the path that leaves the trace by the
conditional jump. If the scheduler moves a machine instruction from below a conditional
jump to above it, it must be ensured, that a copy of the machine instruction has to be added
to incomming traces of the corresponding basic block. Also, it must be ensured that moving
up definitions of variables will not change the programs semantics. Additional instructions
that have to be added to other traces are called compensation code. The compaction of a
certain trace therefore results in adding machine instructions to other traces for preserving
program semantic correctness and may lead to slowing down the execution performance of
the other traces. Thereby it does not take into account the execution frequencies of the trace
compensation code is added to.

Nicolau [Nic84] hasshown that trace scheduling may produce exponential number of machine
instruction copies. Some heuristics were developed, that restrict the schedulers freedom of
reordering machine instructionsfor preventing code explosion [LA83, Lin83, SDJ84, EIlI86].
A good introductionto trace scheduling can befound in[WM95]. The movementsof machine
operations are described in form of transformationsrules.

6.3.2 Percolation Scheduling

Percolation scheduling overcomes the problem of code explosion, but can still produce su-
perfluous code in some cases. The technique was introduced by Nicolau [Nic85]. It does
not consider a program as a set of basic blocks anymore. There is a set of transformation
rules, that locally transform a program graph. The program graph is ssimilar to the control
flow graph. In contrast to the control flow graph there is only one type of nodes, where each
node is associated with an instruction. In the terminology of Nicolau an instruction is a set
of operationsinvolving conditional jumps. Comparing to our terminology conditional jumps
are corresponding to conditional expressions in the CFG. Operations can be compared with
machine operations. In contrast to machineinstructions, an instruction in the program graph
must not necessarily consist of operations that can be performed in parallel. Percolation
scheduling does not consider any resource constraints during the application of its trans-
formations. An assumption in percolation scheduling is that operations always execute in
oneinstruction cycle. Aninstruction may contain multiple conditional expressions that form
a directed acyclic graph with respect to control flow, whose leaves are again nodes of the
program graph, representing multi—way branches corresponding to the branching structure
in the CFG.

Theinitial program graph has the same structure as the control flow graph (CFG with non-
typed nodes). Percolation scheduling performs parallelizing transformations on the program
graph moving up operations (or conditional jumps) in the program graph, while preserving
the semantics of control flow and data flow. Repeatedly applying the transformation rules
allows machine operations to percolate toward the top of the program graph. The process
of scheduling is termed migration. Applying a core transformation always results in a
semantically equivalent, but more parallel program graph. [Nic85] proposed four core
transformation rules which were simplified to three transformations by [Aik88].

The basic idea of percolation scheduling is to start with a program graph that represents the
origina sequential program. Each node contains exactly one assgnment or one test. The

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

core transformations are then repeatedly applied to the program graph. The order in which
the transformations are applied is fundamental for two reasons:

1. the transformations are not confluent, i.e. when two different transformation can be
appliedto agraph (7, resulting ' or G respectively, it can not be guaranteed that both
G’ and G" can be transformed into afinal unique result graph.

2. the transformations are not complete, i.e. a program graph cannot always be trans-
formed into a semantically equivalent program graph with maximum parallelism.

Finding an optimal sequence of transformations is NP-complete. Therefore heuristics are
applied for choosing the operation to move next. Approaches were proposed by Aiken and
Nicolau [Aik88, AN88a] called compact—block, compact—path, and compact—global. Like
in trace scheduling, the scheduler chooses frequently executed paths first. This method has
amajor problem: compact global relies on atarget architecture with infinite resources that
is ableto concurrently execute an arbitrary set of machine operationswithout any restriction
in any cycle. The created schedule has to be repartitioned with respect to the resource
constraints of the target machine. Another disadvantage of percolation scheduling (or the
superimposed techniques) isthat the transformation rules enforce continioustraversals of the
program graph. This is due to the locality of the transformation rules, resulting in a Slow
compilation process.

Two overcome this problemstwo approaches have been devel oped integrating the considera-
tion of resource constraints[EN89b] (e.g. percolation scheduling with resources constraints).
Thereby no transformation rule move an machine operation into a node if this causes the
reguirement of more machine resources then available for the instruction.

GRIiP

Global resource—constrained percolation scheduling GRiP [NN92] was motivated by the
belief that resource constraints should be integrated into scheduling. It is not restricted
to for using it in percolation scheduling but to be also used in parallélization techniques,
such as trace scheduling or Enhanced Pipelined Percolation Scheduling [EN89a]. GRiP aso
introduced some improvements for software pipelining (keyword gap prediction).
Aggressive speculative movements (i.e. across conditional jumps) of operations in the
absence of resource constraints can yield in moving possibly useless operations competing
with useful operations for scarce resources. The knowledge about the resources available
during scheduling allows more sophisticated decisions, e.g.

¢ whenalargenumber of resourcesisavailableit might beworthwileto allow speculative
movements,

e if only few resources are available, it might be better to prohibit the speculative
movements until all non—specul ative movements have been performed;

¢ datadependencies often permit operation to movefarer than resource constraintswould
allow.

0.0. GLUDAL INoOIRUCTTUIN OUACUULIING of

GRIiP was inspired by a technique based on unifiable operations [EN89b]. The set of unify
operations of a node » in the program graph is the set of all operations that can be moved
to n without raising resource conflicts. Unifiable-Op scheduling consists of traversing a
program graph in a top down fashion and filling the resources of each node (thus nodes are
viewed as machine instructions) with the best nodes from the unifiable operation set. The
disadvantage of this technique is that the computation of the setsis very expensive and must
be incrementally updated, thus not really practicable for application. GRiP is based on the
same principle, filling resources of nodes by using migration to move operations. When a
node is scheduled, all operationsthat are in nodes that are dominated by the node considered
can move, with respect to data dependencies and resource constraints. An operation becomes
unmovable if

e it has moved into or above the actual node being scheduled, or

e aresource constraint prevents any application of the transformation rule of percolation
scheduling, or

e itisprevented from moving by a data dependence on an operation itself not movable.
GRIP performsthe following tasks:
1. A heuristicis applied to rank the importance of all operations of the program graph.

2. A set of moveableoperationsisdetermined for each nodeintheprogramgraph. Initially
these setscontain the operationsof the subgraph that dominatesthe corresponding node.

3. Scheduling nodes is performed in top down traversal of the program graph. Migrating
is performed to operationsin the associated sets of the scheduled node in ranked order,
until no operation is moveable anymore.

A disadvantage in GRIP (also in contrast to unifiable-op scheduling) is the occurence of
resource barriers. Consider a path [n4,npg,n¢]; if there is an operation in n¢ that is
prevented from moving into npg, because np is full and the operation would be movable
from np t0 ny, then np is called a resource barrier. These barriers prevent the moving of
nodes through regions of programs with filled resources. Resource barriers can cause that
operationswith higher priority have to wait until nodeswith lower priority have moved out of
resource barriers. Thus the order indicated by the priority can be violated. This may cause,
that an operation with lower priority may occupy a resource predestinated for an operation
with higher priority stuck in aresource barrier. In [NN92] it is stated, that using adequate
heuristics resource barriers are not likely a problem. The ordering of operations rely on
heuristics. Any heuristic can be used in GRIP, e.g. heuristicsused in list scheduling.

Trailblaizing Percolation Scheduling (TiPS)

Trailblaizing Percolation Scheduling [NN93] tries to overcome the incremental feature of
percolation scheduling; only very local transformations are performed, therefore leading to
very large sequencies of transformation for moving operations across larger program regions.
Thisal so hasthe disadvantage of producing more compensation code then necessary, enforced

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

by the transformation rules (code explosion). One reason is that transformations are based
on the structure of the control flow graph. Therefore often transformations are applied to
nodes the operation that is moved is not dependend on. The operation could be moved across
regions without visiting any of such nodes.

Trailblaizing is based on hierarchical task graphs (HTGs; see chapter 2) [GP92] represent-
ing the essential dependencies and structure of a program. Trailblaizing extends percolation
schedulings core transformations to exploit the structure of HTGs. By this technique oper-
ations can be moved across large program regions applying only afew transformation rules
and avoiding a high amount of unnecessary compensation code. This also includes moving
operations accross loops, afeature not inherent to normal percolation scheduling.
Trailblaizing improves compilation time by reducing the amount of transformation steps and
also results in performence improvements of the parallelized code by allowing transforma-
tions not enabled in percolation scheduling. Trailblaizing isnot dependent on any heuristics
or considerations of resource constraints. These aspectsare completly isolated fromthebasic
algorithm.

