
A Technique for Avoiding Isomorphic

Netlists in Architectural Synthesis

Peter Marwedel�, Steven Bashfordy,

Rainer D�omery, Birger Landwehry, Ingolf Markhof

Technical Report #95-28
August 24, 1995

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717, USA
+1 (714) 824-8059

e-mai`: marwede`@`s12.informatik.uni-dortmund.de

Abstract

Register-Transfer (RT-) level netlists are said to be isomorphic if they can be made identical by re-

labelling RT-components. RT-netlists can be generated by architectural synthesis. In order to consider

just the essential design decisions, architectural synthesis should consider only a single representative

of sets of isomorphic netlists. Nevertheless, many current synthesis algorithms do not take advantage

of this potential reduction in search space. This is especially true for approaches which focus on opti-
mizing the wiring between resource instances. In this paper, we are using netlist isomorphism for the

very �rst time in architectural synthesis. Furthermore, we describe how an integer-programming (IP-)

based synthesis technique can be extended to take advantage of netlist isomorphism. As a result, the

running time required for synthesis is reduced.

�On leave from the University of Dortmund. Supported through NATO grant # CRG 950910.
yCurrent a�liation: Universit�at Dortmund, Informatik XII. Supported by the Commission of the European Commu-

nities under contract ESPRIT 6855 (LINK).

1

1 Introduction

Early approaches to architectural synthesis used simpli�ed cost functions for guiding the search for
e�cient RT-architectures. In particular, the e�ect of interconnections between RT-level components
has frequently been neglected. The e�ect of this can be quite dramatic [McF87].

If interconnections have to be taken into account, RT-components must be uniquely labelled in order
to identify the end points of interconnections�. Labels are elements of discrete sets, e.g. integers. Now,
even if we restrict ourselves to integers, RT-structures can be labelled in a number of ways. Fig. 1
shows two RT-structures with labelled RT-components.

+,−

+,−

9

6

+,−

+,−

15

7

Figure 1: Isomorphic RT-Structures

Assuming that components with equal functionality are actually instances of the same component
library element, these structure are obviously very \similar". In fact, we may de�ne a function on the
left structure such that its application replaces component labels by the corresponding labels in the
right structure.

Structures di�ering only by their labels are called isomorphic. Isomorphism has been used for Graphs,
�nite state machines [Koh87] etc. It allows us to de�ne the following equivalence relation:

Def. : Let n1 and n2 be two netlists. n1 and n2 are said to be renaming-equivalent (denoted as
n1 � n2) if and only if there exists a bijection f on n1 such that f(n1) = n2. In this de�nition, f is
supposed to replace only the component labels in the netlist that is passed as an argument.

Relation � is an equivalence relation and hence de�nes equivalence classes. One would assume that
tools synthesizing netlists (such as architectural synthesizers) consider only a single representative of
each equivalence class. However, there are several examples (see e.g. [HP83, GE91, Sto90]) which show
that this is not true. In these cases, it could be possible to reduce the search space of the algorithms
by exploiting netlist isomorphism. In this paper, we will show how netlist isomorphism can be used
to reduce the running-time of an architectural synthesis system based on integer programming (IP).

The remainder of this paper is organized as follows: Section 2 describes related work. Section 3 intro-
duces the notation for our mathematical synthesis model. In section 4, we explain how isomorphism
can be exploited in our model. The e�ect of this on algorithm complexity is analysed in section 5.
Section 6 lists some practical results. The paper ends with a conclusion.

�For the sake of simplicity, we avoid the discussion about labelling component ports in this paper.

2

2 Related Work

As explained earlier, netlist isomorphism becomes important if components are labelled.

One of the early approaches to architectural synthesis is the IP-model of Hafer [HP83], which was later
adopted for multiprocessor-assignment. The model does not use any kind of normal form for labelling
components and hence implicitly analyses multiple solutions which are isomorphic. Reduction of the
search space would be possible with the technique that will be presented in this paper.

Component labelling is also used in an approach based on simulated annealing [DN89]. In that
approach, operations are rebound to various control steps and RT-components. Again, the model
does not use any kind of normal form for labelling components and isomorphic solutions are analysed.

Just like in the case of Hafer's IP model, Gebotys' approach to interconnect minimization [GE91]
using integer programming does not take advantage of isomorphism and reduction of the search space
would be possible with the technique that will be presented in this paper.

