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In this paper we present a uni�ed frontend
for retargetable compilers that performs analy-
sis of the target processor model. Our approach
bridges the gap between structural and behav-
ioral processor models for retargetable compi-
lation. This is achieved by means of instruction
set extraction. The extraction technique is based
on a BDD data structure which signi�cantly im-
proves control signal analysis in the target pro-
cessor compared to previous approaches.1

1 Introduction

Commercially available compilers for DSP processors
still do not provide su�cient code quality in case of
hard real-time constraints. This is mainly due to the
fact that modern DSP instruction sets o�er a high de-
gree of potential parallelism, but on the other hand in-
corporate weird restrictions e.g. in register usage. These
features cannot be handled by traditional compiler tech-
nology. Therefore, machine code generation for DSPs is
nowadays mostly done on the assembly level. Because
of the obvious drawbacks of assembly-level software de-
velopment, retargetable compilation has gained a lot of
interest both in academia and industry. Retargetable
compilers read both a HLL algorithm and a description
of the target processor and map the algorithm into a
machine program for the given target processor.
Several implementations of retargetable compilers are

described in the literature. In this paper we focus on the
processor description style which is accepted by those
compilers. Two di�erent approaches have been taken:

Behavioral models: The target processor is described
by its instruction set from a programmer's point of view,
using a specialized language. All instruction set de-
tails must be provided by the user. Examples are the
CBC compiler [1] that accepts nML descriptions, and
the CodeSyn compiler [2].

Structural models: The target processor is described
by an RT-level netlist in a HDL. The complete datapath
and controller structure are part of the processor model.
Examples are the compilers MSSV [3] and MSSQ [4].

The decision which kind of modelling style is the best
depends on the target processor. When the target is
a standard DSP, the instruction set is �xed, and a be-
havioral model should be used. In case the target pro-
cessor is an ASIP with a non-�xed instruction set, a
structural model is more adequate. Other applications

1This work has been partially supported by ESPRIT BRA
project 9138 (CHIPS)

might even require a mixed model comprising only a
few hardware modules with complex behavior, e.g. a
processor could be described as a netlist consisting of
one controller module and one datapath module.
Previous retargetable compilers accept only one cer-

tain style. In order to overcome this restriction we pro-
pose a uni�ed frontend for retargetable compilers which
accepts processor models in either style (behavioral,
mixed, or structural) and which extracts the instruction
set from the processor model. The extracted instruction
set is independent from the description style and forms
the basis for the actual code generation phase of com-
pilation. In case of pure behavioral models the extrac-
tor essentially transforms the given instruction set into
an internal format. In case of mixed or pure structural
models the instruction set is derived from the structure.
The extraction tool is part of a retargetable compiler
system for DSPs and ASIPs, which is currently under
development.
Since extraction in case of pure behavioral models is

trivial we assume throughout this paper that the tar-
get processor is given by a structural or mixed model.
Compared to the approach presented in [5], several de-
�ciencies have been eliminated: The new extractor ac-
cepts processor descriptions in the powerful MIMOLA
4.1 HDL [6], and condition analysis is based on a uni-
form BDD data structure.
The rest of the paper is organized as follows: Section

2 brie
y describes the construction of a graph model
from the processor HDL model, which forms the basis
for the extraction process. Extraction of microoper-
ations proceeds in two phases explained in sections 3
and 4. The paper end with �rst experimental results
and conclusions.

2 Graph representation of the
target processor

The MIMOLA model of the target processor consists of
a set of modules and their interconnections. Modules
may either be structural (i.e. consist of interconnected
submodules) or behavioral (i.e. hide their internal struc-
ture). We assume that the "outermost" module describ-
ing the complete target processor is a structural one. Its
submodules in turn may be either structural or behav-
ioral. The textual MIMOLA model of the target pro-
cessor is transformed into a 
at graph representation as
depicted in �g. 1. The graph nodes represent the set of
behavioral modules. Each moduleMi has a set of ports
fpi1; : : : ; pimig. Each port has an associated mode (IN,
OUT, INOUT) implying the direction of data
ow at
this port. Edges represent port connections. The graph
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representation is used to analyze data
ow between be-
havioral modules.