Mutation Scheduling

Mutation Scheduling is a compl ete trade—off between code selection, register allocation and
instruction scheduling. Mutation scheduling is based on trailblaizing percolation scheduling
and also integrates GRiP for taking into account resource constraints.

Using GRIP, operationsare schedul ed using transformationsfrom percol ation scheduling and
TiPS until either

e atrue dependence, or

¢ afalse dependency is encountered and dynamic renaming is not possible, i.e. thereis
no free register available, or

e aresource dependence blocks GRiP.

Mutation scheduling is then attempt to remove the occuring dependence, by trying an atern-
ative operation for implementing the value considered from the mutation set. More aspects
arediscussed in capter 7.

6.3.3 Region Scheduling

Region scheduling is a technique for detecting coarse—grain and fine—grain parallelism. It
was first proposed in [GS90]. The technique is based on a extended form of the program
dependence graph. The scheduler is guided by estimations of present parallelism of the
regions represented in the PDG. The region scheduler repeatedly transforms the extended
PDG, uncovering potentia parallelism until an estimate of the parallel capabilities in each
region matches the parallel capabilities of the target architecture, or no transformations
are applicable. The transformations defined for region scheduling can redistribute fine—
grain parallelism among regions by the transfer of machine operations. Thus, overestimated
parallelismin certain regions can betransfered to another region with unsufficient parallelism.

0.4, OUFFURIT Ur ARCLATITECITURAL FEATURECOS

Trace scheduling and region scheduling both use reordering of the program to generate a
schedule that enables parallel execution. In trace scheduling, transformations are applied
based on execution frequency. In region scheduling, transformations are driven by parallel
opportunities, i.e., the available paralelism of the underlying architecture is taken into
account for selecting the next transformation step. The region scheduler can exploit at
least as much parallelism as the trace scheduler [GS90]. In contrast to trace scheduling,
the region scheduler is able to move complete regions to other regions. The drawback of
trace scheduling generating fast schedules for highly prioritized traces at the expense of the
othersis avoided in region scheduling. The transformations are directed towards to increase
parallelism. Animproved approach of region scheduling was introduced by [AJLS92]. This
approach termed enhanced region scheduling also incorporates software pipelining.

Gupta states, that the technique is architecture indipendent [GS90]. However, in region
scheduling target machine code generation is done after all transformations were applied.
This requires an architecture of idealized structure. The question how irregular register sets
and data paths can be integrated are so far not considered.

6.4 Support of Architectural Features

The original goals of instruction scheduling are exploiting fine—grain parallelism (compac-
tion) or -if no vertical architectures are considered - reordering of A-MOs (evaluation
reordering) with regards to reducing register pressure (with the aim of spill cost reduction).
The approachesintroduced in the previous section are basically concerned with thefirst issue
(compaction).

Common Suppositions

We will have alook at the common suppositions of instruction scheduling:

1. Generally, idealized machine models are considered. |.e., identical functional units
with immediate access to all storage resources are assumed; restricted connectivities
are seldom addressed.

2. Resource constraints are considered with regards to the number of resources that are
available. If al operations can be performed on all functional units (with access
to al storage resources), resource allocation during instruction scheduling does not
constitute any problem. |.e., binding operations to a functional units and determining
storage resources for the operands has no impact on data dependent operations.

3. Conventional scheduling algorithms are confronted with the following decisions:

¢ choosing an appropriate machine instruction for inserting the operation;

e choosing a machine operation from the data ready set.

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

New Goalsand Problems

The techniques described so far do not take into account the problems arising in the context
of irregular architectures. Like in the section concerned with register allocation, we will now
summarize the new situations, instruction scheduling is concerned with:

1. Neither identical functional units nor general access to storage resourcesis given.

2. Ingtruction scheduling is mutual dependent on code selection. A certain covering
can result in a (possibly restrictive) binding of machine resources. Allocating machine
resources by the scheduler indicates that data dependent operations are restricted to
certain machine resources:

e A storage resource, selected for the result of a machine operation may not be
immidiatly accessable to the machine operations that use thisvalue. In this case
additional data movements are necessary, supposed, they are possible.

e Itisrelevant to consider which operations are available if certain operations can
only be performed on specific functional units.

3. Spillingaccross dataroutes hasto be considered. It also hasto be taken into account,
that spilling may not be possible from every storage resource— restricted spilling.

4. Thestrongmutual dependecebetween functional unitsand storageresourcesenforces
the scheduler to make trade—offs between the decisions of

e choosing a functional unit;
e choosing result destinations.

The effects of restricted connectivities are not examined for percolation scheduling and
region scheduling so far. Complex data routes together with their effects on spilling are not
considered in the approaches introduced so far. In [Hei93] some aspects of irregularity are
integrated into a trace scheduler. Approaches considering the stated aspects are concerned
with phase coupling, therefore described in section 7.

6.5 Retargeting Instruction Schedulers

If we consider the amount of instruction scheduling approaches, the subject of retargeting is
seldom addressed (see section 3.3 page 31). So far, list scheduling and trace scheduling are
the preferable candidate considered in this context. The basic principles of these techniques
do not rely on a specific target machine architecture. However, the selection of a member of
the dataready set relieson heuristicsand on acertain ordering for making decisions(choosing
afunctional unit, or storage resource). No heuristic effectively supports the complete range
of architecture classes [Hei93]. The order in which decisions are made may have impact
on the code quality. Both, the order of decisions and the heuristic, depend on the features
of the target architecture. The question is, how schedulers can be retargeted to effectively
support this features. The problem of retargeting gets more complicated if the scheduler is

0.0. SUWVIIVIAKXT

confronted with partial code selection, i.e., regarding different coverings. In this case, the
selection of equivalent operations and different data routes must also be considered.
Percolation scheduling and region scheduling based schedulers have a modular and hier-
archical concept. Transformation rules constitute the lowest level. Based on thisrules, the
selection of rulesfor moving an operation into a certain machine instructionsis adapted. On
top of this, heuristics for choosing operations for moving are implemented. This modular
concept enables a fast modification of the schedular (by hand) with regards to new archi-
tectures that have to be supported. However, retargeting based on automatically adapting
new heuristics is not considered. In [Bea9l] an approach based on genetic algorithmsis
proposed. Thereby alocal list scheduler learns which heuristics are adequate for a certain
target architecture. In [Hei93] atrace scheduler is generated based on analysing the target
architecture and composed from certain subtaskswith regardsto the following criteria:

e if each functional unit has access to all storage resources, data placement is of no
concern and the selection of afunctiona unit has priority;

e if functiona units have restricted data access, three classes of functiona units are
considered:

1. data placement is of no concern: therefore, selection of a functiona unit has
priority;

2. data placement isof minor concern: selection of functional unit still has priority,
but direct accessto storageresourcesisexamined andincorporatedinthedecision;

3. data placement is of major concern: promising destinations for the results of
operations are choosen first.

A detailed analyses for further critereais an important subject of further research. Determ-
ining fine—grained subtasks of scheduling, relevant for supporting certain hardware features
becomes necessary, for utilizing an architecture based composition of schedulers. Itisaso
necessary to find out how the outlined instruction scheduling techniques can cope with such
decisions. Asalready stated in section 5.5, retargeting should consist of

¢ determining adequate techniques and heuristics (e.g., if no parallelism is provided by
the machine, instruction scheduling is merely concerned with evaluation reordering,
for minimizing register usage);

e agood composition of subtasks, constituting the fine-grain adjusted selected technique;

¢ takinginto account theinteraction and the coupling with other tasks of code generation.

The field of retargeting instruction schedulers is very scarcely investigated, therefore more
efforts of research are very important in this area.

6.6 Summary

The research area of most interest is the the support for fine—grain parallelism, especially
instruction level paralelism. There are many efforts made in developing global techniques
and integrating

CAAFITERX O, ITNOIRUCITITUIN oULNCUULITING

e consideration of resouce-constraints,
e finding adequate solutions for scheduling loops (software pipelining).

The basic drawback is that the impacts of irregular architectures are so far of no much major
concern. There are efforts necessary to examine how these techniques can be augmented
with the requirements arising from irregular architectures and extend the considerations of
resource constraints to mutual dependencies of functional units, their destinations of of the
results, and data dependend operations.