Note that the speedup by the proposed technique applies essentially to synthesis systems which have
placed the very much needed emphasis on interconnect minimization.

3 Synthesis Model

3.1 General De�nitions of Terms

Synthesis de�nes a mapping from behavioural descriptions to structural descriptions. This has fre-
quently been described by arrows in the so-called Y-chart [GK83] describing the di�erent domains in
electronic design (see �g. 2).

structure

behaviourlayout
J

K

G

M

instance type

type

optype
operation

component

executable on

m
_executable on

Figure 2: Naming conventions

We assume that the behaviour of the system under design is de�ned by a data
ow-graph (DFG). The
nodes of this graph denote operations such as additions and multiplications. More precisely, these
nodes contain instances of operation types, such as \+" or *". Let the nodes of the data
ow graph
be uniquely labelled with integers from the corresponding index set J = f1::jmaxg. We will use j as a
variable to denote such integers. Furthermore, let used operation types be characterized by an index
set G. Let function optype denote the operation type of DFG-nodes (see �g. 2).

Furthermore, we assume that the structure is described by a netlist containing component instances
k 2 K = f1::kmaxg. Each instance is inherited from a corresponding library component type. Let
variablesm 2M denote library component types. Function type denotes the type of a certain instance:

3

type : K !M

The functionality of component type m is described by relation m executable on:

8m 2 M; g 2 G : g m executable on m () component type m is able to perform operation g (this
information is available from the library).

From this relation, we derive the corresponding relation executable on among instances:

Def.: j 2 J executable on k 2 K () optype(j) m executable on type(k).

Most synthesis tools do not only generate structure. They also generate a binding between operations
and control steps in which they are started. This is also the case for all architectural synthesis tools
we are aware of. We will use i to denote a certain control step and I to denote the set of all control
steps. Note that we consider multi-cycle operations (operations which do not terminate in the same
control step).

The synthesis task can now be modelled as the problem of binding each operation j to a starting control
step i and an executing resource k. Various subtasks of architectural synthesis have been identi�ed; e.g.
scheduling, allocation of hardware resources, and the assignment of operations to hardware resources
[GDWL92]. Various algorithms and models have been proposed for these subtasks. For example,
clique partitioning [ST83], bipartite graph matching [Tim95b], simulated annealing[DN89], integer
programming [GE91, Geb92] and many heuristics have been proposed.

3.2 IP-based Synthesis

Among those approaches just mentioned, IP-based models exhibit a number of interesting features,
including

� the existence of a formal basis for such models

� the ability of integrating the three main subtasks of behavioural synthesis and a number of
extensions

� the fact that the model of architectural synthesis is - to a certain extent - decoupled from the
algorithm implementing it.

IP-based models may, however, require long execution times, due to the NP-completeness of integer
programming. Nevertheless, it has been shown to be practical if mechanisms for limiting problem sizes
exist (see, for example [WGHB95]). In other cases, problem sizes have been inherently small enough
to avoid any complexity problems (see e.g. [Mar90]). Finally, faster linear programming (LP)-based
approximation algorithms have been used [LMD94]. These cases have shown that IP-based approaches
can be used successfully in an area, where the early results indicated excessively long execution times
([HP83]). Careful analysis of some of the recent approaches [GE91] reveals that there is still room
for signi�cant speed improvements of IP-based approaches. With such improvements, the application
range of such approaches can be extended signi�cantly. Execution interval analysis is one example of
such techniques [Tim95a]. In this paper, we elaborate on another technique, one which can be applied
to speed-up several of the existing IP-based synthesis algorithms.

For complexity reasons, IP-models (just like other approaches) hardly solve this task in one step. In
the following, we will characterize IP-models which include scheduling and integrate other subproblems
of HLS to varying extents.

4

1. The IP-model describes just control step binding.

For example, in [GE91], the essential decision variables are de�ned as follows:

xi;j =

(
1; if operation j is started at control step i

0; otherwise
(1)

This model is adequate, if m executable on is a one-to-one mapping between operation types
and component types (this means, for example, there is just a single adder and a single mul-
tiplier in the library). In this case, the solution of the scheduling problem (the problem of
binding operations to control steps) implies the number of required components (the \alloca-
tion"). Scheduling, allocation and assignment can be solved essentially independently as long as
the number of required components is the only variable factor in the cost function (i.e. as long
as the interconnect cost is excluded).

