
Code Generation for Embedded Processors: An Introduction

P. Marwedel

1 New, 
exible target technologies

As the tendency towards more complex electronic systems continues, many of these systems are
equipped with embedded processors. For example, such processors can be found in cars, and in
audio-, video-, and telecommunication-equipment. Essential advantages of these processors include
their high 
exibility, short design time and (in the case of o�-the-shelf processors) full-custom layout
quality. Furthermore, they allow an easy implementation of optional product features as well as easy
design correction and upgrading. Furthermore, processors are frequently used in cases where the sys-
tems must be extremely dependable1 [32]. In such cases, the re-use of the design of an o�-the-shelf
processor greatly simpli�es dependability analysis.

This contrasts with the limitations of application-speci�c circuits (ASICs): due to their low 
exibility,
the cost for the design and fabrication of ASICs is still very high. Furthermore, this low 
exibility
makes a short time-to-market more di�cult to achieve. Dependability analysis costs may even exclude
ASICs as a target technology.

A short time-to-market can be achieved with �eld programmable gate arrays (FPGAs). But FP-
GAs are not area-e�cient. For example, multipliers require a large proportion of the available area.
Furthermore, FPGAs with programmable interconnect usually do not allow high clocking frequencies.

Embedded processors come in di�erent types. We will classify them according to three di�erent
criteria: 
exibility of the architecture, architectural features for certain application domains, and the
form in which the processor is available. The three criteria can be used as dimensions to form a 3D
processor type space (see �g. 1).

The meaning of these dimensions and their values is as follows:

1. Architectural features for certain application domains

Processors can be designed for restricted or for larger classes of application areas. The two
cases considered here are: \General purpose architecture" (GPA) and \digital signal processors"

(DSPs).

The term \general purpose processor" is used for processors which do not have particular support
for special applications, such as Fourier transforms or digital �ltering.

�This is a reprint of material from the book \P. Marwedel, G. Goossens (ed.): Code Generation for Embedded
Processors, Kluwer, June 1995". Kluwer copyright restrictions apply. Refer to the book for correct crossreferences to
other contributions in the book. This work has been supported by the Commission of the European Communities under
contract BRA 9138 (CHIPS).

1The term dependability includes all aspects of system safety, for example: absence of design faults, comprehensive
testing after manufacturing, reliable components, and error-detection and recovery mechanisms.
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Figure 1: Cube of processor types and some examples

DSP processors [33] contain special features for signal processing: multiply/accumulate instruc-
tions, specialized (\heterogenous") register sets, multiple ALUs, special DSP addressing modes
(for example, for ring bu�ers), and saturating arithmetic operations.

DSPs should also exhibit data-independent instruction execution times or should at least exhibit
only small variations of the execution time. Otherwise, it would be to hard to predict their
real-time response. This requirement a�ects the design of the memory system (use of static
RAM, absence of caches) as well as the design of arithmetic algorithms (e.g. for multiplication
and division).

2. Form in which the processor is available

At every point in time, the design and fabrication processes for a certain processor have been
completed to a certain extent. The two extremes considered here are represented by completely
fabricated, packaged processors and by processors which just exist as a cell in a CAD system. The
latter is also called a core processor (see �g. 1). In-house cores are proprietary cores available just
within one company. They usually have some architectural 
exibility. Cores can be instantiated
from the library to become part of a larger heterogenous chip (see �g. 2). In addition to cores,
heterogenous chips may contain RAMs, ROMs, and special accelerators. With these, much of
the performance penalty caused by the use of 
exible processors can be compensated.
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Figure 2: Core processor as part of a heterogenous chip

3. Con�gurability of the processor

At any point in time, the internal architecture of a processor may either be �xed or still allow
con�gurations to take place.

The two extremes considered here are: Processors with a completely �xed architecture and
\application-speci�c instruction set processors" (ASIPs).

Processors with a �xed architecture or o�-the-shelf processors (see �g. 3) have usually been
designed to have an extremely e�cient layout. Some of them have passed veri�cation procedures,
allowing them to be employed in safety-critical applications.
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Figure 3: O�-the-shelf processors

In contrast, ASIPs are processors with an application-speci�c instruction set. Depending upon
the application, certain instructions and hardware features are either implemented or unimple-
mented. Also, the de�nition of ASIPs may include generic parameters. By \generic parameters"
we mean compile-time parameters de�ning, for example, the size of memories and the bitwidth
of functional units. Optimal selection of instructions, hardware features and values for parame-
ters is a topic which has recently received interest in the literature [5, 38, 23]. ASIPs have the
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potential of requiring less area or power than o�-the-shelf processors. Hence, they are popular
especially for low-power applications.