The second major drawback arisesin the context of retargeting a scheduler. Heuristics used,
may have fundamental impact on the generated machine code when different target machines
are considered. How the scheduler can be automatically tailored to the requirements of the
considered target machineisvery aseldom subject of interest. Therefore, muchinvestigations
for retargeting schedulers seems to be necessary. Thisinvolves examinations of the degree of
retargetability of the scheduling techniquesand if certain scheduling techniques arerestricted
to support only special classes of architectures.

Chapter 7

Phase Coupling

In this section the problems resulting from performing the tasks of code generation strictly
decoupled and in acertain order ae discussed. It is shown that a coupling of these tasksisan
important issue, all the morethe featuresof irregular architecturestogether with fine—grained
parallelism areincorporated. Problemsthat have to be solved and approaches concerned with
phase coupling are described. Phase coupling with other optimization tasks is not addressed.
An overview of early worksin the context of phase couplingis givenin [AM87].

7.1 Phase Ordering Problems

We will first outline the basic issues that lead to phase ordering problems and indicate
an integration for certain tasks of code generation. Code selection and register alocation
can hardly be considered as separated tasks. The selection of a certain machine operation
pattern immediately fixes a certain set of storage resources for the operands. With regardsto
instruction scheduling, a certain set of machine resource isfixed in advance. Binding certain
machine resources before code selection will have great impact on the legal coverings (and
may be even impossible). Therefore, each decision determind in one of the tasks effects the
other. The generation of code selectors using tree pattern matching is a very sophisticated
technique. Using dynamic programming, an optimal solution is selected with regards to a
sequential view of program execution. The minimum cost covering selected by the dynamic
programming approach is generally no optimal solution with respect to spill cost reduction
and exploitation of parallelism. The selection of unfavourable machine operations can result
in machine instructions that hardly contain parallelism and results in a high amount of spill
code. An integration of spilling and parallelism aspects into the cost model would enforce
tree pattern matching to consider context sensitive informations. But generally most of these
informations necessary for selecting good code are only available when the code is sel ected.
E.g., for determining effects on spilling, locations of all the other live values must be known;
but for knowing the locations, the machine operation patterns for implementing operations
have to be known; therefore, a covering has to be selected first. The basic drawback is, that
certain operationsand machineresourcesarefixed (bound) after code selection. Some of these
decisions should be delayed until scheduling. For selecting between different operations and
dataroutes, the integration of code selection into instruction scheduling becomes of growing

93

crhaAarFicr /. FiiAoE CUURFLITING

importance. Performing instruction scheduling before code selection can be performed for
architectures with identical functiona units that have access to all storage resources (e.g.,
region scheduling). Perfoming instruction scheduling before code selection isimpracticable
for irregular architectures.

The phase ordering problems between register allocation and instruction scheduling already
occur in absens of distributed register sets: (1) Register allocation tries to reuse as many
registers as possible, therefore adding many additional false dependencies that inhibit the
instruction schedulers ability to reorder machine instructions. (2) Instruction scheduling
triesto parallelize as many machine operations as possible thereforeresulting in high register
pressure which increases the amount of interferencesdrastically. 1f weperformregister alloc-
ation before instruction scheduling (also stated as early register allocation) the instruction
scheduler is inhibited in reordering the instructions by additional false dependencies, i.e.,
anti—, and output—dependencies. This dependencies are resulting from the re—definition of
registers when multiple live ranges are mapped to the same register. This is an immediate
result of the sequential view of statements as represented by the CFG, which isreflected in
theliveranges of valuesand lead to certain interferenceswith other values. Non—overlapping
live ranges may be mapped to the same physical register. If register allocation is performed
after instruction scheduling (stated as late register allocation) new interferences may be
introduced between values, thus resulting in possibly many spillings. Additional spillings
mean new spill code, that also has to be scheduled. Therefore, a rescheduling becomes
necessary [BS95].

The interdependence between machine resources and sel ected code leads to the strong mutal
dependence of code selection, register alocation, and instruction scheduling. Informations
necessary for performing certain code improvements are based on the available machine
resources, related to operations and val ues:

e spilling isbased on interference informations of values, whereby interference itself is
dependend on the locations (i.e., storage resources) of values,

e parallelism is dependend on the machine resources occupied by data independend
operations.

As machine resources are determined by the selected code and only legal coverings should
be considered, tree pattern matching should be performed in advance. Otherwise there is
no basis for congtituting code improvements. A utilization of code improvements can be
enabled on certain levels of delayed binding of machine resources:

¢ Recomputation of values, if thiscan be performedin parallel to aready scheduled code.

e Construct A-MOs, that bind asless machine resources as possible. A single covering
is selected with conventional techniques. Thereby, a single covering should ensure,
that each combination of machine resources specified by the covering islegal covering
of coresponding machine operations. Hereby code selection is decoupled from the
other tasks. If parallelism is proided by the machine, good trade—offs between transfer
cost reduction (especially spill cost reduction) and exploiting parallelism have to be
found

(.2, SJINGLE CUVERING (LEVEL—U)

e Take different coverings of .A-MOs into account. This can be also partitioned in
different levels of coverings (see section 4.4 page 56):

— fixed machine operation patterns but different data routes,

— machine operation patterns only differ in the set of storage resources, thus also
different dataroutes are considered;

— different granularity of covering the operators,

— coverings, where certain operations are exchanged by applying algebraic trans-
formations.

In the subsequent sectionsan overview of approachesisgiven that incorporate phase coupling,
classified in the mentioned levels of coverings which are considered. Additional critereaare
the considered architectural featuresand the degree of retargetability. Asstated intheprevious
sections, this is concerned with the selection of techniques and their used heuristics, their
combination and degree of integration.

7.2 Single Covering (Level-0)

7.2.1 Recomputation (Rematerialization)

One approach, called rematerialization, embeds code selection partially into graph coloring
with the goal of reducing spill costs [CAC*81, BCT94]. The idea of remateriaizationisto
choose the least expensive mechanism to accomplish spilling. This is basically concerned
with detecting Situations where a recomputation of a value is more profitable than spilling
the value to memory. In [CAC*81] it is pointed out that certain values can be recomputed
by single machine operations and that certain required operands will always be available for
the computation (e.g., immediate values in the machineinstruction or hard coded constants).
Chaitins allocator cannot handle rematerialization of live ranges comprising several values.
An improvement is given in the approach of [BCT94].

7.2.2 Delayed Binding

A-MOs leave a certain degree of freedom to the instruction scheduler, while maintaining
the sequential view of traditional code selectors. An approach by Rainer Leupers, currently
in progress at our ingtitute, extracts SR-MOs from a hardware description specified in
MIMOLA [BBH*94]. A corresponding iburg specification is constructed. The generated
tree pattern matcher selects aminimal cost covering. Local register alocation is performed,
whereby each variable is assumed to be located in memory. Local instruction scheduling is
then performed using an | P-solver that determines an optimal schedule on basic block level,
taking into account given timing constraints. The basic drawback of using an IP-solver is
that large basic blocks cannot be effectively scheduled anymore.

crhaAarFicr /. FiiAoE CUURFLITING

7.2.3 Takinginto Account Potential Parallelism and Limited Registers

This subsection is concerned with register allocation techniques that take into account issues
of paralelism and instruction scheduling taking into account the limited amount of registers.

Goodman and Hsu [GH88] compared two methods against both early and late register
alocation. They developed a data dependence graph driven method on basic block level.
They manipulate the schedul ers data dependence graph, such that it’swidth isno greater than
the number of registers available. Their second method is based on late register allocation
and is called integrated prepass scheduling (1PS). Hereby, alocal scheduler is restricted to
use a fixed number of registersfor local values (local pseudo registers) of each basic block.
If this register limit is reached, the scheduler tries to free some of the registers, and may
increase the register limit if freeing is not possible. The subsequent local register allocation
can generate spill code which enforces arescheduling. Bradlee compares two strategies with
graph coloring followed by scheduling. All three strategies are embedded in the retargetable
code generator MARION [BEH91, Bra9l, BHE91]. The first strategie is an improvement
of 1PS and performes global postpass register allocation. The second one called RASE first
perfomes initial passes of the instruction scheduler for estimatimating local schedule costs,
given a very limited number of registers and then with the maximum number of available
registers. The computed estimations are used in the priority scheme of graph coloring,
followed by alocd list scheduler. The MARION system is intended for constructing code
generatorsfor RISC like architectures, based on an instruction set model (including resource
requirements of the instructions). It was developed for analyzing different code generation
strategies, but an automatic selection of strategies is not described. Distributed register sets
are considered, and explicitly advanced pipelines are supported, which requires the support
of complex data routes.

