RETARGETABLE CODE
GENERATION FOR PARALLEL,
PIPELINED PROCESSOR
STRUCTURES.

Wolfgang Schenk

Computer Science Department
University of Dortmund

Germany

ABSTRACT

The demand for decreased turn around time in the design of programmable digital
circuits requires CAD tools for synthesis, verification and code generation. Usually a
RT level netlist is available as soon as the datapath is designed. Given the netlist and
the behavior of the RT level modules, the proposed compiler maps a source program
to the binary code of the target machine.

The main tasks of the compiler are allocation, register allocation, scheduling and
compaction. These tasks are highly interdependent. Some machine features such as
operator chaining, multi-cycle operations, pipeline latency, load delay, delayed branch,
or residual control give raise to instruction dependencies, which can be automatically
extracted from the structural description.

From the netlist the proposed compiler derives an internal target machine represen-
tation, that is general enough to support all target architecture features mentioned
above.

In case the hardware supports different operators for a given operation the code gen-
erator must not commit to one of them, until a suitable alternative can be determined.
In order to generate high quality code and to support irregular architectures, the code
generator examines the alternative code versions.

2 CHAPTER 1

1 INTRODUCTION

With a retargetable compiler it is easy to generate code for different target ma-
chines. The code generator has knowledge about the target machine features.
There are different approaches where to specify the target machine:

1. The machine description is coded in the compiler.

2. There is an external description of the target machine, which is incorpo-
rated into the compiler by a pre-processing tool (e.g. a code-generator-
generator).

3. The machine description is external and considered at compilation time.

The proposed compiler follows the 3rd approach, which is probably better called
target independent compilation, because the compiler needs not to be recom-
piled for a new target. A machine description must include the operators of
the target machine and the resources they are using in each cycle.

The machine model of the proposed compiler is a purely structural description
of the modules in the machine and their interconnections. A processor descrip-
tion usually includes ALUs, registers, and memories as well as the instruction
counter, the instruction memory and the instruction register. An instruction
field, that specifies an operator is simply an interconnection from the instruc-
tion register to the control input of some ALU, either directly or via some other
modules (e.g. decoder). An immediate operand (address) is a connection from
the instruction register to the data (address) input of some module. Again
this might be a direct connection or the operand may pass through some other
modules. Consequently there is no notion for instruction formats. It is not
needed, because all information is present in the netlist. Moreover there is
no need to distinguish between modules belonging to the datapath and those
which constitute the controller. Similarily, in this model there is no distinction
between hardware for data and address calculation, because either one may
serve the other purpose.

Based on a structural processor model the proposed compiler supports all of the
following architectural features present in modern programmable processors:

m vertical and horizontal instruction encoding

Retargetable Code Generation. 3

m residual control
m pipelining with and without interlocks

m delayed branches, delayed load

As in classical compilers, the retargetable compiler also has to perform the code
selection- and register-allocation tasks. Moreover, depending on the architec-
ture features, the scheduling and compaction tasks may be required to improve
the quality of the generated code.

The compiler accomplishes this by extracting the register transfers from the
structural machine description. Operators, register transfers as well as instruc-
tions are represented in an unique data structure called SRU (set of resource
usages). This data structure is consistently used for all of the compiler tasks.

In order to achieve high quality code, the compiler has to explore as much ma-
chine features as possible. The code selection task becomes a hard problem for
complex instruction set processors. Sometimes not even the basic block bound-
aries are easily determined, due to conditional executable instructions [1]. If the
target processor has a irregular register file (e.g. register windows, stacks, etc.)
the register allocation task becomes more intricate because the access method
may prevent the usage of a particular register at later time. If there are special
purpose registers like address registers or stack pointers, the data routing task
shall respect for the lack of available interconnect hardware. Nevertheless, the
code generator should be able to use special purpose hardware.