2. The IP-model decribes control-step (cs) and delay binding.

This approach is adequate if the library contains mixed speed operations (this means: m executable

on is a 1:m relation). cs and delay binding can be modelled with triple-indexed decision variables:

xi;j;d =

(
1; if operation j is started at control step i with delay d

0; otherwise
(2)

Achatz, in [Ach93], considers an extension of this approach to the case where the library contains
multi-functional units (m executable on is a n:m relation in this case). This case cannot be
handled by the model in [GE91].

3. The IP-model describes control step and type-binding.

In type-binding models, triple-indexed decision variables with the following meaning are used:

xi;j;m =

(
1; if operation j is started on component type m at control step i

0; otherwise
(3)

This binding provides more detail than delay binding and is recommended, if several component
types exist, which execute operations with the same speed.

4. The IP-model describes control step and instance-binding.

In instance-binding models, triple-indexed variables with the following de�nition are used:

xi;j;k =

(
1; if operation j is started on component instance k at control step i

0; otherwise
(4)

Instance-binding is required if any of the following aspects are taken into account:

(a) Interconnect costs

Type-binding approaches are not able to take interconnection costs into account. Consid-
eration of just the cost of functional units may, however, result in unreasonable resource
folding, e.g. in multiplexing of functional units which are simpler than the multiplexers (for
example of AND-units). In order to take interconnection costs into account, the binding of
operations to resource instances must be considered.

5

(b) prede�ned instance binding

Manually prede�ned bindings have been shown to have a positive e�ect on the resulting de-
sign quality [MS89, AT94]. Prede�ned bindings can also be generated in a backannotation-
like procedure in order to ensure that incremental speci�cation changes result in incremental
design changes. Such bindings can also be generated in interactive synthesis environments
[JPO93].

Due to the above reasons and due to the recent advances in IP-based synthesis models, we believe
that instance binding models will be studied in more detail in the future. We will show how execution
times can be shortened for these.

A problem which is common to several integrated scheduling and assignment approaches [Geb92,
LMD94, HP83] is the fact that the number instances of a certain component type is usually unknown
before scheduling. Hence, for each component type m, a certain number of \potentially required"
instance indices fkm;1; km;2; :::km;umg must be used in the IP-model. In this context, um denotes an
upper bound on the number of instances of m. Upper bounds um may be known for a variety of
reasons. They may have been de�ned by the user, computed from the DFG, or computed from the
costs of previously generated faster solutions.

4 Exploiting Isomorphism

As a �rst step, we require that the set of instance indices fkm;1; km;2; :::km;umg forms a contigous range
of integers. This means that, without loss of optimality, we restrict ourselves to functions type which
are step functions. Moreover, we restrict ourselves to increasing step functions.

Example: Fig. 3 contains the graphical representation of such a function as well as associated variables `n, and
rn (these variables will be de�ned below).

k

o o

o oo
o oo o

o o

o oo
o o

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 12 14 16
r
2l2l1

r
1 l3

r
3

m=type(k)

Figure 3: Function type : K !M

2

More precisely, we de�ne `m and rm for each m 2M as

`1 = 1 (5)

r1 = u1 (6)

8m > 1 : `m = (rm�1 + 1) (7)

8m > 1 : rm = (`m + um) (8)

6

Then, type can be de�ned as

type(k) = m () `m � k � rm (9)

The next step for exploiting isomorphism is to restrict ourselves, without loss of optimality, to solutions
in which integer label `m + n is used only if there are n or more instances of type m. This means
\lower indices are used �rst".

This can be expressed easily, if the presence or non-presence of a component with a certain index is
explicitly modelled. For example, in our synthesis system OSCAR (see [LMD94]), presence of instance
k is modelled by a variable bk:

bk =

(
1; if instance k is present in a solution
0; otherwise

(10)

A straightforward approach for using \lower indices �rst" could consist in increasing the costs of
components by a very small amount. One could de�ne, for example, the cost of the nth component
of type m as:

cost(instance `m + n) = cost(type m) + n � � (11)

Where:

8m;n : n � � < cost(type m) (12)

In contrast, we propose another method for \using lower indices �rst" and we will show that the
run-time of our approach is signi�cantly smaller than the straightforward approach. In our approach,
we use additional constraints.

