Retargetable Self-Test Program Generation Using Constraint Logic Programming

Ulrich Bieker, Peter Marwedel
University of Dortmund, Department of Computer Science, D-44221 Dortmund, Germany

Abstract - This paper presents new techniques in two different resulted in a low efficiency and a poor coverage of real faults.

areas. Firstly, it proposes a solution to the problem of testing Furthermore, this method was never integrated into a CAD sys-
embedded processors. Towards this end, it discusses the autoem.

matic generation of executable test programs fromaspecification_l_h int i hof L d Patel for testi .
of test patterns for processor components. Secondly, the paper € interestng approach of Lee an atel for testing micro-

shows how constraint logic programming (CLP) improves the PrOC€SSors [17] uses the internal structure and a bidirectional

software production process for design automation tools. The discrete-relaxation technique, but does not aim at generating
advantages of CLP languages include: built-in symbolic variables Self-test programs.

and the built-in support for constraints over finite domains such This was different for the work on MSST by G. Kriiger [15,
as integers and Booleans. 16]. Krlger exploited knowledge about the internal processor
1. INTRODUCTION structure and consequently was able to generate more efficient

During the recent years, there has been a significant shift wiE‘?é programs. MSST is a tool for hierarchical test generation:

way complex electronic systems are implemented: vari § user can specify test patterns for the processor compont_ants
E@J\; MSST then produces executable programs generating

types of embedded processors are being used in many des . A
These types include: off-the-shelf DSPs (e.g. TMS320C se patterns and monitoring the response. MSST was actually

[27]), application-specific instruction set processors (ASIF%S,ed fo_r testm_g a N|xd_orf proce§sor. _ _ _
see e.g. [2]), application-specific signal processors (ASSME)ST is possibly the first tool with the functionality described
and in-house core processors. The advantages of these pré@@ye, though its implementation has some severe limitations.

sors include: a very high flexibility in performing desigtt is implemented in an imperative language (Pascal) and thus
changes and a short time-to-market. suffers from the poor support of symbolic variables, automatic

This shift in the implementation technology has largely beﬁ@mory n:gnag;:ement and a Iomglsve(lj ;:Iescr{p?o_n séyle.tFl:r:-
ignored by the scientific community, despite the fact that t rmore itis a argg_l?mgra”l z;n dar 1 %Tam ain. bue to Gi
tools for designing systems containing embedded procesﬁ}g\/e reasons cannot be adopted 1o néw requirements

are rather poor. Compiler as well as simulation support t(e the generation of external stimuli, variable instruction

these systems require significant enhancements [18]. word lengths and support of multiple logic values).

The situation is even worse when it comes to testing these é%t_ead of mcrement_ally trying to improve _the S|tuat_|on, we
24.}fe to the conclusion that the problems just mentioned are
9

tems. These systems are tested with ad hoc approaches, tin the traditional h for imol i CAD
although it is well-known that processors can be tested syst erent in the traditional approach for implementing ()

atically by running sophisticated test program diagnostié ware. Tools for VLSI CA.D systems, commonly written in
Such test programs are used extensively for mainframe pro Q_eratwt_a languages, cons.|§t of a very Iargg gmount of source
sors, but less so for embedded processors. Moreover, due t8?|q8 : Mamtenancg, portability and ad_aptablllty are recurring
high price of mainframes, it was acceptable to generate th@r%alems. We realized that programming should proceed at a
test programs manually. For consumer products, this is rH%ch higher level of abstraction and hence started to look at

longer adequate and alternate, cost-effective ways of tesfiQijware technologies which provide a fundamentally different
embedded processors have to i)e found approach. We foun@LP to be very well suited to our require-

ments.
2. RELATED WORK Test program generation relies heavily on backtracking and the

Systematic ways for testing microprocessors were fitgle of symbolic variables. Hence, logic programming lan-

described by Abraham et al. [26, 7]. Their proposal relied gnages such as Prolog provide a higher level of abstraction for

functionaltesting, i.e. it did neither require nor exploit knowlimplementing tools. Correspondingly, it was used by several

edge about the internal structure of the processor to be testeskarchers for this purpose [13, 25, 8]. Unfortunately, the exe-

After some initial enthusiasm it was recognized that thisition mechanism of standard Prolog results in a lot of back-
tracking and long execution times.