For pipelined processors with or without interlocks the compiler is expected
to anticipate pipeline hazards. The register allocation and scheduling task
shall produce code sequences, that avoids unnecessary pipeline stalls. Good
code quality for VLIW processors on the other hand requires a sophisticated
allocation of partial instructions together with a global scheduling/compaction
scheme. As the machine features affect the relative importance of the compiler
tasks, the order in which the tasks are carried out is crucial as well.

This contribution is organized as follows. In the next section the most impor-
tant compiler task are described and how they relate to each other. The phase
coupling problem is discussed and the possible effect on the resulting code with
respect to the target machine features. In the 3rd section closely related work
on retargetable compilers in the MIMOLA software system is reviewed. These
compilers already accept structural target machine specifications and take care
of alternative code versions. In section 4 the style of the external description

Figure 1 Compiler phases

Retargetable Code Generation. 5

2.1 Code Selection

Code selection is the task of mapping the source language statements to an
intermediate representation, which contains operations only that are available
in the instruction set of the target hardware. The code generator must be able
to map the intermediate representation into target machine code in turn. Note
that the term code selection is used in a different context elsewhere. Some
authors regard the allocation task as part of the code selection, and others
subsume code selection under the compaction task, which is considered to se-
lect from alternative instructions. Code selection for conventional processors
is a straight forward task. How to map each source language construct to in-
termediate code is guided by simple rules. The intermediate code is usually
represented as three address code or quadruples. Each statement of the in-
termediate code corresponds directly to a single assembly instruction. In case
the target processor has multiple functional units like in VLIW processors, the
statements of the intermediate code may map to more than one possible partial
instructions. If a resource conflict hampers the compaction of a partial instruc-
tion the current code selection should be undone, whenever an alternative code
compacts better. In the presence of multi-cycle instructions like in pipelined
processors, resource conflicts may arise when succeeding instructions refer to
the same resource. Although the intermediate code corresponds to a complete
instruction, the code selection shall be undone unless the pipeline has interlocks
to resolve such hazards.

2.2 Allocation

The allocation task maps the operations in the intermediate code to the re-
sources in the target hardware. Variable allocation is the task of the global
memory management instance, which is usually implemented as part of the
code selection task. The stack layout as well as the references to structured
variables are implicit in the intermediate code. Register allocation is the special
case for the selection of storage resources for temporary values. The reverse
mapping of variable- and register allocation is a subset of the state of the tar-
get hardware, which comprises the contents of all storage resources at a given
execution point.

The allocation task is not an issue for conventional processors, where only a
single functional unit is available. If there are multiple functional units then
there may be alternative bindings for a given operation. The best binding is
not determined until compaction time. Thus allocation should be backtrack-

6 CHAPTER 1

able. Therefore, code selection and allocation should be carried out in a single
phase. In the absence of multi-cycle instructions, the allocation of a functional
unit to an operation may be implemented by allocation of instruction fields and
residual control values, since all conflicts with respect to hardware components
are mapped to conflicts at the control word (instruction conflict). Thus check-
ing for resource conflicts can be replaced by checking for instruction conflicts.
This observation was used in the compilers MSSV [7, 6] and MSSQ [11, 10].
The latter approach avoids backtracking by allocating all possible partial code
versions for a statement. The code versions are stored in a special data struc-
ture called I-tree, which gives a concise representation and is well suited for
checking for resource conflicts. At compaction time all versions for all state-
ments are available and the best binding can be selected. If the processor has
multi-cycle operations, the allocation becomes even more complicated. Replac-
ing resource conflicts with instruction conflicts like in the case where only single
cycle operations are present, is no longer valid, because resource conflicts may
arise when succeeding instructions refer to the same resource. In order to keep
track which resources are used during the execution of an operation, detailed
knowledge about the architecture is necessary.

