
Time-constrained Code Compaction for DSPs

Rainer Leupers, Peter Marwedel

University of Dortmund, Dept. of Computer Science XII, 44221 Dortmund, Germany

email: leupersjmarwedel@ls12.informatik.uni-dortmund.de

Abstract{DSP algorithms in most cases are subject to

hard real-time constraints. In case of programmable DSP

processors, meeting those constraints must be ensured

by appropriate code generation techniques. For proces-

sors o�ering instruction-level parallelism, the task of

code generation includes code compaction. The exact

timing behavior of a DSP program is only known after

compaction. Therefore, real-time constraints should be

taken into account during the compaction phase. While

most known DSP code generators rely on rigid heuris-

tics for that phase, this paper proposes a novel approach

to local code compaction based on an Integer Program-

ming model, which obeys exact timing constraints. Due

to a general problem formulation, the model also obeys

encoding restrictions and possible side e�ects. 1

1 Introduction & related work

Design requirements for embedded systems including
DSP functionality strongly di�er from those for inter-
active environments such as workstations. While in the
latter case an "as fast as possible" behavior is desirable,
DSP algorithms (e.g. in audio and video processing) are
usually subject to hard real-time constraints, i.e. any
speed overhead violating the restrictions is unacceptable
for those systems. On the other hand, it is unnecessary
to optimize a DSP algorithm beyond the given timing
constraint.
This has consequences for code generation in case of pro-
grammableDSP processors. Instead of producing highly
optimized code, a DSP code generator should basically
answer the question whether there exists a machine pro-
gram whose execution does not take more than T cycles
for a given constraint T , and if so, construct that pro-
gram.

Code generation for DSPs is complicated by the fact
that a moderate to high degree of potential parallelism
is o�ered by contemporary DSP instruction sets. The
Motorola DSP56156 [1] for instance performs up to three
register transfers per cycle. Exploitation of available

1This work has been partially supported by the European
Union, ESPRIT project 9138 (CHIPS). Publication: 8th Inter-
national Symposium on System Synthesis, Cannes/France, Sept.
1995, c
ACM

parallelism during code generation is usually ensured by
a code compaction phase, in which independent register
transfers may be scheduled together into a single con-
trol step thus resulting in a lower cycle count. The exact
timing behavior of a machine program is only known af-

ter compaction. This implies that timing constraints
should be considered by a compiler at least during the
compaction phase.

Due to the steadily growing importance of embedded
DSP systems based on programmable processors, much
research e�ort has gone into the area of code generation
for DSPs during the last years. Compilers for DSPs have
to cope with highly irregular datapaths, highly special-
ized instruction sets, and peculiarities in the instruction
formats. Furthermore, a certain degree of retargetability
is desirable. Recent approaches to DSP code generation
include [2, 3, 4, 5, 6]. An overview of the state-of-the-art
is to be found in [7].
In those approaches, however, timing constraints are ne-
glected. Instead, focus is on retargetability and code op-
timization. Due to the problem complexity, heuristics
are applied for solving the subtasks of code generation,
including code compaction.

While the presence of timing constraints has been sub-
ject to research for a long time in the area of hardware
synthesis, automatic time-constrained software genera-
tion is quite a new topic. In contrast to hardware syn-
thesis, time-constrained software generation for prede-
�ned processors results in a both time and resource-
constrained problem de�nition. This implies that a given
problem does not necessarily have a solution.

The problem of time-constrained software generation
has also been addressed in the context of HW/SW co-
design. The technique described in [8] uses a very rough
estimation of machine program execution times, mak-
ing simplifying assumptions about the available instruc-
tion set. While such an approach makes sense from a
"system-level" point of view, it is unlikely to succeed
in actual code generation. A constructive system-level
technique for software scheduling in presence of real-
time constraints has been reported in [9]. In Timmer's
approach [10], both time and resource constraints are ex-
ploited during code generation. Due to a sophisticated
execution interval analysis, the technique e�ciently pro-
duces very high quality code. However, code generation