With additional constraints, it is quite easy to use \lower indices �rst". We just have to add the
following constraintsy:

8m 8k 2 [`m::(rm � 1)] : bk � bk+1 (13)

Example: If function type is de�ned as in �g. 3, the following constraints will be used:

b1 � b2; b3 � b4; b4 � b5; b6 � b7; b7 � b8; b8 � b9; b10 � b11; b12 � b13::

2

Limitations: The current approach to using a kind of normal form for labelling components assures
that, for each set of isomorphic netlists, only a single representative is considered. The concept of
renaming-equivalent netlists can be extended into a more general concept of equivalence. For example,
our approach does not catch e�ects of \equivalent" wiring.

yThe �rst p b-variables for component m can be set to 1 and the number of additional constraints can be reduced if
p is the known lower bound [OKDX95] on the number instances of type m (this was not exploited in the following).

7

5 Complexity analysis

Most importantly, isomorphic solutions can be avoided without adding new variables.

Furthermore, the number of new constraints is usually rather small. It can be computed as follows:

new constraints =
X
m2M

(um � 1) (14)

Let us now analyze the reduction in complexity. Let us assume that the number of component instances
which is actually required in an optimal solution is am, for each m 2M . Obviously it holds that

am =
X

k2[`m::rm]

bk (15)

Without the additional constraints (13), there would be
�am
um

�
possibilities of labelling am components

of type m with um integers. Hence, for given sets fumg and famg, there would be

sth =
Y

m2M

am

um

!
(16)

isomorphic optimal solutions. Of course, sth is equal to one if the upper bound is either tight or one
(8m 2M : (um = am)_ (um = 1)). We may consider (16) to be an upper bound on the speed-up due

to excluding multiple isomorphic solutions.

The actual speed-up, however, may be di�erent from sth due to the following reasons:

� IP-algorithms might, for example, cut-o� parts of the search space such that not all isomorphic
solutions are actually considered.

� The additional constraints may cause IP-solvers to choose a di�erent sequence for considering
the variables. This may have either a positive or a negative e�ect on the run-time, unless the
IP-solver allows maintaining the same sequence by user-controlled sequence guidance.

� Equation (16) ignores the e�ect of the slightly increased number of constraints.

Due to these reasons, the additional constraints may lead to either smaller or larger computation
times. Signi�cantly larger computations times, however, should only occur if the user has no in
uence
on the sequence in which variables are considered.

6 Results

6.1 IP-Solver Independent Results

Using our OSCAR system as an example, we have analysed the actual speed-up. In order to speed up
synthesis, we used a cost function considering only the cost of functional units. Constraints included:

8

precedence constraints, functional unit constaints, assignment constraints and (optional) renaming
constraints (see [LMD94] for details).

The library consisted of a simpli�ed library containing an adder, a multiplier and a subtractor. Costs
were 20k, 30k and 20k units, respectively. Each component type was single-cycled.

For the elliptical wave �lter benchmark, the generated optimal results and the number of variables
and constraints are listed in table 1. The results include the upper bound and the actual number of
instances of adders (m = 1) and multipliers (m = 2). Subtractors were not required for this example.

control steps 15 16 17 18 19 20

a1 (Adder) 3 3 2 2 2 2
u1 5 5 5 5 5 5
a2 (Multiplier) 2 1 1 1 1 1
u2 4 4 4 4 4 4
Variables 341 518 695 872 1049 1226
equations, excluding (13) 163 233 299 357 415 473
equations, including (13) 170 240 306 364 422 480

speed-up (sth) 60 40 40 40 40 40

Table 1: Optimal solutions for elliptical wave �lter

Table 2 contains the same type of results for another example: for computing determinantes (see
appendix).

control steps 8 9 10 11 12 13 14

a1 (Multiplier) 3 2 2 2 2 2 1
u1 6 6 6 6 6 6 6
a2 (Subtractor) 1 1 1 1 1 1 1
u2 1 1 1 1 1 1 1
a3 (Adder) 1 1 1 1 1 1 1
u3 1 1 1 1 1 1 1
Variables 224 311 398 485 572 659 746
equations, excluding (13) 96 138 182 225 268 311 354
equations, including (13) 101 143 187 230 273 316 359

speed-up (sth) 20 15 15 15 15 15 6

Table 2: Optimal solutions for computing determinantes

6.2 Runtimes for Selected IP-Solvers

For the two examples, actual speed-ups were measured on a Sun SPARCstation-20 running at 60 MHz.
We considered four di�erent IP-solvers:

