
Using Compilers for Heterogeneous System Design

Rainer Leupers, Peter Marwedel

University of Dortmund, Dept. of Computer Science 12, D-44221 Dortmund, Germany

email: leupersjmarwedel@ls12.informatik.uni-dortmund.de

Abstract

Heterogeneous systems combine both data and control pro-
cessing functions. A programmable DSP core forms the
central component. The design of such systems establishes
a new application of compilers in electronic CAD: In or-
der to meet given real-time constraints and optimize chip
area consumption, the DSP core needs to be customized for
each application. In turn, this requires compiler support for
evaluating di�erent architectural alternatives. This paper
discusses the importance of retargetable compilers in het-
erogeneous system design. 1

1 Introduction

Regarding digital signal processing (DSP) system compo-
nents two classes of functions can be distinguished:

� Real-time data processing functions: The inputs
are data streams that have to be processed with a cer-
tain rate (sample frequency or throughput). A valid
implementation has to meet given throughput con-
straints, whereas other system parameters (e.g. chip
area) are subject to minimization.

� Control processing functions: The inputs are vari-
ables which have to be processed at irregular points of
time. Normally there are only few timing constraints.
Essentially those functions guarantee correct commu-
nication between the system and its environment.

A system comprising both kinds of functions is called
a heterogeneous system. By means of increasing integra-
tion scales it has become possible to implement complete
heterogeneous systems on a single chip. Single-chip im-
plementations result in smaller physical volume and lower
production costs. According to the two function classes
mentioned above, these systems show a heterogeneous ar-
chitectural style (�g.1): a programmable DSP core (i.e. a
complete processor macrocell), additional speci�c data path
elements for realising data processing functions, and a small

1This paper was published at the Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT) 1995, Li-
massol/Cyprus, c
1995 IFIP

amount of on-chip memory for storing programs and inter-
nal constants and variables. Obviously, programmable cores
provide a much higher
exibility than pure hardware solu-
tions.

Decisions regarding the appropriate accelerators can be
facilitated by compiler support: Di�erent architectures and
instruction sets can be evaluated by repeatedly re-compiling
the DSP algorithm that describes the system behavior onto
an instruction set, and trading cycle count against chip
area. A compiler supporting this tradeo� must be capable of
handling
exible target DSPs and available instruction-level
parallelism.

The purpose of this paper is to describe a methodology
for e�cient evaluation of architectural alternatives for a DSP
core within a heterogeneous system, based on a retargetable
compiler.

The idea of incorporating compilers into the system de-
sign process is also proposed in [1]. That approach, how-
ever, is currently limited to evaluation of operation chain-
ing in DSP algorithms. In CAPSYS [2], compilation tech-
niques are used for generating a programmable hardware
structure for a given application. Since CAPSYS assumes
a certain generic VLIW architecture, it cannot be applied
for code generation for arbitrary prede�ned DSP cores. The
approach presented in this paper extends the applicability
of compilers in system design in the sense that arbitrary
processor structures can be handled.

In the remainder of this contribution we discuss the role
of compilers in heterogeneous system design, and we de-
scribe techniques for retargetable DSP code generation. The
practical applicability of our approach is discussed using a
real-life example.

on
chip
RAM

CORE
DSP

 2

acceler.
datapath

accelerator datapath 1

Figure 1: Heterogeneous architectural style

2 Hardware/software codesign for heterogeneous systems

The central issue of HW/SW codesign is to partition a sys-
tem behavioral description into hardware and software com-

ponents in such a way that the system implementation ful-
�lls given timing restrictions and minimizes the necessary
amount of application-speci�c hardware modules, and thereby
design and production costs. After the partitioning step
hardware components are synthesized and software compo-
nents are mapped onto the microprocessor by a compiler.
The basic process is shown in �g.2. Since decisions during
the partitioning step are often based on rough estimations,
in general some iterations are required until a valid imple-
mentation is found.

SYNTHESIS
HW

COMPONENTS
HW

PARTITIONING

DESCRIPTION

BEHAVIORAL

SYSTEM

COMPONENTS
SW

COMPILATION

SIMULATION

STOP

NOT OKOK

Figure 2: HW/SW codesign
ow

In case of single-chip implementations as depicted in
�g.1, the DSP core together with the accelerator datapaths
can be regarded as one application-speci�c processor whose
instruction set varies during the design iterations due to
changing datapaths. Making use of varying instruction sets
requires either manual compiler adaption or manual machine
code adaption.

Since both manual compiler and machine code adap-
tion are rather error-prone and time-consuming tasks, re-
targetable compilers should be applied for mapping software
components onto varying processor structures and instruc-
tion sets. Retargetable compilers read both an algorithm
(given in an HLL) and a target processor description and
emit binary code implementing the required behavior on
the given programmable hardware structure if possible. Ex-
isting retargetable compilers [3, 4, 6] map algorithms onto
microcode for the given hardware structure. This requires
detailed knowledge about the processor controller structure.
In case of o�-the-shelf DSP cores, however, this information
in general is not publicly available, and code cannot be gen-
erated. Commercial compilers for standard DSPs still do
not provide su�cient code quality, due to the lack of sophis-
ticated code generation techniques. Furthermore, they only
work for �xed architectures. In case of non-standard DSPs,
it is often the case that no compiler is available at all.