is currently limited towards restrictive instruction for-
mats. A more versatile code generation system that
actually considers exact program execution times on a
given processor was presented in [11]. In that system,
code generation is based on an Integer Program (IP)
formulation of the problem, a technique that has also
become quite popular in the area of high-level synthe-
sis (see e.g. [12, 13]). In fact, the approach described
in [11] tries to integrate several of the code genera-
tion subtasks (including code compaction) into a sin-
gle Integer Program resulting in optimal programs or
time-constrained programs, respectively. However, due
to NP-completeness of Integer Programming, one can-
not expect to solve complex code generation problems
within an acceptable amount of time, although it is rea-
sonable to permit much higher runtimes for a DSP code
generator than for a C compiler in a workstation envi-
ronment.
Therefore, in this contribution we propose an IP model
which focuses on the task of code compaction. Inputs to
the model are a sequence of register transfers and a max-
imum time budget T for the compacted code. Running
an IP solver on this model either delivers compacted
code with a cycle count � T or reports infeasibility
of the given problem. We do not explicitly consider
minimum timing constraints, since in code generation
those constraints usually can be met by inserting "no-
operations".

In extension to the work described in [11] which basi-
cally considers resource con
icts and dependencies be-
tween microoperations during compaction, our model
also handles encoding restrictions and operations having
side e�ects, i.e. the control code for one register transfer
may also trigger other di�erent register transfers. Dur-
ing code compaction it must be ensured that live values
in registers are not destroyed by such side e�ects. Fur-
thermore, we include the concept of alternative code ver-
sions into compaction. During compaction, an appro-
priate code version for each operation is selected. These
extensions make our approach suitable for a variety of
DSP processors. Although the problem to solve remains
NP-hard, we believe that an approach which directly in-
corporates timing constraints into the code generation
process is better suited for DSP requirements, since any
rigid heuristic trying to optimize the code might fail to
�nd an existing solution.

The next section gives a detailed de�nition of the code
compaction problem. Section 3 shows how one problem
instance can be transformed into an IP. Experimental
results are given in section 4, and the paper ends with
some concluding remarks.

2 Problem de�nition

As in [11] we concentrate on local code compaction, i.e.
within basic blocks. While on one hand this restricts
the solution space, it can be argued that the possible ad-
vantage of tackling the problem in a more global fashion
(at the expense of a possibly much larger search space)
might not be too high, since DSP algorithms typically
show mainly data
ow and less control
ow behavior.

With the appearance of VLIWmachines, local microcode
compaction became a popular research topic, and a num-
ber of heuristic algorithms have been developed, since
the problem was shown to be NP-complete. An exten-
sive experimental study [14] revealed that some of these
heuristics very often �nd solutions close to the optimum
within polynomial time. In the area of DSP, however,
code optimality is not always necessary. Any machine
program that satis�es a given timing constraint is a valid
solution. Our problem de�nition therefore just demands
for such a valid solution.

We assume that a sequence of assignments

SA = (A1; : : : ; An)

has been generated by earlier phases of compilation.
The goal is to schedule the assignments into a control
step list that does not exceed a given length. An assign-
ment Ai is a pair

Ai = (Wi; Ri)

where Wi is the write location and Ri is a set of read
locations for the assignment. Write and read locations
are registers or memory cells. An assignmentAi writes a
value toWi that is a function ofRi. Let A = fA1; : : : ; Ang.
Three relations on A � A are important for preserving
correctness in the compacted assignment sequence. For
j > i we de�ne:

1. (Ai; Aj) 2 DD (data-dependency)
:() Wi 2 Rj.

2. (Ai; Aj) 2 OD (output-dependency)
:() Wi = Wj .

3. (Ai; Aj) 2 DAD (data-anti-dependency)
:() Wj 2 Ri.

In case that read or write locations are cells of an ad-
dressable memory, the problem of ambiguous memory

references occurs. Sometimes it is undecidable at com-
pile time whether or not two memory accesses refer to
the same address. We therefore assume that the three
relations incorporate potential depencencies in case of
unresolvable ambiguities.

Let CS(Ai) denote the control step to which Ai will
be assigned during compaction. Then, the following de-
pendency constraints have to be satis�ed in any valid
schedule:

1. 8(Ai; Aj) 2 DD [OD : CS(Ai) < CS(Aj).