3 Analysis of local module
behavior

Behavioral modules in MIMOLA are described in a pro-
cedural manner, based on a comprehensive set of prim-
itive operators. The module interface is described as a
port list and the module behavior within a concurrent
block, e.g.:

MODULE m1 (IN i1, i2: (15:0); IN ctr: Bit;
OUT o1, o2: (15:0));

VAR v: (15:0);
CONBEGIN

IF i1.(7:0) > i2.(15:8)
THEN o1 <- 1 ELSE o1 <- 0;

IF ctr THEN v := i1;
o2 <- i1 + i2;

CONEND;

The CONBEGIN/CONEND block of a behavioral
module contains a set of concurrent statements describ-
ing assignments either to module output ports or to in-
ternal variables. IF- and CASE-constructs can be used
to model (arbitrarily nested) conditional statements.
The local behavior of a moduleMi can be represented

by a set of concurrent assignments Ai. An assignment
aij 2 Ai is a triple aij = (dij; eij; cij) where dij is the
destination (a storage cell or an output port), eij is
an expression (a signal which is assigned to dij), and
cij is a condition (which must be ful�lled to execute
the assignment). The condition cij can be considered
as a Boolean function. In case of an unconditional as-
signment (o2 <- i1 + i2 in the example), cij is the
constant 1 function.
Whereas it is easy to represent destinations and ex-

pressions, it is crucial for a retargetable compiler work-
ing on netlist descriptions to include a careful analysis
of assignment conditions. Analysis of assignment condi-
tions have also been discussed in [4, 5]. However, these
methods imply restrictions concerning either the possi-
ble sources of conditions or compatibility checking be-
tween those. The representation of conditions proposed
in this paper is based on BDDs. This choice has been
made for the following reasons:

1) BDDs provide a uniform data structure that sup-
ports many important operations during instruction set
extraction. We use the well-known BDD package [10].

2) During code generation experiments with MSSQ it
turned out that conveniently modelling complex proces-
sors often requires a bit-level condition representation,
e.g. concatenated control inputs for modules should be
possible. Single-bit conditions are easily represented by
BDD variables.

3) A BDD representation of conditions permits mini-
mizing the e�ects of syntactic variances in processor de-
scriptions. The importance of this feature has already
been recognized in the context of High-Level Synthesis
[11].
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Figure 1: Graph representation of the target processor

Representations for nested assignment conditions have
also been proposed in the area of High-Level Synthesis
[8, 9]. For instruction set extraction, however, Boolean
manipulation of conditions is required, which is better
supported by BDDs.
Construction of assignments in case of unconditional

statements like v := i1 + i2; is trivial. For this
statement the assignment a = (v; i1+ i2;TRUE) is con-
structed, where TRUE represents the constant 1 func-
tion. Destinations and expressions are simply repre-
sented by their identi�ers resp. arithmetical or logical
expressions on these. The main problem is to correctly
extract and represent all conditions in statements. The
following two subsections describe the extraction of as-
signments in case of conditional statements. The de-
scription is based on MIMOLA language elements but
the concepts are language independent.

3.1 IF-conditions

IF-conditions occur in MIMOLA statements of the form

IF <cond expr> THEN <then statement>
[ELSE <else statement>]

The conditional expression <cond expr> may either
refer to a module input port or a variable (e.g. IF enable
THEN : : : ) or may denote a complex expression (e.g. IF
(i1 > i2) AND (i3 <= i4) THEN : : : ).
From the compiler's point of view, three kinds of as-

signment conditions exist:

1. I-conditions that refer to necessary values of cer-
tain instruction bits.

2. M-conditions that refer to a certain machine
state, i.e. the value of registers or memory cells.
M-conditions occur in case of residual control or
status registers.

3. D-conditions that are dynamically evaluated at
runtime, e.g. a signal comparison.

The basic idea in our BDD-based approach is to rep-
resent conditions by Boolean functions and to classify
their Boolean variables with respect to the three types
I, M, and D. This classi�cation provides the necessary
information for the compiler's code generation phase:

1) A Boolean variable Ik represents bit no. k in the
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"current" instruction word.
2) A Boolean variable Mrk represents bit no. k in reg-
ister r.
3) A Boolean variable De represents a conditional ex-
pression e that is evaluated at runtime.