2.3 Scheduling

The scheduling task establishes an order of operations in time. Any order which
satisfies the partial order implied by the data dependencies is valid. The critical
path is the longest chain. The length is measured in the number of cycles needed
to execute the operations along the path. The delay of an operation is known
after the code generator has committed to a binding established in allocation.
The critical path is not known until compaction, because then the delays that
contribute to the length of the path can be distinguished from the delays that
vanish, due to parallel execution.

2.4 Register Allocation

In register allocation it is determined which values are stored at which storage
locations. The code generator makes use of the parallelism of the target archi-
tecture to avoid serialization of the code. This reduces the need for temporaries
also. The life-span of a temporary does not exceed a basic block boundary. A
temporary value is either inherent in the source program, or it is introduced by
the code generator. Nevertheless the code generator has to introduce a tem-
porary if there are insufficient resources to compile a statement into a single

Retargetable Code Generation. 7

instruction. This is detected in the allocation phase, when there are not enough
functional units or other intra-instruction conflicts to perform all operations of
the statement. The introduction of a temporary updates the intermediate code
with new read and write accesses to the temporary cell and the corresponding
data dependencies. These accesses must also be allocated. Because it may be
impossible to write the desired value directly to the newly assigned temporary
location, it may be necessary to introduce another temporary cell. This is com-
monly known as the data routing problem. After allocation and compaction it
can be told which copy of the value should be used and which data route fits
best.

3 RELATED WORK

There are only few retargetable compiler known, that rely on structural hard-
ware descriptions. The approach of Paulin et.al. [12], has a built-in processor
model. For the register allocation and data routing tasks, the storage resources
are classified into non disjunct register classes. The pattern matcher makes use
of the dynamic programming concept from [2] (and [3, pp. 567-572]), which
is considerably fast, but relies on costs, which are computed for each node of
an expression tree. These costs must be uncertain, because it is not known in
advance, how tight the associated code can be compacted.

A more recent approach is the CHESS compiler from Goossens et.al., which is
also presented in this book. It uses a structural hardware description for the
data path modules, and the nML-model from Fauth et.al. [5] for the specifi-
cation of the instruction formats. In a hardware analysis phase partial code
versions are attached to the operators found in the hardware, which are used
to select from the possible instruction formats. But the allocation scheme does
not provide multi-cycle operations, thus inter-instruction conflicts are hardly
supported.

The design of the proposed compiler is based on the experience with earlier
compilers MSSV [7, 6] and MSSQ [11, 10] of the MIMOLA software system
[8]. Both compilers generate code for processor structures described in the
MIMOLA language [4]. In the pre-processing stage, the high-level statements
of the source program are mapped to register transfer statements: Variables
are bound to storage cells, and high-level control constructs like loops and
procedure calls are expanded to register transfer statements [7]. The compilers
MSSV and MSSQ treat conditional statements in an unique way [9]. There may

8 CHAPTER 1

be different hardware features for implementing conditionals. Depending on
which hardware support is detected, several versions of conditional statements
are generated. Usually it is profitable to avoid jumps. But it is not known in
advance, whether a conditional statement shall be compiled into a conditional
jump. Since conditional expressions and conditional load operations may be
implemented without conditional jumps, the different versions for conditional
statements lead to different partitions into basic blocks. Each of the alternative
basic blocks is allocated, and at compaction the best version is selected. This
way the code selection task is done for complete basic blocks.

4 EXTERNAL MACHINE
REPRESENTATION

The compiler relies on a detailed knowledge about the machine structure. The
description contains the definition of data types, as well as the hardware parts
and the interconnections among them. The parts are instantiations of modules
from a component library. The modules in turn are described in their behavioral
view, thus exposing the primitive operators of the hardware. The specification
of the target machine allows a broad range of abstraction. The description may
contain simple gates, ALUs, register, and memories as well as more complex
modules. Complex modules may consist of operators and storages.