Freudenberger [FR91] describes a method that integrates register allocation into trace—
scheduling. The scheduler takes as many registers from a pool of available registers as
it needs (greedy). It aso saves information about which registers contain which values for
the entry and exit points of a trace, i.e., the corresponding nodes the control flow graph,
where control flow branches or coalesces. These informations are used to minimize data
movements in the traces corresponding to the entry and exit points. As trace scheduling is
performed on the crucial pathsfirst, the global aspects of register alocation areincorporated,
by allocating values to registersthat are frequently used.

Norris and Pollok [NP93] perform early register alocation and add edges to the to the
interfernce graph to estimate the re—ordering effect of instruction scheduling. They build the
interference graph from the data dependence graph rather than from a linear representation
like given by the control flow graph. Generally the data dependence graph contains more
parallelismthan thetarget machine offersto be executed in parallel. Largeinterferencegraphs
are constructed that are hardly to color. Norris and Pollok developed several heuristics to
reduce the amount of parallelism given by the DDG, while maintaining enough parallelism
for utilizing the scheduler. Pinter [Pin93] also constructs an interference by adding additional
edges. Therefore she first constructs a graph from the data dependence graph, where the
transitive closure of al dependence edges are placed into agraph as undirected edges. Target
machineresource conflictsareadded that restrict the parallel execution of machine operations.
From this resulting graph, the graph’s complement is constructed and the union with the

(.9. UAIA RUUIIING (LEVEL—LZ) Il

register alocatorsinterferencegraphis constructed. Thisresulting graphiscalled theparallel
interference graph. Brasier [BS95] proposes a method based on late register alocation
and limits the additional interferences to false dependencies that will limit the instruction
scheduler. Only if spilling becomes necessary during late register allocation it is switched
back to early register alocation. The interference graph of early register is aughmented
with edges from the interference graph of late register allocation. Those edges are added
between nodes (live ranges) in the early interference graph that are exclusively found in the
late interference graph and which are colored with the same color in the early interference
graph. The resulting schedule will be accepted. Further works based on utilizing register
allocation with aspects of parallelism based on graph colloring are [AEBK 94, NP94, NP95].
In Bersons approach [BGS94] the data dependence graph is incrementally sequentialized
with regards to global aspects of over and under—utilized regions of resource requirements
(excessive setsand resource holes, respectively). Register allocation is performed on-thefly,
together with appropriate spilling. Approaches like [ME92, NPW91, NN93] start with an
initial register allocation. During instruction scheduling false dependencies are eliminated
using dynamic renaming [CFR*91]. But alocated registers are never released (e.g., by
spilling).

The aspects of other phases considered in a certain phase are generally based on potential
possibilities of parallelism or resource requirementsthat are often extremly over- or underes-
timated. Therefore research is merely directed to improve the precisness of estimations. The
problematic issues of irregular register sets are not addressed in the described approaches.
The effects of mutual dependencies of storage resources and functional units are avoided
by either not involving restricted connectivities, or binding resources in advance. However,
initial register allocation with the possibility of incrementally rejecting some of the decisions
during instruction scheduling seems to be agood approach and should be further considered.

7.3 DataRouting (Level-1,2)

Data routing incorporates register allocation into scheduling, due to distributed register sets.
Coverings are considered, containing fixed functional units for operations, but differ in data
routes between definitions and uses. The aim of data routing is the selection of good routing
paths for values, with regards to exploiting instruction level parallelism. The BULLDOG
Compiler of Ellis[EII86] and the CBC [Har92] performlocal scheduling together with greedy
register allocation on the fly. Hereby, good spill decisions are not considered. The approach
proposed in [LCGM94] tries to overcome this lack by examining various data routes with
regardsto global spilling and recomputation. Functional units are bound in advance. Pattern
matching is performed during scheduling by combining partial versions (see section 3.2.6
page 28) of machine operations to complete versions (bundling). Hereby, complex patterns
accross basic block boundaries are taken into account. The approach takes into account the
problematics of irregular register sets and isintegrated in the synthesis and retargetable code
generation system CHESS.

An approach combining delayed binding of functional units with consideration of different
dataroutesisproposed in [Hei93]. Irregular register setstogether with fine—grain parallelism
are taken into account. Storage resources are composed to more abstract storage resources.

crhaAarFicr /. FiiAoE CUURFLITING

It isensured, that definitions and the corresponding uses of values are awaysreachable. The
code selector performstraditional tree pattern matching with dynamic programming. A trace
scheduler is generated from a machine specification to guide the order of the choices the
trace scheduler has to make with respect to the requirements of the target machine. The trace
scheduler perfomes register alocation on—the—fly.

7.4 Integrated Code Selection (L evel-3)

The approaches described here perform code selection during instruction scheduling. In-
cremental tree hight reduction (ITHR) partially integrates code selection into instruction
scheduling. ITHR changesthestructure of expressions according to associative or distributive
properties of operators. Incremental tree hight reduction was used to change the structure of
expressions during instruction scheduling [NPW91].

The retargetable code generator M SSQ embedded in the MIMOLA software system per-
forms code selection within local instruction scheduling. A set of coverings is generated
for each assignment statement. Each covering constitutes of £L—-MOs , represented by the
coresponding versions. The versions are constructed from partial versions during pattern
matching (bundling). The partia versions are extracted from the structural description of the
hardware (specified in MIMOLA). Variables are pre-allocated to certain storage resources,
defined by the user. Temporary values are located to register cells on-the—fly during pattern
matching, i.e., during partial version determination. Each temporary register cell can be
only assigned in one version. The selection of versions is performed during local compac-
tion. Transformation rules enable to consider algebraic transformation during compaction.
Spilling and global optimizations are not considered in this approach.

Mutation scheduling is based on trailblaizing percolation scheduling. It integrates code
selection and register allocation into instruction scheduling. Each vaue in the program
is assosiated with a set of functional equivalent expressions, each using a different set of
resources of the target architecture. The sets are called mutation sets. During instruction
scheduling one of this alternatives is selected. If the resources for a selected expression
are occupied, another expression (mutation) is selected. The mutation sets can change
dynamically during scheduling to contain expressions that may become availablefor avalue.
When avalueis evaluated into aregister, areference to that register is added to the mutation
set. If avalueisspilled, aload entry with the corresponding location isadded. Initial register
alocation is performed like in [ME92, NPW91, NN93] incorporating dynamic renaming
for eliminating false dependencies. But in contrast to these approaches spilling is aso
integrated. If recomputation of a value has more advantages the recomputation of avalueis
selected [NN94]. Incontrast to rematerialization, every equival ent expression can be sel ected.
Incremental tree hight reductionisincorporated. The applied heuristicscan beeasily adjusted
(by hand), due to the modular concept of percolation scheduling based approaches. However,
the problematic issues of irregular register sets again are not of interest.

Chapter 8

Timing Constraints

This chapter is concerned with code generation for given timing constraints. |.e., the gen-
erated code must either fulfill a certain timing behavior specified by the designer (explicit
timing constraints), or the code generator has to take care for timing constraints predicted
by hardware components (implicit timing constraints). Explicit timing constraints are be-
comming of increasing importancein the context of real time systems (RTS). Implicit timing
constraints are due to e.g. certain delay times of machine operations or maximum duration
times a machine resource will hold a certain value (e.g. transient resources).