If <cond expr> refers to a module input port, its clas-
si�cation can only be done after looking beyond the
module boundaries. Since in the �rst phase we con-
sider modules only locally, we introduce a fourth class
of Boolean variables (P-variables) which temporarily
represent bits of module input ports. P-variables are
replaced in the second phase. The following algorithm
constructs a set of assignments from an IF-statement.

Algorithm extract assignments from IF statement

1) Recursively transform <then statement> into a set
of assignments AT = fa1; : : : ; ang The result in gen-
eral is a set of assignments, since <then statement>
might be a set of (possibly nested conditional) concur-
rent statements.

2) If the IF-statement has an ELSE-part, recursively
transform <else statement> into a set of assignments
AE = fb1; : : : ; bmg
3) Transform <cond expr> into a Boolean function F
(represented by a BDD):

� If <cond expr> refers to bit number k of a mod-
ule variable v: <cond expr> is an M-condition.
Create a new Boolean variable Mvk and set F :=
Mvk.

� If <cond expr> refers to bit number k of a module
input port p: The classi�cation of <cond expr>
must be postponed. Create a new Boolean vari-
able Ppk and set F := Ppk.

� If <cond expr> denotes a complex expression e =
op(e1; e2), where op is an operator and e1; e2 are
expressions:

{ If op is a Boolean operator (AND, NAND,
OR, NOR, XOR, XNOR), then decompose e:
Recursively construct the Boolean functions
Fe1 ; Fe2 for e1; e2 and set F := op(Fe1; Fe2).

{ If op is a non-Boolean operator, leave the ex-
pression e untouched as a D-condition. Cre-
ate a new Boolean variable De and set F :=
De.

4) For each assignment ai = (di; ei; ci) 2 AT construct
the assignment a0

i = (di; ei; ci ^ F )
5) For each assignment bj = (dj; ej; cj) 2 AE construct
the assignment b0j = (dj; ej; cj ^F )
6) Return the assignment set

S
i a

0

i [
S
j b

0

j

3.2 CASE-conditions

Multiple module control signals can be bundled for sake
of convenience, and the behavior can be expressed us-
ing CASE-statements. A MIMOLA CASE-statement
has the format:

CASE <sel> OF
N11; : : : ;N1k1: <statement 1>
: : :

Nm1; : : : ;Nmkm: <statement m>
ELSE: <else statement>;

END;

The selector <sel> refers to a module input port or
variable of s bits width, and the numbers Nij repre-
sent possible values of <sel>. If <sel> is equal to one
Nij; j 2 f1; : : : ; kig then <statement i> is executed.
Otherwise, <else statement> is executed. The fol-
lowing algorithm constructs an assignment set from a
CASE-statement.

Algorithm extract assignments from CASE statement

1) Let the bits of <sel> be represented by Boolean vari-
ables v1; : : : ; vs. If <sel> refers to a module input port,
then v1; : : : ; vs are of type P, otherwise (if <sel> refers
to a module variable) they are of type M.
2)Assuming the valuesNij are given as bitstringsNij =
(n1ij; : : : ; n

s
ij) compute the Boolean functions Fij so that

Fij(v1; : : : ; vs) = 1
, (v1; : : : ; vs) = (n1ij; : : : ; n

s
ij)

Thus, Fij represents the minterm for Nij .
3) For each <statement i>, i 2 f1; : : : ;mg recursively
compute the assignment set Ai.
4) For each assignment set Ai construct the assignment
set A0

i by replacing the conditions c in the assignments
in Ai by c ^

W
j Fij

5) For the ELSE-part of the CASE statement, com-
pute the Boolean function E =

V
i;j Fij which covers all

cases not covered by the Nij 's. Recursively construct
the assignment set AE for <else statement> and the
assignment set A0

E by replacing the conditions c in the
assignments in AE by c ^ E
6) Return the assignment set

S
i A0

i [ A0

E

With the above algorithms, an arbitrary, nested state-
ment of any type (unconditional, IF, CASE) can be
transformed into a set of assignments. This transfor-
mation is applied to each statement in the module be-
havioral description. The assignment conditions are
Boolean functions on variables of type M, D, or P.