� lp solve, version 2.0.1

Program lp solve from the University of Eindhoven [Ber92] is able to solve mixed integer/linear
programs. Version 2.0.1 has been derived at our institute from version 2.0 such that variables

9

bk are considered �rst. Results for this solver and the elliptical wave �lter are listed in table 3.
Runtimes have been included for all combinations of using or not using equation (13) (additional
constraints) and equation (11) (modi�ed cost function).

control steps 15 16 17 18 19 20 21

(13) (11)

- - 0.3 4.3 15.5 46.2 98.1 150.8 249.3
+ - 0.7 1.7 5.3 16.1 37.5 48.1 85.9
- + 0.4 4.9 12.6 75.1 186.2 332.0 577.9
+ + 0.5 1.3 4.5 10.1 21.7 58.0 89.0

speed-up (- -)/(+ -) 0.43 2.53 2.92 2.87 2.62 3.14 2.90

Table 3: Run-times [seconds] of lp solve 2.0.1 for elliptical wave �lter

Fig. 4 shows a graphical representation of the speed-up.

−− +− −+ ++ −− +− −+ ++

15

−− +− −+ ++ −− +− −+ ++ −− +− −+ ++ −− +− −+ ++ −− +− −+ ++

17 19 20 211816

constraints+cost modified

cost modified

new constraints

control
steps

Runtime
[seconds]500

50

5

0.5

.064

.25

.45
.325

.2
.16

.125
.1

.08

.64
.8

1
1.25

1.6
2.

2.5
3.25

4.5

6.4
8

10
12.5

16
2o
25

32.5
45

64
80

100
125
160
200
250
325
450

old model

Figure 4: Graphical representation of table 3 (log scale)

From table 3 and �g. 4 it is obvious, that �-terms in the cost function do not speed up IP-solver,
except for cases in which the run-time is small and its measurement is imprecise. Additional
constraints, however, result in signi�cant time savings, especially if the execution times are
high without these constraints. The actual speed-up is signi�cantly smaller than sth (see table
1). Nevertheless, the actual speed-up is important. There is only one case with rather small
execution times, in which the speed-up is somewhat smaller than 1.

The large dynamic range of times in combination with the limited resolution of �g. 4 hides the
fact that the negative e�ect of the modi�ed cost function increases with IP-execution times.

10

Fig. 5 displays normalized runtimes on a linear scale. In this �gure, the e�ect can be seen quite
clearly.

−− +− −+ ++ −− +− −+ ++
15

−− +− −+ ++ −− +− −+ ++ −− +− −+ ++ −− +− −+ ++ −− +− −+ ++
17 19 20 211816

runtime

1

Figure 5: Normalized runtimes (linear scale)

Already from this example, it should be clear that design constraints should {wherever possible{
be modelled by IP-constraints and not by modi�cations of the cost function.

Table 4 shows the same type of results for computing determinates.

control steps 8 9 10 11 12 13 14

(13) (11)

- - 0.8 3.2 6.0 14.7 13.9 31.5 39.3
+ - 0.3 1.1 3.2 3.2 5.5 13.2 9.0
- + 1.2 5.3 8.6 20.5 31.6 44.1 -
+ + 0.2 1.0 2.5 3.6 5.7 10.1 -

speed-up (- -)/(+ -) 2.67 2.91 1.88 4.59 2.53 2.39 4.37

Table 4: Run-times of lp solve 2.0.1 [seconds] for computing determinantes

The results from this example con�rm the observations made for the elliptical wave �lter.

� Beta-release of osl solve, release 2

The next solver which we considered, is part of the commercial OPTIMIZATION SUBROUTINE
LIBRARY (osl)z. For this solver, we did not specify any sequence for considering variables.
Results can be found in tables 5 and 6.

The actual speed-up exceeds sth (see tables 1 and 2) in some cases by unexpected numbers. This
solver seems to be very sensitive to new constraints. For this solver, the new constraints are
very important for making the solver usable at all.

zCopyright: IBM.