Corners 1 and 2 of �g. 3 correspond to general purpose architectures (e.g. standard microprocessors)
which can be tailored towards a certain design, for example, by con�guring the number of address
lines, interrupt lines, or power vs. speed options. We could imagine to build processors which can be
con�gured just like FPGAs can be con�gured. For example, it might be possible to save power by
disabling parts of the processor. We could also think of processors as blocks in FPGAs. Unfortunately,
no such processor is known to the authors.

In addition to the three coordinates, there are of course other criteria for classifying processors.

The selection of a certain processor type is very much in
uenced by the application at hand. For
safety-critical automobile applications for example, dependability is the driving requirement. Hence,
validated o�-the-shelf processors may be preferred. For portable equipment, power consumption may
be the driving requirement, leading to the use of power-e�cient ASIPs.

2 Design scenarios for embedded processors

In this section we shortly examine procedures for designing with embedded processors. In general,
systems will consist of both processors and special application-dependent hardware. Hence, both
the software that will run on the processor as well as the hardware have to be designed. Therefore,
hardware and software design are related and the resulting design process is called hardware-software

codesign. The term is not precisely de�ned, but �g. 4 is a generally accepted view of the design 
ow
in hardware-software codesign.
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Figure 4: HW-SW-codesign 
ow

The designer starts with an overall behavioural speci�cation, for example using SpecCharts [16],
Hardware-C [25], a single C process [13] or sets of C processes. The speci�cation is then partitioned
into software parts and hardware parts. Software parts (e.g. a fraction of the C program) are later
compiled onto an envisioned processor. Hardware parts (possibly translated into Hardware-C) are
used as input to a hardware synthesis system. Currently, the state-of-the-art does not guarantee that
the combined design meets performance and other requirements. If the requirements are not met, the
design process must be repeated.
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Let us now have a closer look at the compilation process within this design 
ow. Currently, compilers
for �xed target architectures are employed for this. We argue that they do not provide the 
exibility
we need. During the design, we want to experiment with di�erent target processors. We want to
try out di�erent ASIP parameters, and we want to leave out or add certain processor features. Code
generation which supports this process has to be retargetable. \Retargeting" in this context means:
fast and easy retargeting, simple enough to be handled by the user.

In the codesign environment, simulations are needed at di�erent levels. First of all, the speci�cation
has to be simulatable. This is required in order to check whether or not the speci�ed algorithm really
performs the intended function. Later, the generated code will be simulated using an instruction set
model of the processor. This simulation can take the generated hardware parts into account. Finally,
the processor may also be simulated at the structural level.

If either the design procedure or the generated design could be proven to be correct, this simulation
would not be required. However, at the current state of the art, neither of the two can be proven
correct except in very limited cases.

Many of the codesign applications in this book will consider DSP applications in particular. We will
therefore zoom-in on the design of DSP systems.

An immediate observation in this area is the fact that large amounts of data have to be handled in
simulations. For example, in video applications, one would like to simulate digital signal processing
of movies in real-time. This speed cannot be obtained with general simulators. Therefore, special
simulators have been designed.

Furthermore, considerable e�ort for programming DSP processors seems to be typical for this appli-
cation area (this was con�rmed by several design groups and also mentioned as result of a survey
at Bell Northern Research [27]). Currently, simple assemblers for �xed architectures are the most
frequently used code generation tools. Assemblers are used, because current compilers have problems
with exploiting the special architecture of DSP processors (heterogenous register sets etc.). The use
of assemblers results in a high development e�ort. Also, the reusability is rather low.

The situation is slightly better if compilers are employed. Currently, compilers for �xed targets are
dominating the market. Switching from one target architecture to the next, however, requires changing
the compiler. This can result in a number of side-e�ects: e.g. di�erent compiler pragmas2, di�erent
code quality and a di�erent compilation environment.

We conclude, that a number of design tools for designing with embedded processors is urgently needed.
Especially important are: fast simulators, hardware/software partitioning tools, and compilers. In this
book, we will focus on compilers and code generation.