The situation is different fa€onstraint Logic Programming
(CLP) languages [5], which became recently available (Prolog
Il [23], CHIP [9], ECLIPSE [10]). CLP systems come with
built-in mechanisms for solving constraints over various
domains. Satisfiability checkers support Boolean constraints

and IP-solvers support integer domains. Hence, tools carfdyable input language to specify self-test programs. A self-
implemented at a higher level of abstraction. For example, itést program is specified by a test engineer, well acquainted
possible to take advantage of the bidirectionality of clauses avith the RT structure of the processor. It is expected that a test
simulate logic gates in both directions. In contrast to pure Pemgineer runs ATPG tools for each RT component to be tested,
log, no backtracking is required for forward simulation. Furesulting in a set of test patterns for each RT component. There-
thermore, several problems can be handled concurrentlyfdme, the fault coverage depends on the ATPG tool and the
specifying the subproblems with constraints and solve themiriternal structure of the RT component to be tested. RESTART
one step instead of solving subproblems sequentially.CLP laiilt achieve 100% fault coverage if the test patterns provided
guages have been used for test generation [24] for the d@tehe ATPG tool covers 100% of the component faults and if
level. Our work is the first one using CLP languages at the regee generation is successful for all patterns. The test patterns
ister transfer level. are made available using TCL and RESTART generates binary

It turns out that the techniques we propose can also be apfiRée and stimuli which applies every test pattern to the RT
for retargetable code generation for general programming I§AMPonents and checks the response. In this way, RESTART is
guages [11, 12, 18, 21, 22, 28]. In fact, our techniques are C@gi_erarchical test generation tool and RESTART based on

ble of compiling a restricted set of programs into machigédle fault assumption, is independent of a special fault model.

code. With our approach the obtained fault coverage depends on the
TCL program. The human test engineer is responsible for: fault
3. RESTART: OVERVIEW model, test strategy, fault coverage and test length. If specific

The retargetable compil®@ESTART (REtargetable Self-Testhardware features for increasing the testability (e.g. a scan
progrAm geneRaTion), automatically compiles a user spegath) is available in the processor and described within the RT
fied self-test program onto the given target processor. Htricture, this hardware can be used by RESTART.

result is an executable micro- or machine code and a sefgéresult of RESTART is an executable program and a set of
external stimuli. Generated programs are intended to be usegl@srnal stimuli patterns. The program consists of a set of
internal off line tests e.g. after a procesestarts. RESTART jnstryctions. Each instruction is a pair (Label, BitString), i.e. an
(Fig. 1) contains two inputs (processor description, test PiRidress within the instruction memory address range and a bit
gram specification) and two outputs (binary code, stimuli). Wging consisting of 0, 1, X. A stimuli pattern is a triple (Prima-

rylnputName, Time, BitString). The time at which the bit string
must stimulate the primary input is computed with respect to
g oS code the clock cycle time of the processor. To validate the generated
ardware UE
d specificatio

binary code an integrated simulator [6, 4] is able to simulate the
circuit together with program and stimuli.

A summary of the main features of RESTART includes:

a)Optional compaction of the generated code.

b)Generation of external stimuli.

c)Provides a comfortable self-test program specification lan-
guage (TCL).

d)Declaration of an arbitrary number of variables in a register
component.

e)Concurrent application of transformation rules during
resource allocation.

f) Concurrent and global scheduling, compaction and binding
of the code.
@ g)Support for residual control.
The task of RESTART is to compile self-test programs. Com-
primary

escription

anguage

circuit analysi

e

| retargetable self-test code generatlor

Uy

pared to general programming languages, TCL is just a

self-test

Fig. 1 program restricted language. RESTART exploits the special features of
v pattern TCL programs to efficiently generate code for a wide range of

use the description of the target architecture (hardware) anc@fitectures. Self-test programs contain a large amount of
test program (software) asputs. The target architecture conditional jumps, comparison operations and constants (the
(processor) is expected to be described at the register trarf§férpatterns) to be allocated. Therefore RESTART has knowl-

level by a hardware description language (VHDL [14] &dge about a set of transformation rules, e.g. for IF statements
MIMOLA [20]). and comparison expressions. The special features of