11

control steps 15 16 17 18 19 20 21

(13) (11)

- - 0.7 82.7 6.7 246.3 1155.0 134.5 378.4
+ - 1.3 3.5 8.4 42.3 63.9 58.3 72.7
- + 0.9 458.7 4.7 114.2 111.8 241.3 509.4
+ + 1.0 1.9 5.3 15.2 76.7 49.1 129.0

speed-up (- -)/(+ -) 0.53 23.62 0.79 5.8 18.1 2.3 5.2

Table 5: Run-times [seconds] of osl solve for elliptical wave �lter

control steps 8 9 10 11 12 13

(13) (11)

- - 3.4 4.0 169.0 11.6 2432.6 >4617
+ - 1.1 2.1 3.2 5.1 16.1 12.4
- + 7.2 4.3 16.3 6.6 3719.8 >6107
+ + 1.1 2.1 6.2 8.4 10.8 17.4

speed-up (- -)/(+ -) 3.1 1.90 52.81 2.27 151 >372

Table 6: Run-times [seconds] of osl solve for computing determinantes

� lp solve, version 1.0

This is an earlier version of lp solve. This version has not been modi�ed to consider certain
variables �rst. Run-times for this solver are listed in tables 7 and 8.

control steps 15 16 17 18 19 20

runtime, without (13) [s] 1 10 36 244 372 598
runtime, with (13) [s] 1 4 12 88 121 350

speed-up (actual) 1 2.5 3.0 2.8 3.1 1.7

Table 7: Run-times [seconds] of lp solve 1.0 for elliptical wave �lter

control steps 8 9 10 11 12 13 14

runtime, without (13) [s] 8 10 17 37 54 56 40
runtime, with (13) [s] 1 2 3 4 9 15 52

speed-up (actual) 8.0 5.0 5.7 9.3 6.0 3.7 0.8

Table 8: Run-times [seconds] of lp solve 1.0 for computing determinantes

Since the original version 2.0 of lp solve does not perform any better than version 1.0 if our
examples are used as input, the slower execution speed of version 1.0 is essentially caused by
the fact that it is does not necessarily consider variables bk �rst. This is consistent with the
observation made by Achatz [Ach95]: at least for the IP-problems at hand, it is advisable to
consider variables occuring in the cost function �rst. According to table 3, even the run-times
reduced this way can be further reduced by our additional constraints.

12

� A pre-release of opbdp V1.0

The next IP-solver which we considered is a pre-release of an algorithm for 0/1 integer programs
which does not use the simplex algorithm [Bar95]. The corresponding results can be found in
tables 9 and 10.

control steps 15 16

runtime without (13) [s] 139.8 >4225
runtime with (13) [s] 2.7 >3313

speed-up (actual) 51.77 -

Table 9: Run-times [seconds] of opbdp V1.0 for elliptical wave �lter

control steps 8 9

runtime without (13) [s] 2.4 -
runtime with (13) [s] 0.6 -

speed-up (actual) 4 -

Table 10: Run-times [seconds] of opbdp V1.0 for computing determinantes

Only few cases of the IP-problems can be solved with this pre-release. For these, however, the
speed-up is signi�cant and approaches sth.

A general remark, applying to all four solvers is the following: the number of elements in the considered
library is rather small and larger speed-ups can be expected for larger libraries.

7 Conclusion

In this paper, we have presented a technique for exploiting netlist isomorphism in architectural syn-
thesis. With this technique, only one representative for each class of equivalent solutions is generated.
The technique presentented can be combined with a variety of synthesis models in order to reduce the
run-time of architectural synthesis. Hence, the range of applications of IP-based synthesis is extended
despite the fact that synthesis will still be NP-hard. In has been shown that, for the examples we con-
sidered, additional constraints result in a larger runtime reduction than cost function modi�cations.
In the OSCAR system, the technique made synthesis of larger examples feasible.

We believe that the concept of netlist equivalence reaches well beyond the current approach. By
restricting synthesis systems to consider only the essential decisions, (decisions which may actually
a�ect the resulting hardware structure), a lot of computation time might be saved. This might be the
right way to go in order to include layout considerations in architectural synthesis.

The authors appreciate the comments of Fadi Kurdahi and Nikil Dutt (UC Irvine).

13

References

[Ach93] H. Achatz. Extended 0/1 LP formulation for the scheduling problem in high-level synthe-
sis. EURO-DAC'93, 1993.

[Ach95] H. Achatz. Personal communication. UC Irvine, 1995.

[AT94] L. F. Arnstein and D. Thomas. The attributed behavior abstraction and synthesis tools.
31th Design Automation Conference, pages 557{561, 1994.