This way complete (sub-)systems can be specified. A pipelined ALU with input
and output latches may be specified by a single module description. The ALU

TYPE Ctr= ENUM(mul,div); Data=(31:0); Word=(63:0);
MODULE Alu(IN c: Ctr; IN x, y: Data; OUT z: Word);
VAR x0, y0: Data; c0: Ctr;

CONBEGIN
c0 :=c¢; x0 := x; y0 :=y;
CASE c0 OF

mul: z < x0xy0;
div: z + x0/y0;
END
CONEND

Figure 2 Example of a pipelined ALU

Retargetable Code Generation. 9

has the input ports c,x,y, and the output port z. Ports define the signals, that
are accessible outside the module. They are connected with nets, which are
specified as sets of ports. A variable declaration defines the pipeline registers
x0,y0,c0. Variables specify storage components. They are the only containers,
that preserve their value across machine cycles. All storages (if enabled) are
assumed to receive a new value synchronously at the end of the machine cycle.
The behavior of the ALU is a single concurrent block. Each statement of a
concurrent block is executed in every cycle. For instance, the concurrent block
"CONBEGIN a:=b;b:=a CONEND’ would exchange the values of a and b.
The internal control logic of a module is represented by conditional statements
(i.e. CASE-/IF-statement). The signal assignments to z in the ALU are mutu-
ally exclusively selected by the contents of the pipeline register c0. An operator
may be described by an expression or a procedure call. Operators may have
multiple outputs, which correspond to the output values of a procedure call.
By default a signal assignment has a delay of 0 cycles. Multi-cycle operators
would be specified as follows: The signal assignment 'c < a+b AFTER 1’ in-
troduces a one cycle delay for an adder until the output becomes valid. Note,
that the arguments of an operator must be stable during all cycles in order to
produce a valid result. Similarily, a setup time (in cycles) for a storage would
be specified by an AFTER-construct attached to a variable assignment. In
contrast, a delayed load must be specified with pipeline registers in front of the
data input of the storage.

Informally the modules can be classified on how the data and control inputs
are used.

m If a multi-cycle operator requires a control code, whose value is supplied
in the first cycle of the activation only, the module is said to be of an
instruction issuing type. Usually the control code is latched, and the latch
register can be regarded as a residual control register. A floating point
coprocessor is a typical example for this type of control.

m If the control input of the module must be constant across all the cycles of
the activation, the module is said to be of the fized control type. This is a
common case when a controller has to make use of a slow operator with a
delay larger than the cycle time.

m The most complex modules are of the variant control type. The control
input has to receive different values in each cycle of the activation. Those
modules are regarded as programmable devices, where the output is pro-
duced by applying a sequence of primitive operators on the arguments.
The controller of a floating point unit for example makes use of this con-

10 CHAPTER 1

trol type. The values must be normalized, calculated and rounded in
sequence. For machine code generation these details can almost always be
hidden from the code generator by replacing the variant controlled module
with a compound operator of the instruction issuing type. Otherwise the
code selection task shall provide the knowledge on how to decompose the
operation to be compiled into the sequence of primitive operators.

The compiler generates binary code for the specified hardware structure. The
user supplies the machine specification and tags the instruction register. De-
pending on whether the micro instruction register or the machine instruction
register is specified, micro code or machine code is generated respectively. For
machine code generation, of course the micro controller must be specified. A
controller may be constituted from micro code (which may be given by ROMs
and their contents), and decoder circuitry, and decoding logic, which is in-
tegrated into the behavioral description of data path modules. Micro code
generation can even be used in the manual design and verification of processor
structures [10]. In case the data path is already designed, the controller can be
generated with the retargetable compiler.

5 INTERNAL MACHINE
REPRESENTATION

The code generator uses an unique data structure, which resembles the module
activation statements, known from the MIMOLA language in a more general
sense. A module activation in MIMOLA specifies for each of the input ports
a value. The activation determines the operator completely, because there are
only simple, single-cycle operators, with a single output.

The module activation for issuing a specific operator can be generalized. This
motivates the definition of SRUs.