TCL (Test program speCification Language) serves as a C(I)?rTI]E_START which are helpful to compile self-test programs are:

1. Compaction of the generated code is optional. The compa&- Component Testmakes the compiler produce code for
tion phase can be switched off to simplify subsequent faidsting the functionality of any module, i.e. the related mod-
localization. If many instructions are executed in parallel te’s input ports are stimulated with the specified values, and
could be more difficult to localize a fault. then the outputs are checked for correctness. The programmer

2. Generation of external stimuli is possible, because the cadeds only to specify the input values which should be hierar-
generator must be able to allocate constants for all sigraigally generated by a test pattern generator. An integrated
including primary inputs. structure simulator calculates the corresponding output values.

3. To deal with different hardware realizations for conditionAln underscore may be used to denote a port of the module
jumps and comparison operations, a concurrent applicatwmich is not relevant to the test whereas X denotes a binary
of transformation rules during resource allocation is peten't care.
formed (i.e. code selection and resource allocation are cBUample: TEST ALU(%00,_, #FF);

pled). . : i . i
4. In order to allocate constants efficiently, potential constar’nAt‘ Loop is usepl 0 apply one of the f'rSt. four.kmds of state
nts several times with one argument iterating over a range

sources and the paths from these sources to certain desﬁ]ea-)
.) L : of values. Examples:
tions are precomputed in a circuit analysis phase.
The remaining part of the paper is organized as follows: SEQR adr := 0 TO 15 DO RAM/cells[adr] := adr;
tion 4 describes the inputs of the system: hardware and f3R adr := 3 TO 10 DO TEST RAM/cells[adr] = #A;
specification. Section 5 contains the detailed description of fifgR 1:= 3 TO 10 DO TEST RAM/cells[i] := #A;
retargetable code generation process. Section 6 shows™R& i:=0 TO 3 DO TEST ALU(i, #FF, #AA);
experimental results followed by the conclusions. The meaning of the keyword TEST is the following:

4. INPUT SPECIFICATION: HARDWARE AND SOFT- RESTART is dlr.ected to generate code that checks if the output
WARE ports of a certain component are as expected. Therefore a con-

ditional jump is generated:
4.1 PROCESSOR DESCRIPTION IF component answer = expected answer

For the specification of the target processor we use structurg/EN increment program counter ELSE jump to error label;

m.(t)ﬁ %TM%TZpatcﬁgchamrg”er m;st bg E[:'ompleteli/ destcrllﬁerc‘io error occurs, the program continues with the execution of
w or - hardware descriptions must comally, g oyt instruction of the self-test program, otherwise a jump

RT modules, their behavior and their interconnections. Fr Man error procedure is performed. TCL allows the specifica-

this we generate an intermediate tree based format, represtﬁm-of all kinds of tests including memory test loops
ing the target structure as a netlist of RT modules and the ’

behavior of every RT module as a tree (Fig. 5). 5. RETARGETABLE COMPILATION OF SELF-TEST PRO-

4.2 SELF-TEST PROGRAM SPECIFICATION GRAMS o | |
TCL is an imperative language in which the following kinds ¢/ Priefly discuss the circuit analysis phase (Fig. 1) followed
test statementsare allowed to specify a self-test program (% the main part of the work: retargetable compilation of self-

precedes a hexadecimal number; % precedes a binary nu Bg};programs.

a variable location is referred to by <ComponentName>/<Vaxl CIRCUIT ANALYSIS

iableName>): In the circuit analysis phase the given processor is analysed
*An Initialization causes the compiler to produce code f@nd a subset of the instruction set is extracted. The result is a
loading a register or one cell of a memory with a constant itit of microoperations the processor can perform and contains
tialization value. e.g. the following operations: register transfer moves, condi-
Examples: RAM/cells[0] := #FF; REGISTERI/store := 17: tional and unconditional jumps, counter increment operations,
c. The considered subset is powerful enough to deal with the
mpilation of TCL programs as described above.

5.2 RETARGETABLE CODE GENERATION

. . e
*A Read Testmakes the compiler produce code for testing |
a memory cell or a register contains a certain value.