The runtime of certain program regions depends on the length of the final machineinstruction
sequence, and this sequence is only known after the final scheduling phase. Therefore, the
analysisof timing constraintsiscommonly integrated into scheduling. Therearethefollowing
basic research areas in the context of timing constraints:

e Modelling of explicit timing constraints and formal analysis if these constraints are
feasible (cp. [Hon94, KM90h]).

e Scheduling with regardsto explicit constraints. |.e., reordering the program by moving
instructions from overloaded program regions (not fulfilling certain constraints) to
non—critical program regions, with respect to given timing constraints (cp. [Hon94]).

e List scheduling with regards to given implicit timing constraints. So far, there are
some extensions of list scheduling, incorporating the management of implicit timing
congtraints. Thisisachieved by labeling the edges of the data dependence graph with
timinginformations, i.e., each edge (n, n’) isassociated with atuple (m:n, max). This
indicates, that if n is scheduled in instruction ¢, n” has to be scheduled in instruction
', suchthat ¢ + min < ¢ < ¢+ max. List scheduling will not always result in valid
schedules, if not all max values are set to in fty, even if they exists asolution. There
are several techniques proposed for increasing the likelihood of generating a valid
schedule (consult [Bea91] for details):

— absolutetiming

— foresight scheduling

— incremental foresight scheduling
— lookahead scheduling

99

1UU CAaArFicxo. THVIING CUNOSITRATINTO

Generdly, codegenerationisinvolved for yielding thetiming estimationsfor certain program
fragments. Thus, the results obtained extremely depend on the code quality of the incor-
porated code generators. So far, we have not found existing approaches, integrating explicit
timing constraints into code generation techniques, except the one exposed in [Hon94]. But
here, timing constraints are analysed on amore coarse—grain and abstract level. Thereareno
effortsmadeto generate high quality code. Thefeasibility of constraintsis gained by moving
insructionsfrom critical regionsto uncritical regions. Thisis performed by using an adapted
version of trace scheduling.

There is some further research necessary to find out which techniques, developed in the
real—time—system community, are adaptabl e to utilize code generation, especially instruction
scheduling techniques.

Chapter 9

Summary

There is a high amount of techniques and superimposed improvements concerned with code
selection, register allocation and instruction scheduling. These techniques were generally
developed with regular classes of architectures in mind. With such suppositions, very
sophisticated results are gained.

The major research areas and tendencies of investigation can be outlined as follows:

e Tree pattern matching is the preferable technique concerned with code selection. Tree
pattern matchers can construct the complete set of coverings with respect to aregular
tree grammar in effective time. Dynamic programming is incorporated for finding an
optimal solution with regards to a given cost model.

e The common technique used for register allocation is graph coloring. It can cope with
distributed register sets and register classes.

e The basic research issues for instruction scheduling are global techniques. trace
scheduling, percolation scheduling and region scheduling were developed mainly for
utilizing instruction level paralelism. The integration of resource constraints and
software pipelining are the major research topics for improvements.

e A major research area is the support of architectures that provide instruction level
parallelism. Global techniques are required for effectively exploiting the available
parallelism. As traditional register allocation techniques rely on a strict ordering
of statements, the pre—allocation of registers may restrict the scheduler. A post—
allocation can lead to spill code that aso has to be scheduled. For overcomming this
mutual dependence, recent approaches are concerned with phase coupling of register
allocation and instruction scheduling.

Irregular architectures indicate a strong mutual dependence of code selection, register
allocation and instruction scheduling and indicate hard problems with regards to global
optimizations, due to the strong interdependence of code selection and resource allocations:
A certain covering may restrict the subsequent tasks, because of an unfavourable binding
of resources, due to the selected A-MOs. Therefore, binding should be delayed as long as
possible. Effective delayed binding enforces the consideration of certain coverings. Thus,
phase coupling of code selection with register allocation and instruction scheduling is an

101

1UZ CAArFic Jd. SUIVIVIAKT

important issue for supporting the generation of high quality code. Delayed binding of
machine recources indicates, that several informations required for global optimizations are
uncertain (e.g., locations of values, which are nececassry to determine interference). Thus,
global optimizationsare very hard to perform with traditional models, based on certain, static
factors. Transformations performed during optimizations are usually based on global static
factors. The major problem occuring is, that application of a transformation can completely
destroy the suppositions responsible for performing the transformation. So far, approaches
that address the features of irregular architectures avoid to incorporate all the problems
caused. Either a certain problematic feature is not considered, certain global optimizations
are not performed, or certain machine resources are bound in advance, thereby avoiding the
problematic mutual dependencies. However, the described approaches were not developed
for solving all the occuring problems.

For providing the complete integration of tasks with regards to all features of irregular
architectures the following efforts seem to be required:

e Formal classification of coverings and specification of their features. Good represent-
ations must be developed including informations necessary for global optimizations,
together with techniques for traversing coverings while incrementally updating the
associated informations.

¢ Developement of incremental techniques, that take into acount global aspectslike over
and under—utilization of machine resources in program regions (approaches like muta-
tion scheduling [NN94] and those proposed by Berson et alias [BGS94, BGS95] seem
to beagood basisfor further investigation). Thereby, the mutual dependenciesof func-
tional units and storage resources have to be regarded. Incremental approaches seem
to be necessary, as each transformation performed during optimization can have much
impact on factors that are necessary for further decisions and estimations. Questions
haveto beanswered, how global optimizationsshould deal with uncertaininformations.

¢ Integration of intelligent backtracking for rejecting unfavourable decisions should be
considered.

Approachesdescribed in chapter 7 should constitutethe basisfor further investigations. Many
partial problemswere solved and it should be examined how these solutions can be extended
and/or combined for achieving a full integration. Furthermore, research is necessary for
supporting autoincrement and autodecrement registers and ring buffers. This seemsto be a
very scarcely investigated area.

If we consider retargeting, tree pattern matching techniques were devel oped with the aim
of fast retargeting. The target machine is specified by a behavioral model (instruction set
model) based on regular tree grammars. Structural models can be converted to regular tree
grammars. Additionally, they includeinformationsfor utilizing effective resource alocation,
necessary for retargeting of register allocation and instruction scheduling. Graph coloring
and instruction scheduling techniques can be regarded as potential retargetable. But this
retargetability israther viewed with regardsto fast adaption than with regardsto code quality.
Retargetability considered is basically concerned with the application of a certain technique
that cope with a high amount of common aspects of various target architectures. Questions

1US

about retargeting register allocation and scheduling techniques with regards to an automatic
sel ection of appropriatetechniques(andincorporated heuristics) areof minor interest and have
still to be examined. For supporting an adequate retargeting of code generation techniques
the following investigations are necessary:

¢ Classification of techniques with respect to effective support for architecture classes.
As stated, a certain and effective technique will not support the range of architecture
classes with the same degree of code quality. Therefore, it is necessary to find out
which techniques utilize which architectures, and which do not. Thus, the various
approaches developed with regards to certain architectures are very valuable sources
for such investigations.

e A decomposition of the tasks of code generation into fine—grained subtasks, whereby
each subtask is responsable for certain decisions. The decomposition should enable
the observation of effects due to a reordering or exchanging of some of the subtasks,
with regards to the code quality.

¢ Find criterea for determining a certain architecture class. Techniques (or rules) for
composition of the corresponding code generation tasks must be developed. It hasto be
determined if global or local techniques should be applied, or trade—offs between local
and global techniques are desirable. With regards to phase coupling, determination of
the degree of integration and interaction of tasks is necessary.

Furthermore, questions have to be answered, if effective retargeting of techniques can be
performed automatically. Semi—automatcally support up to fully integrated user interactions
should also be taken into account. Specification models are required for supporting both
effective retargeting of all code generation tasks (with regards to high code quality) and
design process together with synthesis. At least, such models should be convertable to
common models. Behavioral models lack of effectively utilizing retargeting of all tasks,
while multi cycle instructions are difficult to be extracted from structura models. Thus,
adequate trade—offs are necessary. Investigations should be concerned with the following
questions:

e What informations are necessary to support effective retargeting?

e How should they be represented (specified), with regards to design and synthesis
support?

e Adaption (extraction, conversion) and relations to other existing models?

With regards to timing constraints, generaly, code generation is involved for yielding the
timing estimations for certain program fragments. Integration of explicit timing constraints
(timing behavior of the system) into code generationisnoissue of interest. Timing constraints
are analysed on a more coarse—grain and abstract level. However, due to the amount of
approaches, thereis some further research necessary to find out which techniques, devel oped
in the real—time—system community, are adaptabl e to utilize code generation.

Bibliography

[ADK*95] Guido Araujo, Srinivas Devadas, Kurt Keutzer, Sharad Malik, Ashok Su-

[AEBK94]

[AGTS9]

[Aikss]

[AJ76]

[AJLSO2]

[AMS7]

[AMOS]

[ANSS3]

[ANSSD]

darsanam, Steve Tjiang, and Albert Wang. Challenges in code generation.
In Peter Marwedel and Gert Goossens, editors, Code Generation for Embedded
Processors, chapter 3, pages 48-64. Peter Marwedel and Gert Goossens, 1995.