2. 8(Ai; Aj) 2 DAD : CS(Ai) � CS(Aj).

For each Ai there is a set of alternative versions

Vi = fvi1; : : : ; vimi
g

A version vij is a partial control word setting, i.e. a bit-
string B 2 f0; 1; xgc, where c is the control word length.
One of these versions has to be selected for each Ai.
Two assignments Ai; Aj may only be scheduled within
the same control step with versions vik; vjl, if the ver-
sions are bit-compatible, i.e. there is no position m in
the bitstrings such that

vik[m] = 1 ^ vjl[m] = 0

and vice versa. The concept of versions is also used
in the MSSQ code generator [15]. Considering only
control code requirements for an assignment allows for
mapping resource con
icts to instruction con
icts. As a
consequence, no explicit information about resource us-
age of assignments has to be maintained. Furthermore,
versions also account for encoding restrictions within
the processor controller: In order to keep the instruc-
tion word length small, it is often the case that register
transfers cannot take place in parallel although being
resource-compatible. Like resource con
icts, encoding
restrictions are implicitly represented by versions. The
presence of alternative versions for assignments re
ects
the fact, that in general there exist several implemen-
tations for a given assignment, each having di�erent
control code requirements. The example in section 4
demonstrates that taking into account those alternatives
during compaction is essential for obtaining acceptable
results.

Preserving the semantical correctness of an assignment
sequence during compaction in general is further com-
plicated by the presence of side e�ects of register trans-
fers. As an example we consider the TMS320C25 DSP
[16]. A possible register transfer in the TMS320C25 is
to multiply register TR with a data memory value and
to store the result in register PR. However, there exist
di�erent versions to perform this operation (table 1).
The multiply (MPY) instruction does just the multi-
plication. The multiply-accumulate instruction (MAC)
additionally accumulates the previous product, causing
a side e�ect. Whenever the accumulator has to retain
its value, it must be ensured that during compaction the
MPY version is selected, while in other cases it would

be favorable to select the MAC version.

Especially in code generation for VLIW-like processors,
usually some bits in each control word remain "don't
care". However, it must be ensured that a later setting
of these don't care bits to either 0 or 1 does not trigger
an undesired register transfer that destroys a live value.
In order to eliminate such undesired side e�ects during
compaction, we assume that with every write location w
(register or memory) there is an associated set of "NOP
versions"

Nw = fnw1; : : : ; nwkwg

also being bitstrings in f0; 1; xgc. Packing a NOP ver-
sion nwl into a control step t ensures that location w
remains its state during that step. Although not being
"real instructions", NOP versions for a location w are
quite easy to obtain by inverting the sum of all versions
that write to w. Reference [17] describes how all ver-
sions can be extracted from a processor model given in
an HDL.
For elimination of undesired side e�ects during com-
paction, any valid schedule must ful�ll the following
state preserving constraints:

Register states: If an assignment Ai writes a value
to a register R, it must be ensured that no other oper-
ation destroys that value during its life range. On the
other hand, in order to avoid unnecessary restrictions,
the register may be overwritten as a side e�ect, when-
ever it does not contain a live value. Thus, for each
pair (Ai; Aj) of data-dependent assignments, which are
scheduled in non-subsequent control steps ti; tj, a NOP
version for the destination of Ai must be scheduled.

Memory states: If an assignment Ai writes a value to
a cell of an addressable memory M , the memory must
not be disabled during the lifetime of that value, since
this would prevent intermediate write accesses to other
cells of M . The dependency relations ensure that the
live value cannot be overwritten by other assignments.
In order to prevent undesired side e�ects, a NOP version
for M must be activated for each control step in which
no write access to M takes place.

We can now de�ne the problem of time-constrained code

compaction:
For an assignment sequence SA = fA1; : : : ; Ang and a
timing constraint T �nd a valid schedule of length � T .
A schedule is valid, if:

1. Each assignment is scheduled exactly once.

2. For each control step, the dependency, bit-compa-
tibility, and state preserving constraints are satis-
�ed.

Obviously, time-constrained code compaction is NP-hard.
Otherwise, one could solve the problem of optimumcode

machine instruction partial code functionality
MPY 00111000xxxxxxxx PR := TR * mem[...]
MAC 01011101xxxxxxxx PR := TR * mem[...]