Examples: TEST RAM/cells[0] = #FF; Fig. 2 shows therogram flow of the retargetable compiler. A
TEST REGISTER/store = 17; hardware description, the output of the circuit analysis phase
*An Initialization and Read Test combines an initialization gnd the TCL program serve as inputs. The code generation
with a read test, i.e. the generated code first loads the specifiggse described in the next subsection computes a relocatable
location with a value and then checks if it really contains thfogram. With respect to a certain program counter initializa-

value. tion value, the relocatable program has to be scheduled and
Examples: TEST RAM/cells[0] := #FF; linked to a designated program start address. RESTART is able
TEST REGISTER/store ;= 17; to compact the generated code optionally, in order to allow a)

detailed analyses of the hardware and b) subsequent fault local-

ization. The user is asked if the code should be compactefram the destination (program counter) backwards through the
left uncompacted. Finally unused registers, memories aituit to the sources (condition, program counter, label). The
tristate bus drivers must be disabled and the instructions raulting instruction contains a load operation for the program
composed to complete control store words by adding a pcounter. The control input of the multiplexer is justified with 5.
gram counter increment or jump operation (with respect to thikove example illustrates one possible realization of a TEST
realization of the controller). An absolute program and a setstdtement.

external stimuli is the result. Ioad|PC
RT structur circuit TCL test IF
netlist analysis da specificatio | T
condition TI—||EN EI|_SE
| code generation | increment label

program start program countar Fig. 3 read PC
address init value

contro] condition (from datapath)
\l/—clock

| scheduling, (optional) compaction, bindinb

Iabellﬁ

contrql
label2_. g

With all generated instructions do: PC

1. Disable unused memories and registers if possible. |abe|3%
2. Disable unused tristate drivers if possible.
3. Add increment program counter or unconditional jump

operation if the instruction is not a conditional jump.

Program
Counter
Instruction
Memory

Fig. 4
(binary code) (stimuli patterng Fig. 2 Output |NeXtPC
5.2.1CODE GENERATION case

The task of the code generator is to map a sequence of TCL %’\

statements onto the hardware. Each TCL statement is decon)-

posed into a set afimple instructions consisting of assign- | ¢°nrol of0 of1 of 2 of3 of4 of5

ments and conditional jumps. The main idea of the code | ‘ ‘ |

generation algorithm is as follows: e ot IF

1. Asimple instruction can be represented as a tree. /l\ /l\

2. The behavior of every RT component can be represented d§s condition THEN ELSE condition THEN ELSE
a tree. | | | |

3. Retargetable compilation means: Mapping of a sequence df
. - . . ; label1 PC+ PC+ label 1
simple instruction trees to a netlist where each node con} Fig. 5
sists of a behavior tree of an RT component. Due to the fact that a retargetable compiler has to deal with dif-

Example: Assume, the following conditional jump statemengrent target architectures, different alternatives to map simple
has to be compiled onto a processor with a controller as giyg&ryction trees on RT behavior trees must be taken into
in Fig. 4: account. This is done hyansformation rules. E.g. a state-

IF condition THEN increment program counter ELSE jump to labethent X := Y+1 can be transformed 9 := increment(Y) A

Fig. 3 shows the tree representation of the conditional jugfmparison operation, as needed for the TEST statement,
statement. The controller consists of a program counter,(@@mponent answer = expected answem be transformed to
instruction memory, an incrementer and a multiplexer. THomponent answer - expected answef)). Even loops can
next state of the program counter is selected by the multiplelik@rtransformed:

control signals (control: 3 bits; condition: 1 bit). Fig. 5 showsS<|abel>: REPEAT <block> UNTIL <condition>;

the behavior tree of the multiplexer. (* can be transformed to: *)

IF statements are nested in a CASE construct to allow a con(Slabel>: <block>; y

tional selection of one of two input branches. To compile thPregramcounter := IF <condition>

conditional jump statement, aiocation routine has to search THEN increment(ProgramCounter) ELSE <label>;

for a multiplexer (i.e. a (sub-) tree as shown in Fig. 3), startifig represent transformation rules for simple instructions we

usestructural constraints implemented in CLP. Consider thedecoders. During constant allocation it can be necessary to split
following definitions: a constant bit string into several substrings, in order to deal
Def. 1: Let V = {Xy, ..., X} be a finite set of variables, whichWitr_‘ ports of different bit\/\{idth. This is handled by a concate-
take their values from their finite domaing,D.., D,. A con- nation operator. All substrings are sequentially allocated. Final

straint ¢(Xq, ..., %) between k variables from V is a subset gesult of the allocation is a relocatable program and a set of
the Cartesian Productx ... x Dy,. constraints representing data dependencies, dependencies