5.1 Resources Usages

For each operator, the resources together with the values and relative cycles are
collected in a set of resource usages (SRU). Formally a resource usage (RU) is a
triple consisting, of a resource, a value, and an interval of integers. It denotes,

Retargetable Code Generation. 11

that the resource is occupied by the value during the cycles indicated by the
interval.

In general any hardware aspect, a code generator shall take care of, is a resource.
A resource allowed in a RU may be a port or a variable. A port carries an input
or an output signal of a part, and a variable represents a register or memory.
Resources are typed, thus it can be determined, which bit fields are affected in
the resource usage. Resources with structured types allow for more advanced
features. A memory for example is described by a variable of an array type.
If the memory has different access methods like word and byte addressing, it
is described by a variable with a variant type, which is the union of different
array types.

A value engaged in a resource usage, is a constant, a pattern or an opera-
tor, whose parameters are values in turn. The operator is characterized by
its signature, which specifies the type of the parameters and whether they are
used as input argument to the operator or as a result. There are four built-
in operators for storage accesses. The unary read operator has the signature
read(OUT), for accessing a register, where the result argument yields the cur-
rent contents of the register. For memory accesses the binary read operator
with the signature read(OUT, IN) is used, where the second argument specifies
the memory address. If an operator has multiple outputs, the output actually
used is selected by a projection operator. For single output operators, the pro-
jection may be omitted for readability. Similarily there are two load operators
for write accesses to registers and memories, with the signatures load(IN) and
load(IN,IN) respectively. The load operators are the only operators that yield
no result. There is another special operator, which is heavily used in allocation.
The assert operator ! with the signature !(OUT,IN) implements the identity
function on its input. It is used to distinguish a value, which is produced, from
a value, which must be asserted, at the resource.

The timing is the third component of a RU. The interval indicates the first and
last cycle at which the value is associated with the resource. For the description
of the storage property, the last cycle of a load operator is usually infinite.

The SRUs constitute a very general data structure. SRUs are used to describe
single operators, (micro-) operations, module activations, register transfers,
and complete instructions. The code generator makes use of SRUs in hardware
analysis, allocation, register allocation, scheduling and compaction.

12 CHAPTER 1

The basic SRUs are extracted from the behavior module description. The ex-
traction process relies on data flow information. A preceding data flow analysis
yields the information about when the signals are produced and consumed.

According to the dataflow information the basic SRUs are combined to module
activations or operator SRUs. In general the SRU for an operator contains RUs
for the guarding conditions, the arguments, and the result. The control code of
an operator is usually described within the module behavior using conditionals
like IF- and CASE-statements for example. The result of the operator is asso-
ciated with a signal resource or a storage resource. An assignment or reference
to a variable introduces a load or read operator respectively.

Whenever an argument of an operator refers to a signal, it is represented by a
pattern symbol. A pattern symbol is local to the SRU, and all occurrences of
the pattern inside the SRU refer to the same signal.

For the pipelined ALU in fig. 2 the following basic SRUs are related to the
activation of a multiplication:

(Alu.ec , pl [L1,1]) (Aluz , pl ,[1,1])
{(Alu.cO,load(pl),[l, oo])} {(Alu.a:O,load(pl),[l, oo])}

(Alu.c0 read(lmul),[1,

(Aluy , pl ,[1,1]) (Alu.z0, read(pl) ||
{(Alu.yO,load(pl),[l,oo])} (Alu.y0, read(p2) ||
(Alu.z , plxp2 |

1,1)
1,1)
1,1)
1,1))
There are four concurrent SRUs. Three of them represent the assignments to
the registers c0, 0, and y0. The first SRU consists of a RU for the signal
resource Alu.c, which represents the input port ¢, and a RU for the storage
resource Alu.c0. The load operator for a register c0 gets a value to be stored,
which is represented by the pattern symbol pl. The timing is represented by
the intervals. If a new value is supplied for a single cycle at the input port,
the register assumes the new value, and stores it forever or until it will be
overwritten. Since the scope of a pattern symbol is local to a SRU, it cannot
interfer with any pattern symbol in a different SRU. In the SRU with the
multiplication operator, the registers are accessed. The read operators at Alu.z
and Alu.y produce the argument values, which are represented by the pattern
symbols pl and p2, for the multiplication, whose result is visible at the signal
resource Alu.z. The value, read from the register 0, has to be asserted as the
constant mul in order to use the SRU.