ACCU := ACCU + PR

Table 1: Di�erent versions for multiplication

compaction in polynomial time by time-constrained code
compaction combined with a binary search on the pos-
sible schedule lengths. Therefore we may map the prob-
lem to an Integer Program formulation without loss of
e�ciency.

3 IP formulation

Given an assignment sequence A = (A1; : : : ; An) and a
maximum timing constraint T , the IP model contains
two classes of decision variables:

Version variables:

8i � n; j � jVij; t 2 R(Ai) : vi;j;t = 1 :() version
j of assignment i is scheduled in control step t. R(Ai)
denotes the range of Ai, i.e. the interval

[ASAP (Ai); ALAP (Ai)]

induced by the dependency relations in accordance with
T . We assume that each Ai is executable within a single
machine cycle.
Any maximum timing constraint T less than the maxi-
mum ASAP value can be rejected in advance, since no
valid schedule can have a smaller length than the critical
path. Likewise, timing constraints greater than n need
not be considered, since for T � n the original sequence
can simply be kept.

NOP variables:

nw;j;t = 1 : () NOP version j is activated for write
location w in control step t. NOP variables are only
de�ned in case of occurence in the state preserving con-
straints.

The constraints guaranteeing semantical correctness of
the compacted sequence are the following:

Each assignment scheduled once:

8Ai :
X

t2R(Ai)

jVijX
j=1

vi;j;t = 1

For each Ai one version must be selected and be assigned
to one control step within the range of Ai.

Strong dependency constraints:

8 (Ai; Aj) 2 DD[OD; C := R(Ai)\R(Aj) : 8t 2 C :

jVjjX
k=1

vj;k;t �
X

t0<t;t02C

jVijX
k=1

vi;k;t0

Assignments Ai have to be scheduled before their data-
and output-dependent assignments Aj.

Weak dependency constraints:

8 (Ai; Aj) 2 DAD; C := R(Ai)\R(Aj) : 8t 2 C :

jVjjX
k=1

vj;k;t �
X

t0�t;t02C

jVijX
k=1

vi;k;t0

Assignments Ai have to be scheduled before or in the
same control step as their data-anti-dependent assign-
ments Aj .

Register state preserving constraints:

8 (Ai; Aj) 2 DD; Wi = (register)R :

8 t 2 [ASAP (i) + 1; ALAP (j)� 1] :

X
t0<t

jVijX
k=1

vi;k;t0 +
X
t0>t

jVj jX
k=1

vj;k;t0 � 1 =

jNRjX
k=1

nR;k;t

If Ai and Aj are data-dependent and are not scheduled
in subsequent control steps, a NOP version for Wi = R
must be activated for each intermediate control step.

Memory state preserving constraints:

8Wi = (memory)M; AM := fAj :Wj =Mg; 8t :

1�

0
@ X
Aj2AM ;t2R(Aj)

jVjjX
k=1

vj;k;t

1
A =

jNM jX
k=1

nM;k;t

For each memory M and each control step t, a NOP
version for M is activated in t if and only if no write
access to M takes place in t.

Bit-compatibility constraints:

Let "6�" denote the bit-incompatibility of two bitstrings.

8 (Ai; Aj) =2 DD [OD; C := R(Ai) \R(Aj) 6= ; :

8t 2 C; 8k 2 f1; : : : ; jVijg; 8k0 2 f1; : : : ; jVjjg;

vi;k;t 6� vj;k0;t : vi;k;t + vj;k0;t � 1

Two assignment versions may only be scheduled into the
same control step, if they are bit-compatible, i.e. there
are neither resource nor encoding con
icts. We omit the
complementary constraints that hold for combinations
between assignment and NOP versions, as well as be-
tween NOP versions only.