3 Requirements for design tools

An analysis of the above applications reveals that the design tools for embedded processors have to
be di�erent from design tools for larger computer systems in the following respects:

1. Need for high dependability

Embedded processors directly interact with their environment and therefore must be extremely
dependable. This is especially true for safety-critical applications, where this requirement domi-

2Pseudo comments used to control the compiler.
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nates all others. The requirement for absence of design faults should lead to the use of high-level
languages and should exclude the still wide-spread use of assembly languages in this area.

2. Constraints for real-time response

Embedded processors have to guarantee a certain real-time response to external events. This
requirement is not considered by current development kits. Current compilers have no notion
of time-constraints. Hence, generated assembly code has to be checked for consistency with
those constraints. In many cases, error-prone, time-consuming simulations are used for this.
We believe that it would be better to design smarter compilers. Such compilers should be
able to calculate the speed of the code they produce and should at least be able to compare it
against timing constraints. More sophisticated compilers could use timing constraints to control
optimization e�orts.

3. Demand for extremely fast code

Related to the �rst requirement is the requirement to generate extremely fast code. E�ciency
losses during code generation could result in the requirement to use faster processors in order
to keep hard real-time deadlines. Such faster processors are more expensive and consume more
power. Increased power consumption is frequently not acceptable for portable applications.

The need for generating extremely fast code should have priority over the desire for short com-
pilation times. In fact, compilation times which are somewhat larger than standard compilation
times are acceptable in this environment. Hence, compiler algorithms, which so far have been
rejected due to their complexity, should be reconsidered.

4. Demand for compact code

In many applications (e.g. on heterogenous chips), not much silicon area is available to store the
code. For those applications, the code must be extremely compact.

5. Support for DSP algorithms

Many of the embedded systems are used for digital signal processing. Development platforms
should have special support for this application domain. For example, it should be possible to
specify algorithms in high-level languages which support delayed signals, �xed point arithmetic,
saturating arithmetic operators, and a de�nable precision of numbers. On the other hand,
there is also good news for compiler writers: some language constructs causing a lot of troubles
otherwise are hardly needed in this area. For example, pointers can usually be avoided.

6. Support for DSP architectures

Many of the embedded processors are DSP processors. Hence, their features should be supported
by development platforms. Compilers for DSP architectures should be able to exploit

� Specialized, non-homogenous register sets

DSP processors frequently come with specialized, non-homogenous register sets. Such reg-
ister sets are important for the performance and presumably cannot be removed to simplify
the task of writing compilers.

� The (possibly limited) form of parallel execution usually possible with such processors

Note that even o�-the-shelf processors such as the TMS 320C25 require exploitation of
parallelism. For example, the MAC (multiply and accumulate) instruction performs three
assignments. Some very long instruction word (VLIW) core processors allow even more
parallelism. The inability of current compilers to exploit parallelism seems to be one major
source for their ine�ciency.
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� Special DSP algorithm support

DSP architectures contain special hardware for supporting DSP algorithms, such as ring
bu�ers, bit-reversed addressing for supporting fast Fourier transforms (FFTs), multiplier-
adder chains, etc. This hardware has to be exploited by compilers.

7. Tight coupling between code selection, register allocations, scheduling, and com-

paction

Code generation consists of a number of tasks which can be distinguished: code selection, register
allocation, scheduling and compaction. There is no standard de�nition of these tasks, but the
following de�nitions seem to re
ect the meaning commonly used.

Code selection is the optimized mapping of a certain intermediate representation of the source
program to machine operations. Machine operations can be encoded in (partial) machine instruc-
tions. Each partial machine instruction speci�es machine instruction bits which cause computed
values to be transfered to registers or memory locations. In the case of parallel machines (such as
VLIW machines), several such transfers can be encoded in one machine instruction. Otherwise,
only a single transfer can be encoded in an instruction.

Register allocation maps program variables and intermediate results to machine registers or
register sets. This task also includes the allocation of registers for passing the arguments and
results of procedures and functions.

Scheduling is the task of establishing a partial order among the machine operations selected
during code selection. This partial order has to maintain the semantics of the program. In the
case of parallel machines, it has to allow as much parallel execution as possible.

Compaction is the task of assigning partial machine instruction to machine instructions. As a
result, a total order of machine operations is �xed. Of course, this order has to be compatible
with the partial order computed during scheduling. Compaction is not needed if each transfer
corresponds to one instruction. Note that the MAC instruction of the very popular TMS320C25
encodes three transfers. Since compaction is not needed for many machines, the distinction
between scheduling and compaction is frequently not made.