Retargetable Code Generation. 13

5.2 Extraction of Register Transfers

The hardware analysis phase provides all the information about the available
operators and their usage to the code generator. The dataflow analysis and the
extraction of the basic SRUs is carried out for the behavior of each module.

The code generator can do the allocation on basic SRUs. But for performance
reasons basic SRUs are condensed as far as reasonable. Because the contents of
the storages must be tracked, a reasonable granularity for allocation is at the
register transfer level. A register transfer may occur within a module or beyond
several modules, in which case the interconnections add the new dataflow in-
formation. But not all storages are relevant for code generation. Especially the
pipeline registers and latches, present in pipelined processors, need not to be
tracked, since they receive a new value in each clock cycle anyway. If hardware
analysis determines a register, which is unconditionally loaded in each cycle,
it is regarded as a pipeline register. With this knowledge it is possible to ex-
tend the register transfers beyond pipeline registers. The programable storage
resources become the boundaries of the register transfers.

Starting at a load operator of a storage resource, which is no pipeline regis-
ter, the register transfers are constructed. A second SRU is combined with
the current one, if it contains a RU, for which the dataflow information indi-
cates a supplied value at the resource, which is needed in the current SRU.
During the combination of the SRUs, different pattern symbols for identical
signals are merged into another. The data dependencies for signals must
be maintained without storing it in a temporary. This is achieved if the
interval of the supplied value covers the interval of its use. Thereby the
setup- and hold times in the combined SRU are verified. When eliminat-
ing a pipeline register, the timing of the participating SRUs must be ad-
justed. The module activation of the pipelined ALU for the multiplication is:
(Alu.c, 'mul [1,1])
(Alu.z, pl [1,1])
(Aluy, p2 [1,1])
(Alu.z ,pl % p2,[2,2])
Note that the pipeline registers c0, z0, and y0 have vanished. The timing has
been adjusted accordingly.

14 CHAPTER 1

6 THE CODE GENERATION
ALGORITHM

The hardware analysis constructs the basic SRUs from the module behavior.
For each operator of a module a basic SRU is created. Using the interconnec-
tions, the basic SRUs are in turn combined to register transfers. This process
yields so called unbound SRUs, which serve as pattern for the allocation task,
where the intermediate code is matched against those SRUs. The compiler uses
trees as the intermediate representation of the program to be compiled. When-
ever a node in the expression tree matches the value of a RU, an instance of the
SRU is created, and the bindings from the expression to the RU and vice versa
are established. These instances are called bound SRUs, and the expression is
said to be partially allocated using the matching SRU. Register allocation uses
the bindings established in allocation to determine, which values should reside
in which storages and for checking for free storage resources when allocating
temporaries. The compaction phase deals with bound SRUs only. The main
task is checking for resource conflicts. It has to be assured, that no resource is
used with different values at the same time.

The code generation algorithm proceeds through the phases allocation, register
allocation, scheduling and compaction as depicted in fig. 3. In order to ex-
plore all possible code versions, it is fully backtrackable. There is no ordering
among the unbound SRUs, and alternative matches can only established via
backtracking. If there are no instruction versions without temporaries, storage
locations are inserted tentatively at the input of the current instantiated SRUs.
After register allocation, it is tested whether a valid schedule for the current
allocated partial code version exists. If no schedule exists due to a dead-lock
situation, the allocation must be backtracked. Furthermore a decision is made
on whether spill code should be inserted before backtracking takes place. Once
a suitable schedule is found, it can be used for compaction, which finishes the
code generation for the current basic block.