Running an IP solver without an objective function on
an instance of this model either yields a compacted sched-
ule with length � T , or proves that no such schedule
exists. This implies that we solve the IP as a decision

problem instead of an optimization problem. Although
both variants show same computational complexity, the
decision problem is solved faster, since only one solution
has to be found.
Since the number of assignments and versions is �xed,
the number of variables in the IP model is mainly in
u-
enced by the ASAP/ALAP ranges of the assignments.
The assignment versions may be exploited for further re-
duction of those ranges without restricting the solution
space. One means of such a reduction is the following
rule: Whenever two assignments Ai; Aj are data-anti-
dependent, and all versions for Ai; Aj are pairwise bit-
incompatible, they can be treated like being strongly
dependent, i.e. the data-anti-dependency induces a <
relation on CS(Ai) and CS(Aj). Apparently, the e�ec-
tiveness of such reduction rules strongly depends on the
instruction set of the target processor and is not further
discussed here.

4 Example

Due to the NP-completeness of time-constrained code
compaction and IP, respectively, the model in general
cannot be applied for very large assignment sequences.
Like IP models in the area of high-level synthesis, it is
intended to work on small to medium size subproblems,
whose solutions can be combined to a global one as pro-
posed in [11]. For instance, a large DSP algorithm with
a timing constraint T could be subdivided into smaller
blocks for each of which an exact solution for a "small"
timing constraint is determined. Obviously, it is still
a di�cult problem how to obtain an appropriate block
structure, and several iterations will be required in gen-
eral.

On the other hand it can be stated that especially for
DSP processors focus must be on careful local compaction
of register transfers. This is due to the application area,
where many multiply-accumulate and data move op-
erations occur. Most DSP instruction sets permit to
parallelize such operations, and meeting real-time con-
straints in most cases demands for exploitation of po-
tential parallelism. Again, we consider an example for

the TMS320C25. The equation

u(n) = u(n�1)+K0 �e(n)+K1 �e(n�1)+K2 �e(n�2)

is needed in a PID control loop. The following assign-
ment sequence computes this equation (all signals are
assumed to reside in data memory):

(1) ACCU := u(n-1)

(2) TR := e(n-2)

(3) PR := TR * K2

(4) TR := e(n-1)

(5) e(n-2) := e(n-1)

(6) ACCU := ACCU + PR

(7) PR := TR * K1

(8) TR := e(n)

(9) e(n-1) := e(n)

(10) ACCU := ACCU + PR

(11) PR := TR * K0

(12) ACCU := ACCU + PR

(13) u(n) := ACCU

The cycle count without any compaction is 13. Sup-
pose, a hard timing constraint of 9 cycles is given. The
TMS320C25 instruction set comprises a number of dif-
ferent versions for each of the assignments (e.g. MPY
and MAC for the multiplications). The compactor has
to look for common versions for independent assign-
ments in order to achieve a tighter schedule. Running
the IP solver2 on the corresponding IP formulation of
the problem (containing 157 decision variables) yields
the following compacted schedule within 16 seconds on
a SPARC-20 (jj denotes parallel execution, NOPs not
shown):

(1) ACCU := u(n)

(2) TR := e(n-2)

(3) PR := TR * K2

(4) e(n-2) := e(n-1) ||

TR := e(n-1) ||

ACCU := ACCU + PR

(5) PR := TR * K1

(6) e(n) := e(n-1) ||

ACCU := ACCU + PR ||

TR := e(n)

(7) PR := TR * K0

(8) ACCU := ACCU + PR

(9) u(n) := ACCU

In control steps (4) and (6) the compactor exploited
the TMS320C25 "LTD" instruction for meeting the con-
straint, which loads TR, accumulates a previous product
in PR, and in parallel performs a data memory move.

The relatively high runtime for this example indicates

2"lp solve V1.5" by Michel Berkelaar, Eindhoven University of
Technology, The Netherlands

that the IP solver has to scan a large search space in
order to �nd the schedule. In turn, this implies that
any heuristic compaction algorithm is likely to fail in
this case. Therefore, in presence of timing constraints,
a higher runtime is acceptable for compaction. Further-
more, the TMS320C25 is a fairly complex example. For
processors with a less restrictive instruction set, solu-
tions for blocks with more than 100 assignments have
been found within a second of CPU time. Thus the ac-
ceptable assignment sequence length clearly depends on
the target processor, and no quantitative remarks about
the runtime behavior are possible. Due to the fact that
DSP algorithms typically are short and computation-
intensive, we however expect that our approach, which
allows to handle sequence lengths between 10 and 100
within a reasonable amount of time, is su�cient in most
cases.