Unfortunately, code selection, register allocation, scheduling, and compaction are mutually de-
pendent (see pp. ??). Choosing any sequence for these tasks can result in non-optimal code.
Clever cooperation of these tasks is called phase-coupling. Various forms of phase-coupling have
been used, e.g. prediction of the e�ect of following phases or iterations between phases. Tight,
backtrackable integration of all phases has usually been avoided.

Code generation requires a model of the target machine. The processor model used by the com-
piler should by preference contain the necessary structural information, to model e.g. pipelining
e�ects and e�ects of \busy" functional units [19].

8. Retargetable compilers

Especially for the design with ASIP core processors, one would like to create code for the range of
available architectures. One would like to allow application-dependent changes of architectures
and instructions and still have compiler support.

In the current application domain, there is no need for instruction set compatability between
systems, because there are no \user programs". Hence, target processors can be selected ac-
cording to the requirements at hand. Unfortunately, this selection is made di�cult due to
restricted support by development platforms for some processors. This means: the underlying
hardware technology is rather 
exible (especially in the case of ASIPs), but CAD technology is
not. Therefore, the current CAD technology is a bottleneck that should be removed by designing
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retargetable compilers. Such compilers can be used for di�erent target processors, provided that
a target machine description is given to them.

Many of the current compilers are more or less target-speci�c. We believe that retargetability
will be required, at least for a (possibly limited) range of target architectures. Processor cells
frequently come with generic parameters, such as the bitwidth of the data path, the number
of registers, and the set of hardware-supported operations. The user should at least be able
to retarget a compiler to every set of parameter values. A larger range of target architectures
would be desirable to support experimentation with di�erent hardware options, especially for
partitioning in hardware/software codesign.

4 Related Work

In this section on related work, we will focus on approaches for designing retargetable compilers.
Methods addressing other requirements will be mentioned only brie
y.

4.1 Retargetable Compilers

Techniques for retargetable compilers have been published in three di�erent contexts: compiler con-
struction, microprogramming and computer-aided design. We will give a short overview of the contri-
butions for each of the three areas.

4.1.1 Compiler construction

Retargetability has been a design goal for compilers for quite some time.

In the UNCOL [11] approach, it was proposed to compile fromm source languages to n target machine
languages by using m front-ends to compile to a common intermediate format and then using n back-

ends to translate from that format to the target language. This way, m+n tools are required instead
of the m � n tools for a direct translation from each source language to each target language.

This approach turned out not to be feasible in general but to work well for restricted sets of source and
target languages. For example, it worked quite well for the compilation from imperative languages to
all processors used in Apollo workstations. Furthermore, it worked quite well in a compiler based on
formal methods [40]. In both cases, backends were written manually.

Compilers for new architectures can be generated in less time, if pattern matching and covering are
used, such as in the portable GNU C compiler [41]. The following is a short introduction to pattern
matching and covering techniques. Any internal format for an intermediate language is based on
data
ow graphs (DFGs) (see �g. 5 (left)). In that �gure, ref denotes a reference to (background)
memory. The result is implicitly assumed to be stored in a register.

In the simplest form, each of these graphs represents an assignment. In more elaborated forms,
these graphs are generated by data
ow analysis algorithms. Each of the target machine instructions
can be represented by a small graph, too (see �g. 5 (right)). This graph describes the behaviour
implemented by executing that instruction. Nodes labelled +, * or ref, these are assumed to have
register arguments and register destinations, if arguments or destinations are not shown. The character
# represents any constant. In order to implement the source program, the data
ow graph has to be
covered by machine instruction patterns.
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Figure 5: Data
ow graph and instruction patterns

Early compilation schemes were based on very simple instruction sets. It was shown that the problem
of generating optimal coverings is NP-complete even for these instruction sets. Optimal polynomial
algorithms were described for restricted cases, like that of data
ow trees [2].

Exploitation of complex instruction sets was a major goal in the production quality compiler-compiler

project (PQCC) at CMU. Cattell [9] proposed the heuristic maximum munching method (MMM) to
generate \good" coverings. With this technique, the largest instruction matching a section of the
data
ow graph is selected and matching then continues for the remaining parts of the graph. The
result of this technique can be seen in �g. 6 (left). Due to the presence of the large 4-node instruction,
the DFG is covered by a total of four instruction patterns. Edges connecting instruction patterns
correspond to registers.
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Figure 6: Coverings generated by 2 pattern matching methods

The state-of-the-art in the early eighties was described in a survey by Ganapathi, Hennessy et al. [17].