The uniform BDD representation of conditions reduces
the e�ects of syntactic variances. For instance, the fol-
lowing equivalent formulations of a condition depending
on two bits2 result in the same condition ("x1 ^ x2"):

IF x1 THEN IF x2 THEN ...

IF x2 THEN IF x1 THEN ...

IF x1 AND x2 THEN ...

CASE x1!!x2 OF %11: ...

The BDD representation of conditions also enables check-
ing of concurrent assignments to the same destination
for mutual exclusion.

2!! denotes concatenation
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4 Composition of �-operations

After the �rst phase, each module Mi is represented by
its local set of concurrent assignments. These assign-
ments are now used to compose complete microopera-
tions. A microoperation m is an assignment (d; e; c),
where

1) the destination d is a register, a storage cell, or an
external output
2) the expression e only has registers, storage cells, ex-
ternal inputs, or hardwired constants as arguments
3) the Boolean variables in the condition c only refer to
instruction bits, register bits, or expressions, i.e. they
are of type I, M, or D.

Composingmicrooperations requires expanding local as-
signments across module boundaries, so that all refer-
ences to internal module ports are resolved. Expansion
stops at sequential modules, and at external inputs and
hardwired constants. Two expansion procedures for ex-
pressions resp. conditions are used. Expansion works
on the graph model of the target processor (see section
2). The following subsections describe the expansion
procedures.

4.1 Expansion of expressions

Expression expansion combines expressions to more com-
plex ones by analysis of the processor interconnect struc-
ture. For instance, a multiply-accumulate chain would
be detected in this phase. An expression e is either

1) a complex expression of the form e = op(e1; : : : ; en),
where e1; : : : ; en are expressions and op is an operator,
or
2) an indexed expression (denoting a storage cell) of the
form e = e1[e2], where e1; e2 are expressions, or
3) a simple expression which denotes a module input
port, a register, a hardwired constant, or an bit index
subrange of these.

The basic step in expression expansion is to replace
module input ports in expressions by those expressions
which can be switched to these ports via possible data
routes within the structure. Since in general a number
of possible routes exist, expression expansion introduces
new conditions, which select one of these possibilities.
The possible expressions which can be switched to a
certain module port together with the corresponding
conditions are determined by the graph model and the
assignment sets found during the �rst extraction phase.
We explain expression expansion using a simple exam-
ple (�g. 2).
Consider an expression NOT (p), where p denotes an

input port of a certain module M . Using the graph
model, one can �nd p's predecessor port q in another
module M 0, which is connected to p. Let Aq be the
set of assignments (q; ei; ci) in M 0 with destination q.
Then, p can be replaced by each expression ei, presum-
ing that condition ci holds. Therefore, expanding an
expression in general delivers a set of possible expres-
sions together with the corresponding conditions. In
the example, expansion of NOT (p) delivers the expres-
sion/condition set

......

.......

......
.......
.......
........
.........
............

......................................................................................................................................................................................................................
...........
.........
........
.......
......
.......
......
.....

......

.......
......
.......
.......
........
..........
.............

...........................................................................................................................................................................................................
...........
.........
........
.......
.......
......
.......
..

....................................................
...............................................................

..

....................................................
..............
..

....................................................
..............
..

......................................................
................

......

..........

i2

q
p

MM'

i1

c

a

IF c

q<-i1
ELSE
q<-i2;

THEN a<-NOT(p);

Figure 2: Expansion of expressions using the graph
model
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Figure 3: Expansion of conditions

f(NOT (i1); Pc;0); (NOT (i2); Pc;0)g

The expressions ei are expanded recursively. Recursion
stops at registers, memories, external inputs, and hard-
wired constants.
The extractor also handles tristate busses, which re-

quire a special treatment. When a tristate bus is reached
during expansion, the extractor tries to set all unused
bus drivers to a "Z" mode, which imposes additional
conditions. Expansion fails if a bus driver cannot be set
to "Z" mode by any condition.