The domain of variables within structural constraints is the ggttween addresses etc.

of trees, whereas the domain of variables within linear copince the complete description of the exploitation of con-
straints is the set of integer numbers. straints would exceed the size of this paper, we have used the

concurrent application of transformation rules during alloca-
n to present advantages of CLP languages.

5.2.2SCHEDULING, COMPACTION, BINDING

The meaning is: The tree;Xan be transformed to the treg xAﬁ?f code.generatlon, a relocataple program consisting Of a set
; ; of instructions and a set of partially ordered labels is given.
if tr(X ¢, X,) is true.

)) . B Therefore, three tasks have to be done: A program has to be
Example: Let X; be a comparison operation (A = B). Thep Xgcheduled, linked and optionally compacted. Every label has to
can be transformed to the following trees X be bound to a number within the address range of the instruc-

Def. 2: Let X4, X5 be two variables, both variables representi
a tree. Atransformation rule for a simple instruction is a
structural constraint tr(x X»).

= = = Bl tion memory and a total order of the labels and the correspond-
/ \ /N / \ | ing instructions has to be found. Relocatable code is mapped to
A B 0 / '\ 0 4 (xor) < absolute code. Instructions which can be executed in parallel
VAR /\ can be compacted, i.e. two or more instructions are merged to

A B A Bllx g one instruction.

We performglobal schedulingwhile concurrently compacting
%nd binding the code. Here we make extensive use of linear
the
constraints over the integer domain. In this way it is possible to
)))) . exploit the parallelism of the target processor. Global schedul-
Allocaﬂon: In the fOllOWIng the a”ocaﬂon Of a Slmp|e InStI’UCmg iS possib'e because Of the Specific structure Of the basic
tion is described. In contrast to most previous retargetable c¢jaicks of self-test programs, mainly consisting of move, com-
pilers, allocation and.application of transformation rules can ﬁ‘&rison and conditional jump instructions. A (simplified) for-
done concurrently within a CLP system. Therefore a variai§a| description of the scheduling, compaction and binding
representing a simple instruction which has to be allocatedyihse follows. First we distinguish between absolute code and
the circuit, is constrained to a set of alternative trees. Allocati@ilpcatable code. Thereafter, we define what kind of constraints
starts at the destination (e.g. the left hand side of an assigt-allowed to represent dependencies between variables and
ment) and from there a recursive search backward throughffi|s. Next we define necessary preconditions to merge two

Of course there exist further trees into whichcén be trans-
formed, e.g. commutativity can be exploited by exchanging
sons of a commutative operator.

circuit is performed as follows: instructions. An example illustrates how instructions are
allocate(statement tree, destination) merged together. LeStart, Address, Endandn be natural
The predecessor RT component of the destination is flet@tmbers. Stark Address< End, is the address range of the
mined and the following cases are distinguished: instruction memory and n its width.
a) The statement tree can be mapped to the predetessef. 3:Let L be a set of labels and V be a set of variaBek-
behavior tree: success catable code Rds a tuple RC = (P, C) with P = {(1};) | ,CIL,

b) The predecessor is a register or memory: insert 4 new {{0,1,X} 0 V}"} and C is a set of linear constraints over
control step and use the predecessor as temporary celfjv.
call allocate(statement tree, predecessor)

: , The set V is used to represent dependencies between the
c) A subtree including the root of the statement tree cqn

tructions and the labels. For instance jump addresses usually

mapped to the predecessor behavior tree: call |allgre coded within the instructions and every variahlel W
cate(‘rest’ of statement tree, predecessor) finally represents a binary number

d) The output of the predecessor can be switched fo an
) P P ef. 4: Absolute code ACis a set of tuples AC = { {LI;) |

input (transparent mode): call allocate(statement treQ, i :
predecessor) Start< Lj < End, | O {0,1,X}"}, i.e. L; is a bound label ang |

e) otherwise: fail is the corresponding instruction.