A method which generates optimum coverings for complex instruction sets for data
ow trees was
proposed by Aho, Ganapathi and Tjiang [1]. Fig. 6 (right) shows the result of this algorithm for
our earlier example, assuming equal costs for each instruction. The method is based on dynamic
programming. It is optimal in the sense that the accumulated cost for covering instructions is minimal,
provided that the processor has a single, homogenous register set. Also, it is assumed that the cost of
instructions can be de�ned independently of each other. Keutzer and Wolf have applied this technique
to technology mapping in logic synthesis [24].

Paulin has applied the method of Aho et al. to the design of a retargetable compiler for DSP applica-
tions (see pp. ?? of this book).
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Another important example is that of the CBC-Compiler [15]. The CBC-Compiler assumes that the
target machine is described in the special language nML. Information about this language and its
applications can be found on pp. ?? of this book.

A major new entry into the scene is the CHESS compiler. Details about this compiler and associated
references can be found on pp. ??.

Code selection has also been considered in detail by Emmelmann [12].

4.1.2 Microprogramming

Additional work on compilation was done in the microprogramming context. In contrast to work on
early compilers, this work had to take scheduling and other pecularities into account.

More than a decade ago, several researchers discovered independently that code generation can be
modelled as parsing the source language with respect to a grammar which can be generated from a
structural hardware description (see e.g. Evangelisti [14] and Anceau [3]). Unfortunately, the sequence
in which applicable derivations are selected, a�ects the resulting code quality. General, good methods
for selecting derivations were not described.

Baba et al. [6] presented work on retargetable microprogramming for mainframes. Due to the appli-
cation area, much e�ort went into handling the complicated addressing mechanisms for micro-stores.

Vegdahl [43] extended the work of Cattell to microprogramming. In Vegdahl's approach, no automatic
retargetability was reached. For example, routines for the generation of constants had to be written
manually for each target machine.

Mueller et al. [35], also followed a partially manual approach. For each possible register transfer
operation, corresponding paths in the target structure had to be selected manually. The control code
enabling this path had to be speci�ed as a PROLOG clause. Due to the involvement of manual actions,
the compiler by Mueller (like that of Vegdahl) could only be used for infrequent remapping to new
targets.

Recently, Mavaddat revived the grammar-based approach (see pp. ??). He discovered more details
about this technique, including a nice relation to Lindenmayer-systems.

4.1.3 Computer-aided design

Additional work was done in the area of electronic-CAD.

We are aware of two so-called checkers of executability [4, 42], which try to map a given behaviour
onto a given structure. They do perform pattern matching. However, in the case of programmable
processors, they do not generate binary instructions.

Some high-level synthesis systems are producing programmable processors. They also generate the
required binary code. The Cathedral system [30] and the MSS system [29] fall into this category.
However, they do assume that they are allowed to de�ne or modify the �nal target structure.
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4.1.4 Di�erent levels of retargetability

An analysis of the literature on retargetable compilers reveals that the time required to retarget a
compiler may be quite di�erent:

� In certain cases it may require several months of work, including the rewriting of parts of the
compiler amounts of software. Compilers of this class should be called portable.

� In other cases, new compilers are generated by compilation using a description of the target
processor. The piece of software generating the compiler is called a compiler-compiler. In this
case, retargeting basically consists of writing the target machine description.

� In the extreme case, retargeting a compiler does not even require a recompilation of the compiler
itself. In this case, it does contain all the pattern matching routines. Such a compiler is machine

independent3. Machine independent compilers allow frequent changes of the target (>1 per day).

4.2 Other requirements

Due to the focus of this book, work concerning requirements for code generation other than retar-
getability will be mentioned only brie
y.

1. Dependability

There is a huge amount of references on computing systems dependability. The interested reader
is referred to [32]. It is expected that the demand for dependable computing will increase in the
future and the importance of dependable computing cannot be over-emphasized. Formal meth-
ods for software development are one of the building blocks for dependable real-time computing
(see e.g. [10]).

2. Real-time response

Real-time programming is an area which has been well-studied over the years. There is a lot
of work on real-time programming for process control. This work is essentially based on the
assumption that a real-time operating system is available. Most of this work deals with rather
soft time constraints.