Wolfgang Ambrosch, Anton Ertl, Felix Beer, and Andreas Krall. Dependence
conscious register alocation. In Juergen Gutknecht, editor, Programming Lan-
guages and System Architectures, volume 782, pages 125-136. LNCS Series,
Springer—Verlag, Zurich, Switzerland, March 1994.

Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code gener-
ation using tree matching and dynamic programming. ACM Transactions on
Programming Languages and Systems, 11(4):491-516, October 1989.

A. Aiken. Compaction—Based Parallelization. PhD thesis, Department of Com-
puter Science, Cornell University, Ithaca, New York, 1988. TR 88-09-22.

Alfred V. Aho and S. C. Johnson. Optimal code generation for expression trees.
Journal of the ACM, 23(3):488-501, 1976.

Vicky H. Allan, J. Janardhan, R.M. Lee, and M. Srinivas. Enhanced region
scheduling on a program dependence graph. In MICRO-25, pages 72-80, 1992.

Vicky H. Allan and Robert Mueller. Phase coupling for horizontal microcode
generation. In MICRO-20, pages 115-125, 1987.

Guido Araujo and Sharad Malik. Optimal code generation for embedded memory
non-homogeneous register architectures. In ISSS 95, Princeton University,
1995. Submitted to Intl. Symp. on System Synthesis.

Alexander Aiken and Alexandru Nicolau. A developement environment for
horizontal microcode. | EEE Transactions on Software Engineering, 14(5):584—
594, May 1988.

Alexander Aiken and Alexandru Nicolau. Perfect pipelining: A new loop
parallelization technique. In European Symposium on Programming, volume
300. LNCS Series, Springer—Verlag, 1988.

104

DIDLIVORAFTTY 1UO

[ASUSS]

[BBH+94]

[BCTO1]

[BCTY4]

[Beaol]

[BEHO1]

[Bel66]

[Ben94]

[BFMR92]

[BGG*89]

[BGS94]

[BGS95]

Alfred V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques
and Tools. Addison-Wesley, New York, 1986.

Steven Bashford, Ulrich Bieker, Berthold Harking, Rainer Leupers, Peter Mar-
wedel, Andreas Neumann, and Dietmar Voggenauer. The mimola language
version 4.1. Internal Report, University of Dortmund, September 1994.

Preston Briggs, K. Cooper, and L. Torczon. Aggressive live range splitting.
Technical report, Rice University, 1991.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register alocation. ACM Transactions on Programming Languagesand
Systems, 16(3):428-455, May 1994.

Steven John Beaty. Instruction Scheduling Using Genetic Algorithms. PhD
thesis, Department of Mechanical Engineering, Colorado State University, Fort
Collins, Colorado, Fall 1991.

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register
allocation and instruction scheduling for RISCs. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 122-131, Santa Clara, California, 1991.

L.A. Belady. A study for replacement algorythmsfor avirtual—storage computer.
IBM System Journals, 5(2):78-101, April 1966.

Manuel Enrique Benitez. Register Allocation and Phase Interactions in Retar-
getable Optimizing Compilers. PhD thesis, University of Virginia, May 1994.

Jean-Michel Berge, Alain Fonkoua, Serge Maginot, and JaquesRouillard. VHDL
Designers Reference. Kluwer Academic Publishers, 1992.

D. Bernstein, D. Goldin, M. Golumbic, H. Krawczyk, Y. Mansour, |. Nahshon,
and R. Pinter. Spill code minimization techniquesfor optimizing compilers. S G-
PLAN Notices, 24(7):258-263, July 1989. Proceedings of the ACM SIGPLAN
'89 Conference on Programming Language Design and Implementation.

David A. Berson, Rgjiv Gupta, and Mary Lou Soffa. Resource spacling: A
framework for integrating register allocation in local and globa schedulers.
Working Conf. on Parallel Architectures and Compilation Techniques, August
1994.

David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Gurrr: A globa unified
resource requirements representation. SIGPLAN Notices, 30(4):23-34, April
1995. Proceedings of the ACM SIGPLAN on Intermediate Representations
IR 95.

1V0

[BHE91]

[BMO9Q]

[Bragl]

[Bragds]

[Brig2]

[BS95]

[CAC*81]

[CDN94]

[CF87]

[CFR*89]

[CFR+91]

DIDLIVORAFTY

David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The Marion system
for retargetableinstruction scheduling. SIGPLAN Notices, 26(6):229-240, June
1991. Proceedings of the ACM SIGPLAN '91 Conference on Programming
Language Design and | mplementation.

R.A. Ballence, A.B. Maccabe, and K.J. Ottenstein. The program dependence
web: A representation supporting control—, data—, and demand—driven interpret-
ation of imperative languages. In Proceedings of the SGPLAN' 90 Conference
on Programming Language Design and Implementation, pages 257-271, June
1990.

David G. Bradlee. Retargetable instruction scheduling for pipelined processors.
PhD Thesis 91-08-07, Dept. of Computer Science, Univ. of Washington, 1991.

Marc Michael Brandis. Optimizing Compilers for Structured Programming
Languages. PhD thesis, ETH Zurich, 1995.

Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice
University, Houston, Texas, April 1992.

Thomas S. Brasier and Phillip H. Sweany. Craig: A practical framework for
combining instruction scheduling and register assignment. In PACT’ 95, Limas-
sol, Cypros, 1995.

G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and PW.
Markenstein. Register allocation via coloring. Computer Languages, 6(1):47—
57, January 1981.

Andreas Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioning of variables
for multiple register-file vliw architectures. In Proceedings of the International
Conference on Parallel Processing, pages | 298-301, 1994.

Ron Cytron and Jeanne Ferrante. What is a name? - the value of renaming
for parallelism detection and storage allocation. In Proceedings of the Sxteenth
International Conference on Parallel Processing, pages 19-27, University Park,
Pennsylvania, 1987. The Pennsylvania University Press.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth .
Zadeck. An efficient method of computing static single assignment. SGPLAN
Notices, pages 25-35, January 1989. Proceedings of the ACM S GPLAN '89
Conference on Programming Language Design and I mplementation.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth .
Zadeck. Efficiently computing the static single assgnment and the control
dependence graph. ACM Transactions on Programming Languagesand Systems,
13(4):451-490, October 1991.

DIDLIVORAFTTY 11U/

[CH84]

[CHOO]

[CK91]

[Coh94]

[DeWT76]

[DLSM81]

[DST80]

[DT76]

[Ellg6]

[Emm9Z]

[EN894]

[EN89b]

F.C. Chow and JL. Hennessy. Register allocation by priority—based coloring.
SIGPLAN Notices, 19(6):222-232, June 1984. Proceedings of the ACM SIG-
PLAN’ 84 Symposium on Compiler Construction.

Fred C. Chow and John L. Hennessy. The priority-based coloring approach to
register allocation. ACM Transactionson Programming Languagesand Systems,
12(4):501-536, October 1990.

David Callahan and Brian Koblenz. Register alocation via hierarchical graph
coloring. SSGPLAN Notices, 26(6):192-203, 1991. Proceedings of the ACM
S GPLAN '91 Conference on Programming Language Design and I mplementa-
tion.

William Eden Cohen. Automatic Construction of Optimizing, Parallelizing Com-
pilers from Specification. PhD thesis, Purdue University, December 1994.

D.J. DeWitt. A Machine—l ndependent Approach to the Problem of Optimal Ho-
rizontal Microcode. PhD thesis, Department of Computer and Communication
Science University of Michigan, Ann Arbor, MI, 1976.

Scott Davidson, David Landskov, Bruce D. Shriver, and Patrick W. Mallet. Some
experiments in local microcode compaction for horizontal machines. |1EEE
Transactions on Computers, C-30(7):460-477, July 1981.

P. J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common
subexpression problem. Journal of the ACM, 27(4):758-771, 1980.

S. Dasguptaand J. Tartar. The identification of maximal parallelismin straight—
line microcode. | EEE Transactions on Computers, C-25(10):986-992, October
1976.

JR. Ellis. Bulldog: A compiler for vliw architectures. The MIT Press, Cam-
bridge, Mass., 1986.

H. Emmemann. Code selection by regular controlled term rewriting. In
R. Giegerich and S.L. Graham, editors, Code Generation: Concepts, Tools,
Techniques ,Workshop in Computing Series, pages 3-29. Springer—Verlag, Ber-
lin, Heidelberg, 1992.