5 Conclusions

With growing importance of programmable DSP proces-
sors integrated in embedded systems, time-constrained
code generation has become a complementary research
topic to time-constrained hardware synthesis. In this
contribution we introduced a method that exactly solves
a subproblem of time-constrained code generation, name-
ly code compaction. This method is implemented in
Record, a retargetable compiler for DSPs.
Due to the NP-completeness of the problem, we for-
mulated an Integer Programming version. The IP for-
mulation permits �nding solutions for small to medium
size problems within an acceptable amount of time. For
complex DSP processors and tight timing constraints
such an approach seems favorable, since heuristic com-
paction algorithms are likely to fail in those cases. Es-
pecially, this holds in presence of encoding restrictions
and operations with side e�ects, which occur in contem-
porary DSPs. The presented IP model provides means
of handling those peculiarities.

Further research is necessary on integration of code com-
paction and other phases of retargetable code genera-
tion. Furthermore, an a priori reduction of the search
space as used by Timmer [10] would be favorable in or-
der to decrease run time.

Acknowledgement

The authors would like to thank Birger Landwehr for
his helpful comments on Integer Programming issues.

References

[1] DSP56156 User's Manual, Motorola Inc. 1992

[2] C. Liem, T. May, P. Paulin: Instruction-set matching
and selection for DSP and ASIP code generation, Eu-
ropean Design & Test Conference (ED & TC), 1994

[3] A. Fauth, A. Knoll: Translating signal
owcharts into
microcode for custom digital signal processors, Proc.
ICSP, 1993

[4] B. Wess: Optimizing signal
ow graph compilers for
digital signal processors, Proc. ICSPAT 1994

[5] J. Van Praet, G. Goossens, D. Lanneer, H. De Man:
Instruction set de�nition and instruction selection for
ASIPs, 7th Int. Symp. on High-Level Synthesis, 1994

[6] R. Leupers, R. Niemann, P. Marwedel: Methods for
retargetable DSP code generation, IEEE Workshop on
VLSI Signal Processing, 1994

[7] P. Marwedel, G. Goossens (eds.): Code generation for
embedded processors, Kluwer Academic Publishers, to
appear: June 1995

[8] R. K. Gupta, G. De Micheli: Constrained software gen-
eration for hardware-software systems, 3rd Int. Work-
shop on Hardware/Software Codesign, 1994

[9] P. Chou, G. Borriello: Software scheduling in the co-
synthesis of reactive real-time systems, 31st Design Au-
tomation Conference, 1994, pp. 1-4

[10] A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, J.
A. G. Jess: Con
ict Modelling and Instruction Schedul-
ing in Code Generation for In-House DSP Cores, 32nd
Design Automation Conference, 1995

[11] T. Wilson, G. Grewal, D. K. Banerji: An integrated ap-
proach to retargetable code generation, 7th Int. Symp.
on High-Level Synthesis, 1994

[12] C. H. Gebotys, M. I. Elmasry: Global optimization
approach for architectural synthesis, IEEE Trans. on
CAD, Vol. 12, No. 9, 1993

[13] B. Landwehr, P. Marwedel, R. Doemer: Optimum si-
multaneous scheduling, allocation, and resource binding
based on integer programming, Euro-DAC, 1994

[14] Davidson, D. Landskov, B. D. Shriver, P. W. Mallet:
Some experiments in local microcode compaction for
horizontal machines, IEEE Trans. on Computers, vol.
30, No. 7, 1981

[15] L. Nowak: Graph Based Retargetable Microcode Com-
pilation in the MIMOLA Design System, 20th Annual
Microprogramming Workshop (MICRO-20), 1987, pp.
126-132

[16] TMS320C2x User's Guide, Rev. B, Texas Instruments,
1990

[17] R. Leupers, P. Marwedel: A BDD-based frontend for
retargetable compilers, European Design & Test Con-
ference (ED & TC), 1995