6.1 Allocation

The allocation task establishes the bindings of the program operations to the
operators in the hardware. Value tracking is an important subtask of alloca-
tion. For each value in the program it has to be determined, at which signals
and storages it is present. In general a value must be routed via connections,
multiplexors or other circuitry to the argument of an operator where it is used.
Therefore it lives at different resources at the same time. The same is true for

Retargetable Code Generation. 15

FOR each basic block b6 DO
BEGIN
WHILE not all nodes n in bb allocated DO
allocate n with some matching sru {backtrackable}
create instance srui of sru and establish bindings
FOR each RU ru in srui,
whose value has to be asserted (!) DO
CASE resource(ru) OF
storage: {register allocation}
IF not already there THEN
allocate temporary
for value(ru) at resource(ru) FI
port:
allocate value(ru)
with some matching sru {backtrackable}
END {case}
END {while}
schedule srui’s
IF schedule exist for srui’s THEN compact srui’s
ELSE backtrack allocation FI
END {for}

Figure 3 The code generation algorithm

different copies of a value, which may reside at different storage resources. The
machine state, on the other hand, is the mapping from the storage resources
to the values in the program.

The actual allocation is done for a total basic block at once. It is interleaved
with the register allocation and scheduling phases, which may reject the current
bindings and cause a reallocation of alternative bindings via backtracking.

The basic block is given as the set of statements in their intermediate represen-
tation together with the dataflow information. Spill code and other code for
accessing temporaries may already have been inserted. Each assignment state-
ment is represented by a single tree. The allocation algorithm does a depth first
traversal through the tree. As each node is visited, it is allocated with a match-
ing SRU. A node of a statement tree may be a variable access, an operation or

16 CHAPTER 1

a constant. If a variable is accessed, it may be bound or unbound depending
on whether it is already associated with at least one storage or not. Write ac-
cesses to unbound variables are bound in advance to suitable storage locations.
A write access for a bound variable matches with any SRU, that contains a
RU with a load operator for one of the storages the variable is bound to. An
instance of the matching SRU is created. The arguments in the expression tree
become the instances of the arguments of the operator. Bindings which refer
to patterns symbols are propagated through the SRU. They give rise to newly
introduced assertions, which still have to be allocated. Whenever an assertion
refers to a storage resource, the register allocation will try to take that storage
as a temporary location, if it is not already there. If the assertion refers to
an input port, the allocation recurs, trying to route the required value to that
port. If there are other assertion operators in the SRU, they are allocated in
turn. The allocation of other operations and constants proceeds accordingly.
Anyway, beside load, read, !, and pass-through operators there is no semantic
knowledge about the operators built into the allocation.

The allocation process stops in one of the following states:

1. Allocation succeeded, and leaves assertions for the instruction memory
only.

2. Allocation succeeded, and leaves assertions for other storage resources.

3. Allocation failed, because no match was found.

In the first case, the assertions represent a code fragment ready for scheduling
and compaction. In the second case register allocation takes place for the
values to be asserted. The corresponding storage resources are assigned to the
asserted values. In the last case the given program cannot be compiled onto
the target machine due to missing operators or interconnections. The code
generator issues an error message and exits.

6.2 Scheduling and Compaction

The data dependencies in the intermediate representation of the program imply
the corresponding data dependencies between the bound RUs in the allocated
SRUs. Although the data dependencies occur between RUs, the scheduling is
carried out for SRUs. In this context a SRU can be regarded as an already

Retargetable Code Generation. 17

compacted code fragment. This is because a SRU consists of RUs, which are
fixed in their relative timing.

A valid schedule maintains data dependencies. It assures, that the live spans
of different values that use the same resource are mutually exclusive.