K. Ebcioglu and T. Nakatani. A new compilation technique for parallelizing
loops with unpredictable branches. In 2nd Workshop on Programming Lan-
guages and Compilersfor Parallel Computing, 1989.

K. Ebcioglu and Alexandru Nicolau. A global resource—constrained paral-
lelization technique. In Proceedings of the 2nd International Conference on
Supercomputing, pages 154-163, 1989.

1Vo

[ESL89]

[FH88]

[FHKM94]

[FHP924]

[FHP92b]

[Fis81]

[FOWST]

[FRO1]

[Fre74]

[FSWO4]

[GasB9]

[GFHS2]

[GH88]

DIDLIVORAFTY

Helmut Emmelmann, Friedrich-Wilhelm Schroer, and Rudolf Landwehr. BEG
— A generator for efficient back ends. SGPLAN Notices, 24(7):227-237, duly
1989. Proceedings of the ACM SIGPLAN 89 Conference on Programming
Language Design and | mplementation.

Field and Harrison. Functional Programming. Addison—Wesley, 1988.

Andreas Fauth, G. Hommel, A. Knoll, and C Mueller. Globa code selection
for directed acyclic graphs. In Peter A. Fritzson, editor, Compiler Construction,
volume 786 of LNCS, pages 128-141. Springer—Verlag, Eddinburgh, U.K., April
1994. 5'th International Conference, CC' 94.

C. Fraser, R. Henry, and Todd A. Proebsting. Engeneering a smple, efficient
code-generator generator. ACM Letters on Programming Languages and Sys-
tems, 1(3):213-226, September 1992.

C. Fraser, R. Henry, and Todd A. Proebsting. BURG — fast optimal instruction
selection and tree parsing. SSGPLAN Notices, 27(4):68-76, April 1992.

JA. Fisher. Trace scheduling: A technique for global microcode compaction.
| EEE Transactions on Computers, C-30(7):478-490, July 1981.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depend-
ency graph and its use in optimizations. ACM Transactions on Programming
Languages and Systems, 9(3):319-349, July 1987.

Stefan M. Freudenberger and John C. Ruttenberg. “ Phase Ordering of Register
Allocation and Instruction Scheduling” . In Robert Giegerich and Susan L. Gra-
ham, editors, “ Code Generation — Concepts, Tools, Techniques’ , Proceedings
of the International WWorkshop on Code Generation, Dagstuhl, Germany, 20-24
May 1991, Workshops in Computing, pages 146-172. Springer-Verlag, 1991.
ISBN 3-540-19757-5 and 3-387-19757-5.

R.A. Freiburhouse. Register allocation via usage counts. Communications of
the Association of Computer Machinery, 17(11):638-642, November 1974.

Chrigtian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata for
code selection. Acta Informatica,Springer-\erlag, pages 741-760, 1994.

F. Gasperoni. Compilation techniques for vliw architectures. Technical report,
Courant Institute of Mathemathical Science, New York University, March 1989.

Mahadevan Ganapathi, C.N. Fisher, and J.L. Hennessy. Retargetable compiler
code generation. Computing Surveys, 14(4), October 1982.

J. Goodman and W. Hsu. Code scheduling and register allocation. In Proceedings
of the ACM SIGPLAN ’ 88 Conference on Programming Language Design and
Implementation, 1988.

DIDLIVORAFTTY 1U9

[GJ79]

[GP92]

[GR77]

[GS90]

[GSS89]

[Har92]

[Heio3]

[Heng94]

[Hensob]

[Hen89c]

[Hon94]

[IM86]

[Joho4]

Michael R. Garey and David S. Johnson. Computers and intractability: A guide
to the theory of np—completness. W.H. Freemann & Co, 1979.

Milind Girkar and Constantine D. Polychronopoulos. Automatic extraction of
functional parallelism from ordinary programs. |EEE Transactions on Parallel
and Distributed Systems, 3(2):166-178, March 1992.

S.L. Graham and R.S.Glanville. A new method for compiler code generation.
Conference Record of the Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 231-240, 1977.

Rajiv Guptaand Mary Lou Soffa. Region scheduling: An aproach for detecting
and redistributing parallelism. |EEE Transactions on Software Engineering,
16(4):421-431, April 1990.

Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register alocation via clique
separators. Proceedingsof theACM SIGPLAN ' 89 Conferenceon Programming
Language Design and Implementation, pages 264—274, July 1989.

R. Hartmann. Combined scheduling and data routing for programmable asic
systems. In Proceedings of EDAC’ 92, pages 486-490, March 1992.

Werner Heinrich. Formal Desciption of Parallel Computer Architectures as a
Basis of Optimizing Code Generation. PhD thesis, TU Munich, 1993.

R. Henry. Algorithmsfor table—driven code generators using tree pattern match-
ing. Technical Report 89-02-03, Computer Science Department, University of
Washington, Seattle, WA 98195 USA, 1989.

R. Henry. Encoding optimal pattern selection in atable—-driven bottom—up tree
pattern matcher. Technical Report 89-02-04, Computer Science Department,
University of Washington, Seattle, WA 98195 USA, 1989.

R. Henry. Performance of table—driven code generatorsusing tree pattern match-
ing. Technical Report 89-02-02, Computer Science Department, University of
Washington, Seattle, WA 98195 USA, 1989.

Seongsoo Hong. Compiler—Assisted Scheduling for Real—Time Applications. A
Satic Alternative to Low-Level Tuning. PhD thess, University of Maryland,
1994.

M.S. Johnson and T.C. Miller. Effectiveness of a machine-level global optim-
izer. SIGPLAN Notices, 21(7):99-108, July 1986. Proceedings of the ACM
SIGPLAN’ 86 Symposium on Compiler Construction.

Richard Craig Johnson. Efficient Program Analysis Using Dependence Flow
Graphs. PhD thesis, Graduate School of Cornell University, 1994.

11U

[JPO3]

[KM90g]

[KM90b]

[Kog91]
[LA83]

[Lav62]

[LCGM94]

[LDSM8O0]

[LH86]

[Ling3]

[LM94]

[Man93]

[Mar93]

[MB83]

[ME92]

DIDLIVORAFTY

Richard Johnson and Keshav Pingali. Dependence-based program analysis.
SIGPLAN Notices, 26(6):78-89, 1993. Proceedings of the ACM SGPLAN 93
Conference on Programming Language Design and Implementation.

K. Knobe and A. Méeltzer. Control tree based register allocation. Technical
report, COMPASS, 1990.

Davis Ku and Giovanni De Micheli. Relative scheduling under timing con-
straints. 27th ACM/IEEE Design Automation Conference, pages 59-64, 1990.

Peter M. Kogge. The Architecture of Symbolic Computers. McGraw—Hill, 1991.

J. Lah and D.E. Atkins. Tree compaction in microprograms. In Proceedings of
the 16th Annual Wbrkshop on Microprogramming, pages 23-33, 1983.

S.S. Lavrov. Store economy in closed operator schemes. Journal of Computa-
tional Mathematics and Mathematical Physics 3, 1962. 1(4):687—701.

Dirk Lanner, Marco Cornero, Gert Goossens, and Hugo De Man. Data routing:
a paradigm for efficient data—path synthesis and code generation. In Proc. 7th
|EEE/ACM Int. Symp. on High-Level Synthesis, May 1994.

D. Landskov, S. Davidson, B.D. Shriver, and PW. Mallet. Loca microcode
compaction techniques. ACM Computing Surveys, 12(3):261-294, 1980.

JR. Larus and PN. Hilfinger. Register alocation inthe spur lisp compiler.
SIGPLAN Notices, 21(7):255-263, July 1986. Proceedings of the ACM SIG-
PLAN’ 86 Symposium on Compiler Construction.

JL. Linn. Srdag compaction — a generalization of trace scheduling to increase
the use of context information. In Proceedings of the 16th Annual Wbrkshop on
Microprogramming, pages 11-22, 1983.

Rainer Leupers and Peter Marwedel. Instruction set extraction from pro-
grammable structures. In Proc. EURO-DAC 1994. 1994. http://Is12-
www.informatik.uni-dortmund.de/publications/brief.html.

M. MorrisMano. Computer System Architecture. PrenticeHall Internal Editions,
1993.

Peter Marwedel. Mssv: Tree-based mapping of algorithmsto predefined struc-
tures. Technical Report Report No. 431, Department of Computer Science,
University of Dortmund, January 1993.