LetP(l, k) be theprojection of a bit string on the k-th bit (high-
Steps a) and d) allow the application of a transformation ruig:. on the left of a bit string, low-bit on the right of a bit string.
Allocation of constants terminates at components allowed e rightmost bit position is 0).

constant sources instruction memory, primary inputs and

Def. 5: Assumed | lj O {{0, 1, X} O V}" are relocatable rently and with a minimum of programming effort (the com-
instructions. The predicatmpatible(l;, I;) is true iff Lk, 0< plete scheduling, compaction and binding phase has about 200
k<n-1: lines of code!) using the built-in constraint solving mechanism

(P(1,K) = P(L,K) O(P(1,k) = X) O(P(,k) = X) O for the integer domain and the Prolog inherent backtracking
(P(i.k) OV OP(I,k) OV) O(P(,k) OV OP(l,k) OV) mechanism.
If compatible(},l;) is true, we say;land | are compatible. 6. RESULTS

Instructions which are compatible are candidates to be CONreiargetable compiler for self-test programs (6500 lines of
pacted. With above formalism, scheduling, compaction agge) has been fully implemented in the constraint logic pro-
b|nd|n_g is redu<_:ed to th_e problem of solving a system of I'negﬁ'ﬁmming language ECLIPSE [10]. Supporting tools are: an
equations and inequalities. event driven bidirectional RT simulator (5800 lines of code)

Example: Consider the following relocatable program RC: and a circuit analyser (2217 lines of code). Half of these lines

RC = ({(L4, (1,0,X,1,1,0,0,1,1, X)), of code are comments and so CLP programs are pretty short
(Lo, (0, X,A,B,D, 0,0,1, 0, X)), compared to imperative implementations (ratio ~ 1:4). We
(Ls, (1, 1,X,0,1,0,1,1, X, X)), applied the system to a variety of digital processors to show the
(Lgy (1, X,X,0,1,0,X,1,1,0)) }, efficiency of the new techniques. The results shown here indi-
{Ligly Lysly lgsly Ly +2=1y, Ly =4, cate that an implementation with CLP can be applied to realis-
D + 2*B + 4*A=L,, O<A, A<l, 0<B, B<1, 0<D, D<1}) tic structures.
RC can be mapped to the absolute code AC: Table 1 describes the example circuits: the general purpose
compactible(ls, 1,) is true => microprocessors simplecpu [6], demo [20] and mano [19];
AC={ (4, (1,0X1,1,0,0,1,1,X)), prips [1] is a coprocessor with a RISC-like instruction set,
(6, (0,X,1.0.0,0,0,1,0,X)), which provides data types and instructions supporting the exe-
(7,(1,1,X,0,1,0,1,1,1,0)) } cution of Prolog programs. The number of RTL components,
The set of constraints C has been resolved: the width of the datapath and the width of the microinstruction
L;=4,,=6,l3=L4,=7,A=1,B=0,D=0 controller is given.

Above formalism isflexible and powerful enough to handle Depending on the complexity of the processor the measured
complicated address restrictions. Linear constraints are gen@éf¢ for the circuit analysis phase ranges from 0.5 seconds up
enough to express strange address generation schemes (@i minutes for complex architectures.

the ones described in [3]). Table 2 shows the results for the retargetable self-test program

Additionally we can specify a program start address and a gi@mpiler. The number of compiled TCL instructions (note,
gram counter initialization value as linear constraints. D&4en a memory test loop is only one TCL instruction), the
dependencies, address relations and relative jumps are speénber of generated instructiongi(¥ the number of gener-
fied as linear constraints. To achieve a sequence of instructiéid stimuli patterns, CPU time in seconds and the ratio (gen-
consecutive labels of instructions normally must have a dated instructions per second) is given. All times are measured
tance of 1 to exp|oit the increment operator of the progré}ﬂ a SPARC 20 workstation. The results for code generation

counter, constraints likejl; - Lj < 1 can be declared. But thiswithout compaction and the results for programs which have
is not necessary, it depends on the given circuit. been compacted are given. It can be seen, that the CPU times