Since register allocation is done tentatively, dead-locks may occur. A dead-
lock is caused, when a value is written to a storage, and no ordering of the
subsequent accesses to it constitute a valid schedule. Before backtracking is
initiated, the decision is made whether or not spill code should be inserted for
one of the participating values. Spill code is generated for temporaries only,
because other variables are assigned to non-critical memories. No spilling takes
place if this value is supposed to have alternative storage resources. For the
most critical resource, the associated value with the fewest succeeding usages
is selected for spilling. The selected value is bound to a new resource. If no
such value exist, spill code is inserted.

Compaction is initiated for a totally allocated block only, after a valid schedule
has been determined. The compaction algorithm preserves the order estab-
lished during scheduling. Thus the compaction task has to pack the allocated
SRUs as tight as possible together. Thereby data dependencies must not be
violated, and no resource must be used with different values at the same time.
Because several data dependencies may occur between two SRUs, and each of
them is implied by storage accesses, the minimum distance between the SRUs
is determined by the relative timing as recorded in the corresponding RUs. The
first time the value is produced must not be later then the first time it is used
in the dependent RU.

7 CONCLUSION

The compiler presented in this contribution has a target independent code gen-
erator, which relies on a purely structural hardware description. A wide range
of possible target processors are covered. In addition to architectural features
such as horizontal and vertical instruction encoding, pipelined and multi-cycle
operators, the compiler automatically takes care of delayed branches, delayed
load, residual control, data setup- and hold-time and other hardware proper-
ties. The code generation algorithm features an unique data structure (SRU)
for the allocation, register allocation, scheduling and compaction tasks. High
quality code is achieved by exploring different code versions via backtracking.

18

CHAPTER 1

Thus most of the flaws from the sequential ordering of compiler phases are
avoided.

REFERENCES

[1]

2]

3]

[4]

[6]

[7]

[8]

[9]

[10]

ADSP2101/2102 User’s Manual (Architecture), Analog Devices, 2nd Edi-
tion. 1991.

Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code
generation using tree matching and dynamic programming. ACM Trans-
actions on Programming Languages and Systems, 11(4):491-516, October
1989.

Alfred V. Aho, Ravi Sethi, and Jefferey D. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

R. Beckmann, P. Marwedel, D. Pusch, and W. Schenk. The MIMOLA
language reference manual — version 4.0 —, 2nd edition. Technical Report
401, Computer Science Department, University of Dortmund, February
1992.

A. Fauth and A. Knoll. Translating signal flowcharts into microcode for
custom digital signal processors. Proc. ICSP, 1993.

P. Marwedel. Tree-based mapping of algorithms to predefined structures.
Int. Conf. on Computer-Aided Design, 1993.

Peter Marwedel. A retargetable compiler for a high-level microprogram-
ming language. In MICRO-17, pages 267-274, New Orleans, Louisiana,
October-November 1984.

Peter Marwedel and Wolfgang Schenk. Cooperation of synthesis, re-
targetable code generation and testgeneration in the MSS. EDAC-
EUROASIC’93, pages 63—69, 1993.

Peter Marwedel and Wolfgang Schenk. Implementation of IF-statements in
the TODOS-microarchitecture synthesis system. In Synthesis for control
dominated circuits, pages 249-262. North-Holland, 1993.

L. Nowak and P. Marwedel. Verification of hardware descriptions by re-
targetable code generation. In Proc 26th Design Automation Conference,
pages 441-447, June 1989.

Retargetable Code Generation. 19

[11] Lothar Nowak. Graph based retargetable microcode compilation in the
MIMOLA design system. MICRO-20, pages 126-132, 1987.

[12] Pierre G. Paulin, Clifford Liem, Trevor C. May, and Shailesh Sutarwala.
CodeSyn: A retargetable code synthesis system. Proc. 7th Int. Symp. on
High-Level Synthesis, 1994.

[13] Steven R. Vegdahl. Phase coupling and constant generation in an opti-
mizing microcode compiler. MICRO-15, pages 125-133, 1982.