D.W. Matula and L.L. Becks. Smallest-ast ordering and clustering and graph
coloring algorithms. Journal of ACM, 30(3):417-427, July 1983.

S. Moon and K. Ebcioglu. An efficient resource constraint global scheduling
technique for superscalar and vliw processors. In M I[C' RO, December 1992.

DIDLIVORAFTTY 111

[Nic84]

[Nic85]

[NNO2]

[NN93]

[NN94]

[NPO3]

[NP94]

[NPOS5]

[NPWO1]

[PBJS90]

[PFO2]

[Pin93]

Alexandru Nicolau. Parallelism, Memory Anti—aliasing, and Correctness |ssues
for a Trace Scheduling Compiler. PhD thesis, Department of Computer Science,
Yale University, New Haven, Conn, December 1984.

Alexandru Nicolau. Percolation scheduling: A parallel compilation technique.
Technical report, Department of Computer Science, Cornell University, Ithaca,
New York, May 1985.

Steven Novack and Alexandru Nicolau. An efficient global resource constrained
technique for exploiting instruction level paralelism. In Kang G. Shin, editor,
Proceedings of the International Conference on Parallel Processing, pages ||
297-301, August 1992.

Steven Novack and Alexandru Nicolau. Trailblaizing: A hierarchical approachto
percolation scheduling. Technical Report TR-92-56, Irvine University, August
1993.

Steven Novack and Alexandru Nicolau. Mutation scheduling: A unified ap-
proach to compiling for fine-grain parallelism. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers
for Parallel Computing, volume 892 of LNCS, pages 16-30. Springer—\Verlag,
Ithaca,NY,USA, August 1994.

Cindy Norrisand L. Pollok. A scheduler—sensitive global register alocator. In
Proceedings of Supercomputing’ 93, 1993.

Cindy Norrisand L. Pollok. Register allocation over the program dependence
graph. SIGPLAN Notices, 1994. Proceedings of the ACM S GPLAN ’'94 Con-
ference on Programming Language Design and Implementation.

Cindy Norrisand L. Pollok. Register allocation sensitive region scheduling. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT’ 95), 1995.

Alexandru Nicolau, R. Potasman, and H. Wang. Register allocation, renaming
and their impact on parallélization. In Languages and Compilers for Parallel
Computing, volume 589. LNCS Series, Springer—Verlag, 1991.

Keshav Pingali, Micah Beck, Richard Johnson, and Paul Stodghill. Depen-
dence flow graphs. An algebraic approach to program dependencies. http://cs-
tr.cs.cornell.edu/TR/ICORNELLCS: TR90-1152/Print, September 1990.

Todd A. Proebsting and Charles N. Fisher. Probabilistic register allocation. In
Proceedingsof the ACM SIGPLAN ' 92 Conference on Programming Language
Design and Implementation, pages 300-310, June 1992.

S.S Pinter. Register allocation with instruction scheduling. In Proceedings of
the ACM SIGPLAN ’93 Conference on Programming Language Design and
I mplementation, pages 248-257, 1993.

11z

[PLGSS]

[PLMS95]

[RT74]

[San94]

[SDJs4]

[SS93]

[WM95]
[YST74]

DIDLIVORAFTY

Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation for
expression trees. An application of BURS theory. In Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages,
pages 294-308, San Diego, California, January 1988.

Pierre G. Paulin, Clifford Liem, Trevor C. May, and Shailesh Sutarwala. Flex-
ware: A flexible firmware developement environment for embedded systems.
chapter 4, pages 67-84. Kluver Academic Publishers, 1995.

C.V. Ramamoorthy and M. Tsuchiya. A high-evel language for horizontal mi-
croprogramming. | EEE Transactions on Computers, C-23(8):791-801, August
1974.

Nandakumur Sankaran. Program optimizations via locality. Master’s thes's,
Graduate School of Clemson University, December 1994.

B. Su, S. Ding, and L. Jin. An improvement of trace scheduling for global
microcode compaction. In Proceedings of the 17th Annual Workshop on Micro-
programming, pages 78-85, 1984.

Vivek Sarkar and Barbara Simons. Parallel program graphs and their classi-
fication. In Uptal Banerjee, David Gelernter, Alex Nicolau, and David Padua,
editors, Languages and Compilers for Parallel Computing, volume 768, pages
633-655, Portland, Oregon, USA, August 1993. Springer LNCS.

Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison Wesley, 1995.

S.S. Yau, A.C. Schowe, and M. Tsuchhiya. On storage optimization of horizontal
microprograms. In M IC' RO — 7, pages 98-106, Pao Alto, CA, October 1974.
Proceedings of the 7th Micro Programming Workshop.

| ndex

X—derivation tree, 44
g-computation, 46
non-chain rule, 43
3—-address code, 7

abstract machine operations, 33
assignment statement, 8

basic block, 10

basic block graph, 10
BEG, 52

behavioral models, 21
binding, 20

bit position, 28

bit range, 28
bundling, 100
burg, 52

CBC, 52

chain rule, 43

chains, 60

CHESS, 100

CISC, 25

coalescing, 66

code generation, 5

code selection, 19

code selector generator, 39
compaction, 20
compensation code, 87
conditional expression, 8
conflict, 28

contol flow graph, 9
control dependence, 11
control dependencegraph, 11
control memory, 22
control unit, 22

control word, 22

data dependence graph, 13

113

dataflow, 12

dataflow graph, 14

data path operations, 60
dataready, 84

dataready set, 82
def-usechain, 12

def—use graph, 12

defined, 63

definition of avariablev, 8
dependence flow graph, 16
dominator, 10

dominator tree, 10
dynamic programming, 39

early register allocation, 96
encoding conflicts, 27
encoding function, 32

finitetree automaton, 46

global register allocation, 63
GRIP, 88
GURRR, 16

hierarchical task graph, 17
hierarchical task graphs, 90
homogeneoustree language, 40
horizontal, 81

iburg, 52

immediate dominator, 10
immediate post—dominator, 10
insruction scheduling, 20
instance, 42

instruction cycle, 22
instruction set models, 21
integrated prepass scheduling, 98
interfere, 63
interferencegraph, 63

114

lateregister allocation, 96 program dependenceweb, 17
linear pattern, 41 program optimizations, 5

list scheduling, 81

|ivel’ange, 63 ranked alphabet, 40

reachable, 8

real time systems, 102
region scheduling, 81
register allocation, 20
register allocator, 62

liverange splitting, 65
livevariable, 63

local compaction problem, 82
local register allocation, 63

machine expression pattern, 32 register assigner, 62
machineinstruction, 25 register assgnment, 20
machineinstruction format, 28 register transfer language, 25
machineinstruction string, 27 register transfer level, 25
machine operation, 25 regular tree grammar, 43
machine operation pattern, 32 regular tree grammars, 39
machine oper ation patterns, 25 rematerialization, 97
machine oper ation scheme, 31 resdual control, 32

match, 41 resour ce allocation, 20
microinstruction, 22 resource barriers, 90
microoper ation, 22 resour ce conflicts, 27
microprogram, 22 resour ce machine operation, 31
microprogram counter, 22 RISC, 20

MIF restriction, 30 riselimit, 84

migration, 88 RTG Criteria, 59

MIMOLA, 100

mixed models, 21 semantical analyses, 5
signature Sigs, 40

M SSQ_’ 100 . software pipelining, 86

mutation scheduling, 100 structural models, 21

subset construction, 47

noload operation, 32 -
subgtitution, 41

oper ation specification, 31 syntactical analyses, 5
overspilling, 72 timing constraints, 102
parallel program graph, 17 trace scheduling, 81
partial version, 30 transfer operations, 32
pattern, 41 tree hight reduction, 100
peephole optimization, 3 tree pattern matcher, 42
percolation scheduling, 81, 87 tree pattern matcher generator, 42
perfect pipelining, 86 treepattern matching, 39
phase coupling, 95 Twig, 52

pipelinestalls, 20 typeof arule, 43
post-dominates, 10 useof variablev, 8

post—dc_:mir_lators_, 10 _ used, 63
probabilisticregister allocation, 73
program dependencegraph, 15, 81 value, 63

version, 29
versions, 33
vertical, 81

virtual registers, 33
VLIW, 20, 25

weighted tree automata, 47
weighted tree grammars, 39

110