Assume, a relocatable program RP = (P,C) with the set of Iatgtg.fsbcy[h cases are very similar F’eca,use a) the compaction is
L is given where the start instruction of P ig, (I with Lg one very fast and b) the saved time is consumed by the output

L is a special label and, is the corresponding relocatablé1and||ng of more instructions.
instruction. RP is easily linked to a constant program start Table 1: Example Processors Circuit Information

address by just extending the set of constraints C with the—— - - - -
constraint 's — AO i e. the new set of constraints is C’ =1C circuit RTL modules| instruction memory width datapath width
{L <A simplecpu 10 20 4

A program counter initialization value can be considered bgemo 16 84 16
extending the set of labels with a labg| Le. the new set of | prips 50 83 32
labels is L' = LO {L g}. Additionally an unconditional jump [mano 21 50 16

from Lg to Lg has to be generated. This can be done by externd-
ing the set of constraints C’ with the constraigtiD = L, i.e. These TCL programs just serve to demonstrate the compilation
the new set of constraints is C" =C{L o + D = Lg} with Start speed but by no means constitute complete test sets. All com-
< D < End and D is the (jump) distance between the twiled programs have been validated with the above mentioned
addressesdand Lg D = Lg - L. simulator. A small number of primary input stimuli patterns

Scheduling, compaction and binding can be handled condlflicates, that the processor is mainly able to test itself,

whereas a large amount of stimuli patterns indicates that certain REFERENCES
constants can not be allocated within the circuit. CompactiofgfC. Albrecht, S. Bashford, P. Marwedel, A. Neumann, W. Schenk. The
self-test programs only results in 10% - 20% less code becausdesign of the PRIPS Microprocessor, 4th EUROCHIP-Workshop on VLSI

. Training, 1993.
test programs usually are not highly parallel. [2] A.Alomary, T. Nakata, Y. Honma, M. Imai, N. Hikichi. An ASIP instruc-

Table 2: RESTART Compilation Results tion set optimization algorithm with functional module sharing constraint.
Int. Conf. on Computer-Aided Design (ICCAD), pp. 526-532, 1993.
uncompacted compacted [3] T. Baba, H. Hagiwara. The MPG System: A Machine-Independent effi-
circuit | # TCL stimuli cient microprogram generator. IEEE Trans. on Computers, Vol. C-30, pp.
#ul sec | #ul/sec| #ul sec | #il/sec 373-395, 1981.
[4] R.Beckmann, U. Bieker, |. Markhof. Application of Constraint Logic Pro-
simplecpu| 7 5 11| o071 15§ 11 |0.71| 155 gramming for VLSI CAD Tools. Constraints in Computational Logic,

First Int. Conf., Munich, 1994.
demo 16 75 | 10§ 26 3.93 93 [26.2| 355 [5] F. Benhamou, A. Colmerauer (editors). Constraint Logic Programming:
Selected Research. Cambridge, MA: MIT Press, 1993

demo 17 73 | 102 2631 39| 91 (2646 3.4 [6] U. Bieker, A. Neumann. Using logic programming and coroutining for
electronic CAD. 2nd Int. Conf. on the Practical Applications of Prolog,
mano 12 1 74| 1481 5| 58 [14.26) 4 London, April 1994.
[7] D. Brahme, J. A. Abraham. Functional Testing of Microprocessors. IEEE
mano 15 1 | 136 3741 3.63113(365| 31 Transactions on Computers, Vol. C-33, No. 6, 1984.
[8] W. F. Clocksin. Logic Programming and Digital Circuit Analysis. The
prips 7 0 17| 202 o0.84 17 |20.5| 0.83 Journal of Logic Programming, pp. 59 - 82, March 1987.

[9] CHIP User's Guide, COSYTEC SA, Parc Club Orsay Universite, 4, rue
One of the 16 TCL instructions of program 1 of the demo CPU _Jean Rostand, 91893 Orsay Cedex, France, 1991.

. ECLIPSE 3.4 User Manual. ECRC Common Logic Programming System.
is a test loop for detecting faults in the instruction decoding 4hd ECRC GmbH, Arabellastr. 17, Munich, Germany, 1994.