A related area is that of scheduling theory. Again, there is a large amount of work in the area.
The relevance of this work in the context of this book is described in this book (see pp. ??).

Guaranteeing a certain real-time response is an issue that was initially neglected in high-level
synthesis, but is now well-studied. This is especially true for DSP systems with given sample
rates (see e.g. [?] for data-
ow dominated applications). Without any particular reference to
DSP systems, Gebotys, de Micheli and Landwehr have also addressed the issue (see [18, 25, 31]).
Guaranteeing hard real-time constraints in processor-based systems was discussed only recently,
e.g. in a paper by Boriello [7]. It is expected that much more work is required in this area.

3. Extremely e�cient code

Generating e�cient code is an area, which is well studied in compiler construction. Most of the
optimization techniques can be applied in the current context. However, the special requirements
listed above have also to be taken into account. Fortunately, due to reduced compilation speed
requirements, additional techniques become applicable. For example, integer programming can

3Note that the code still is machine dependent.
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be applied for sections of the program (see pp. ?? of this book). For fast compilers, this would
be impossible. Langevin takes advantage of the reduced compilation speed requirements in order
to generate very e�cient code (see pp. ?? of this book).

4. Support for DSP algorithms

Currently available development platforms for DSP processors do already support DSP appli-
cations. For example, the development kit for the Motorola MC 56k [34] comes with assembly
coded libraries for common DSP functions. See pp. ?? for a discussion of advantages and disad-
vantages of certain languages for describing algorithms.

5. Support for DSP architectures

Available C compilers do generate code for DSP processors. However, they hardly exploit the
available hardware features. Hence, it has been reported that the generated code is extremely
poor.

In order to cope with heterogenous register sets, Trellis-diagrams have been used (see pp. ?? of
this book).

6. Coupling between code selection, register allocations, scheduling, and compaction

Papers by Rimey and Hil�nger [39], by Hartmann [21] and by Bradlee [8] are three of the few
papers describing the coupling two compiler phases. A tight integration of phases has been
implemented by Schenk (see pp. ?? of this book).

5 Target models for retargetable compilation

In this section we compare di�erent approaches for modelling target processors. See also Heinrich [22]
for a discussion of target models for code generation.

5.1 Behavioural models

Behavioural models (instruction set models) of processors have been used in compiler construction
for many years. They are the basis for many of the well-known pattern matching methods for code
generation, such as the methods of Glanville [20] and Cattell [9]. Behavioural models provide a high
abstraction of the underlying hardware. However, they do have problems with capturing the e�ects
of pipelines, busy functional units and multiple assignments coded into one instruction word.

5.2 Structural models

Due to the problems with instruction set models, other models of target structures have been investi-
gated.

In the context of our work on the MIMOLA hardware design system, we have used structural target

models [37]. Structural models for our compilers are complete in the sense that they describe both the
data-path and the controller. Amongst others, the advantage of such complete models is that they
can be simulated with an RTL-structural simulator.

Structural models contain signi�cantly more details than the instruction set model and the compilation
speed that can be achieved with this model may be lower than that of traditional compilers. But
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structural models are well-established models in computer-aided design. So-called register-transfer
netlists are available in most design environments and it would be great, if compilers could be generated
from these. This would avoid any risks in the communication between hardware designers and compiler
writers. Furthermore, structural models are able to describe all the features of modern processors.

5.3 Mixed models

Due to the problems with purely behavioural models and in an attempt to avoid detailed netlists,
mixed models have been tried. For example, the target model of FlexWare [27] is such a mixed model.
This model describes both the instructions as well as some of the hardware components. A mixed
approach is also used with the language nML (see pp. ??). For nML, the intention is to capture to
instruction set from the programmer's manual and to include just enough structural information to
make the code e�cient.

The translation from behavioural models to structural models is possible with behavioural synthesis,
but sometimes requires special techniques [28]. Mapping mixed models to a canonical form is possible
with recent instruction set extraction techniques [26].

6 Summary

In this introduction, we have classi�ed the di�erent types of embedded processors that exist. We have
sketched design procedures for systems containing such processors and we have listed the requirements
for generating code for these. Furthermore, we have included an overview of related work, with
emphasis on retargetability. Finally, we have distinguished di�erent target machine models for use in
retargetable code generation.
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