4.2 Expansion of conditions

The conditions of assignments extracted in phase 1 de-
pend on Boolean variables of type M, D, and P. P-
variables represent module input port bits. The pur-
pose of condition expansion is to replace the P-variables
by Boolean functions so that expanded conditions only
depend on variables of the types M, D, and I. This re-
placement is equivalent to the composition of Boolean
functions. Replacement of P-variables is done by recur-
sively traversing the graph model of the target processor
and updating conditions on-the-
y. Recursion stops if
the instruction memory, a register, a dynamic condi-
tion, or a hardwired constant is reached. We explain
the basic idea using the simple example in �g. 3. Since
all relevant signals in the example are one bit wide, we
omit the second variable index denoting the bit index
for sake of simplicity.
Destination register accu can be loaded with some

expression e. The assignment condition is that the en-
able input bit en is set to 1. Thus, the Boolean function
F representing the condition is initially

F = Pen

en is traced back to the output of multiplexer MUX, which
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passes its input signal i1 if sel is 0, or i2 if sel is 1.
The bit signal sel is found to be equal to bit 0 of the
instruction memory, so that

F = (Pi1 ^ I0) _ (Pi2 ^ I0)

Tracing back i1 and i2 yields the dynamic condition
R1 > R2 and bit no. 0 of register flag, respectively.
Thus, F is expanded to

F = (DR1>R2 ^ I0) _ (Mflag ^ I0)

which only depends on M-, D-, and I-variables. F re-
veals two versions for the assignment accu := e:

1) R1 is greater than R2 and instruction bit no. 0 is 0.

2) Register flag contains the value 1 and instruction
bit no. 0 is 1.

These versions are the basis for the instruction selection
and scheduling phase of code generation. Versions cor-
respond to implicants of the Boolean function F . Nor-
mally, an arbitrary complete set of implicants is is di-
rectly derived from the BDD representation of F . Op-
tionally, the user can enforce computation of prime im-
plicants. This feature guarantees versions without un-
necessary restrictions which might obstruct code com-
paction.

4.3 Expansion of assignments

Using the above procedures, all possible microopera-
tions for the given processor can be extracted. For each
clocked assignment a = (d; e; c) the following steps are
performed:

1) Expand the expression e resulting in a set of expres-
sion/condition pairs

EC = f(ei; ci)ji 2 f1; : : : ; kgg.
2) Expand the condition c resulting in a condition c0.
3) Expand the conditions ci resulting in conditions c0i.
4) For each (ei; ci) 2 EC construct the microoperation
mi = (d; ei; c

0

i ^ c0)

Expansion of assignments may yield constant FALSE
conditions c0i^ c

0, i.e. the corresponding microoperation
is invalid due to some encoding restrictions and can be
excluded from the instruction set. Thus, encoding re-
strictions are automatically derived from the structure.
The result of assignment expansion is the set of valid
microoperations for the speci�ed processor.

5 Experimental results

Table 1 shows experimental results obtained so far with
the new instruction set extractor. The CPU seconds (on
a SPARC-20), including setup times, are listed together
with the number of extracted microoperations. In or-
der to outline the complexity of the circuits, the num-
ber of HDL text lines and RT-level modules are given.
The target processors include an industrial ASIP (bass-
boost), a processor (mano) described in [12], and an o�-
the-shelf DSP processor [7]. In the latter case a mixed

Processor CPU �-ops HDL lines modules
asip 1 38 221 20

bassboost 3 26 416 29
p1 7 131 278 14
p2 1 44 291 10

mano 2 124 518 19
ref 4 82 207 13

TMS320C25 64 572 2480 4

Table 1: Experimental results

structural/behavioral processor model has been used.
The experiments indicate that our new approach to in-
struction set extraction is fast enough to be integrated
within a retargetable compiler system. Compared to [5]
the runtime could even be signi�cantly reduced.

6 Conclusions

The main contributions of this paper are twofold. Firstly,
a uni�ed frontend for retargetable compilers was pre-
sented that accepts target processor models in either
style (behavioral, structural, mixed) and extracts the
instruction set from the processor model. The resulting
microoperation set abstracts from the processor model
and provides a suitable basis for the later phases of re-
targetable compilation.
Secondly, we discussed the applicability of BDDs in

condition analysis for retargetable compilation. By us-
ing a BDD-based representation several subproblems
could be strongly simpli�ed compared to previous ap-
proaches, e.g. checking for compatibility and mutual
exclusion, detecting encoding restrictions and reducing
the e�ects of syntactic variances in processor descrip-
tions.
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