COntr9| function of the 16 bit 'ALU (the. ALU has two 16-bif11]a. Fauth, A. Knoll. Automated generation of DSP program development
data inputs a and b and a 3-bit control input ctr selects one of &ools using a machine description formalism. Int. Conf. on Audio, Speech
ALU functions) as follows: and Signal Processing, 1993.

o . [12]M. Ganapathi, C.N. Fisher, J.L. Henessy. Retargetable compiler code gen-
FORctr :=0TO 7 DO TEST ALU(#5555,#FFFF,CtI’), eration, ACM Computing Surveys, Vol. 14, (4) 1982.

Above test loop has been compiled by RESTART and th&]P. W. Horstmann. Automation of the Design for Testability Using Logic
resulting self-test program has been stored as initialization for Programming. Dissertation, University of Missouri, 1983.

L - . e 4] Design Automation Standards Subcommittee of the IEEE. Draft standard
the microinstruction memory. Now we slightly modified thg VHDL language reference manual. IEEE Standards Department, 1992,

hardware Qescription of the ALl.'J, i.e. we modified the_ ins’Fruﬁ‘S]G. Kriiger. Automatic generation of Self-Test programs - A new feature of
tion decoding and control function of the ALU resulting in @ the MIMOLA design system. 23rd Design Automation Conference, 1986.
“faulty” ALU. The rest of the processor has been Ieft6]G. Kriiger. A tool for hierarchical test generation. IEEE Trans. on Compu-
unchanged. An RT simulation of the “faulty” processor ter Aided Design of Integrated Circuits and Systems, Vol. 10, April 1991.

together with the self-test program has been performed an&l?dfl Lee_, J. Patel. An |nstructlon sequence assembling methodology for test-
ing microprocessors. International Test Conference, 1992.

course all the injeCtEd faults have been detected. [18]C. Liem, P. Paulin. Flexware - A flexible firmware development environ-
ment. Proc. European Design & Test Conference, pp. 31-37, 1994.

7. CONCLUSIONS [19]1M. Morris Mano. Computer System Architecture. Prentice-Hall Int., Inc.,

We have shown that test programs for embedded processorghird Edition, 1993.

can be automatically generated. The generation process eds@$ Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neu-

tially consists of matching a test code specification against a™a"" P- Voggenauer. The MIMOLA Language - Version 4.1. Technical

_— . . . _Report, Computer Science Dpt., University of Dortmund, Sept. 1994.
structural descr|pt|on of the processor. For the first time, t L. Nowak, P. Marwedel. Verification of hardware descriptions by retarg-

process has been viewed as a special case of retargetable cod@bie code generation. 26th Design Automation Contf., pp. 441-447, 1989.
generation. It has been possible to compile self-test prograzapsJ. V. Praet, G. Goossens, D. Lanneer, H. D. Man. Instruction set definition
for several processors. and instruction selection for ASIPs. 7.th Int. Symposium on High-Level
o Synthesis, 1994.
Furthermore, we have shown how the built-in support for Syfs)prolog il Reference Manual. ProloglA, Parc Technologique de Luminy -
bolic variables and constraints over these can lead to a morease 919, 13288 Marseille Cedex 09, France, 1991.
efficient software production process. Several subproblems 4. Simonis. Test generation using the constraint logic programming lan-
be handled concurrently e.g. coupling of the code generationg_uage CHIP. Proc. of the 6th International Conf. on Logic Programming,
.Lisboa, Portugal, pp. 101 - 112, June 1989.

phases: code selection, resource allocation and scheduling. itsi .) .

_ . : [. Svanaes, E. J. Aas. Test generation through logic programming. North-
well known that the consideration of all relevant design con-"gjjand. INTEGRATION, the VLS journal, No. 2, 1984.
straints is a key issue in CAD. CLP languages have builtge]s. M. Thatte, J. A. Abraham. Test generation for Microprocessors. |IEEE
mechanisms for such constraints and we have successfullyfransactions on Computers, Vol. C-29, No. 6, 1980.

exploited the potential that is inherent in one of these ldfZlTMS320C2x User's Guide, Rev. B, Texas Instruments, 1990.
guages [28] T. Wilson, G. Grewal, B. Halley, D. Banerji. An integrated approach to

retargetable code generation. 7. th Int. High-Level Synthesis Symp., 1994.