[Bar95] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut f�ur Informatik,
http://www.mpi-sb.mpg.de/papers/reports/abstracts.html#MPI-I-95-2-003, 1995.

[Ber92] M.R.C.M. Berkelaar. Unixtm manual page of lp solve. Eindhoven University of Technology,

Design Automation Section, 1992.

[DN89] S. Devadas and R.A. Newton. Algorithms for allocation in data-path synthesis. IEEE

Trans. on CAD, 8:768{781, 1989.

[GDWL92] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis {Introduction to Chip and

System Design{. Kluwer Academic Publishers, 1992.

[GE91] C. H. Gebotys and M. I. Elmasry. Simultaneous scheduling and allocation for cost con-
strained optimal architectural synthesis. 28th Design Automation Conference, pages 2{7,
1991.

[Geb92] C. H. Gebotys. Optimal scheduling and allocation of embedded VLSI chips. 29th Design

Automation Conference, pages 116{123, 1992.

[GK83] D.D. Gajski and R.H. Kuhn. New VLSI tools. IEEE Computer, pages 11{14, 1983.

[HP83] L. Hafer and A. C. Parker. A formal method for the speci�cation, analysis and design of
register-transfer level digital logic. IEEE Trans. on Computer-Aided Design, Vol.2, pages
4{18, 1983.

[JPO93] A. A. Jerraya, I. Park, and K. O'Brien. AMICAL: an interactive high level synthesis
environment. Proceedings EDAC, pages 58{62, 1993.

[Koh87] Z. Kohavi. Switching and �nite automata theory. Tata McGraw-Hill Publishing Company,

New Delhi, 9th reprint, 1987.

[LMD94] B. Landwehr, P. Marwedel, and R. D�omer. OSCAR: Optimum simultaneous scheduling,
allocation and resource binding based on integer programming. Euro-DAC, 1994.

[Mar90] P. Marwedel. Matching system and component behaviour in MIMOLA synthesis tools.
Proc. 1st EDAC, pages 146{156, 1990.

[McF87] M. C. McFarland. Reevaluating the design space for register transfer level synthesis. IEEE
Int. Conf.on Computer-Aided Design(ICCAD), pages 262{265, 1987.

[MS89] P. Marwedel and W. Schenk. Improving the performance of high-level synthesis. Micro-

programming and Microprocessing, Vol.27, pages 381{388, 1989.

[OKDX95] S. Y. Ohm, F.J. Kurdahi, N. Dutt, and M. Xu. A comprehensive estimation technique
for high-level synthesis. Int. Symp. on System Synthesis (ISSS), 1995.

14

[ST83] D.P. Siewiorek and C.J. Tseng. Facet: A procedure for the automated synthesis of digital
systems. 20th Design Automation Conf., pages 490{496, 1983.

[Sto90] L. Stok. A generalized interconnect model for data path synthesis. Proc. CompEuro 90,

Tel Aviv, pages 461{465, 1990.

[Tim95a] E. Timmer. Con
ict modelling and instruction scheduling in code generation for in-house
DSP cores. 32th Design Automation Conference, 1995.

[Tim95b] E. Timmer. Exact scheduling strategies based on bipartite graph matching. European
Design & Test Conference (ED&TC), 1995.

[WGHB95] T. Wilson, G. Grewal, S. Henshall, and D. Banerji. An ILP-based approach to code gen-
eration. in: P. Marwedel, G. Goossens (ed.): Code Generation for Embedded Processors,

Kluwer, 1995.

Appendix: Source code for Example det

ENTITY determinante IS

PORT(a, b, c, d, e, f, g, h, i : IN BIT_VECTOR (31 DOWNTO 0);

s : OUT BIT_VECTOR (31 DOWNTO 0));

END determinante;

ARCHITECTURE behaviour OF determinante IS

BEGIN PROCESS

VARIABLE a_in, b_in, c_in, d_in, e_in, f_in, g_in, h_in,

i_in, s_out : BIT_VECTOR (31 DOWNTO 0);

BEGIN

a_in := a;

b_in := b;

c_in := c;

d_in := d;

e_in := e;

f_in := f;

g_in := g;

h_in := h;

i_in := i;

s_out := a_in * e_in * i_in

- a_in * f_in * h_in

- d_in * b_in * i_in

+ d_in * c_in * h_in

+ g_in * b_in * f_in

- g_in * c_in * e_in;

s <= s_out;

END PROCESS;

END behaviour;

15