In order to �ll this gap, we present a technique for as-
sembly code generation independent of the target processor.
This technique is based on the retargetable microcode com-
piler MSSC.

3 Retargetable microcode generation

+/-

FOR i := 1 TO 64 DO
 BEGIN
 a[i] := c[i] *x[i-1];
 j := j-1;
 IF i > j THEN j:=k;
 END;

Behavioral Description
(High Level Language)

Target Architecture Netlist
(HW Description Language)

Retargetable
Compiler

110100100100010
110110010100100
100010001001001
001000100010001

Binary Machine Code

Figure 3: Functionality of MSSC

The microcode compiler MSSC has already been described
in detail in [6, 7], therefore we only give a brief overview here
for better understanding the process of retargetable assem-
bly code generation. The functionality of MSSC is depicted
in �g.3. It processes an algorithm given as a PASCAL or
RT-level program and a model of a target processor in the
MIMOLA hardware description language. The processor
model closely re
ects the actual hardware structure. One
register has to be labeled as program counter and one stor-
age module as instruction memory. The program is trans-
lated into binary microcode that executes the program on
the hardware structure. Note that the program is extracted
from the pure target machine structural description. As
a consequence of that, MSSC needs not to be recompiled
for di�erent target machines and thereby guarantees short
turnaround times when being retargeted to an alternative
processor architecture.

4 Retargetable assembly code generation

Due to the fact that many DSPs are not microcoded, but
show a two-level interpretation scheme of instructions, mi-
crocode compilers cannot be directly applied.

The solution to this problem is a technique that per-
mits assembly level code generation by a two-phase use of
MSSC. Firstly, MSSC is used to obtain the required con-
troller description which implicitly includes the set of valid
instructions. Using this controller description, MSSC maps
DSP algorithms to assembly-level instructions. Fig.4 gives
an overview of the whole procedure.

description
Hardware

MSSC

MSSC

PASCAL
Micro-ROM

Behavior of

program
Assembly

program

assembly
instructions

Figure 4: Overview of code generation technique

The �rst step is to model the target processor's RT-

structure in MIMOLA. The model consists of a netlist of
storage and combinational modules. The behavior of avail-
able machine instructions is modelled on the RT-level. RT-
level structure and the instruction behavior form the input
for MSSC in phase 1. The result of the �rst MSSC run is a
binary microprogram in which each microinstruction corre-
sponds to exactly one assembly instruction. This micropro-
gram is never executed, only its binary values are important
for the following steps. The microprogram is transformed
into a MIMOLA decoder module, that serves as an instruc-
tion decoder in phase 2. This decoder is integrated into
the hardware structure description used in phase 1. The
software input now can be any PASCAL program. MSSC
is applied to the extended hardware structure and the pro-
gram and translates it into a machine program executable
on the target processor. The decoder forces MSSC to gener-
ate assembly level code instead of microinstructions. Phase
1 has to be performed only once for each target structure,
after that any program can be compiled into assembly in-
structions. This technique preserves retargetability.

We will now explain the several steps of both phases
in more detail, using the DSP TMS320C25 as an example
target processor.

1.1 RT structure modelling: The target processor's RT-
level structure is modelled in MIMOLA.

When developing the model, only a rough structural de-
scription has to be available to the designer. In case of the
TMS, this information can be found in the data book. Re-
garding the controller, no information at all is required in
phase 1. Instead we use a very simple controller consisting of
a microprogram counter (MPC), a microinstruction storage
(MIS) and an incrementer.

This simple controller shows a VLIW architecture, the
MIS has a width of 150 bits. Such a VLIW controller would
allow many more valid instructions than actually available
in the TMS instruction set. In order to restrict MSSC to
set set of valid assembly instructions, we �rst model the be-
havior of those instructions.

1.2 Assembly instruction modelling: The behavior of
available assembly instructions is modelled in MIMOLA on
the RT level. We consider the TMS "LACK" instruction
(load accumulator immediate short): Its behavior is mod-
elled by:

LACK:

PARBEGIN

ACC := ZeroExtend24(ROM[PC].(7:0));

PC := "INCR" PC;

PAREND;

For each assembly instruction a label of the same name is
declared. The PARBEGIN-PAREND construct denotes paral-
lel execution of the included statements. In case of LACK
the 32-bit accumulator ACC is assigned an 8 bit immediate
value stored in the program ROM, addressed by the pro-
gram counter PC, extended by 24 zero bits. The program
counter is incremented in parallel. In this manner all TMS
instruction behaviors are described sequentially, resulting in
an RT-level "program" to which MSSC is applied in phase
1.

1.3 Decoder generation: MSSC is applied to the struc-
tural and behavioral models developed in steps 1.1 and 1.2.
It translates the assembly instruction behaviors into a set of
binary microinstructions. The resulting microcode is stored

into the MIS module containing one line for each modelled
assembly instruction then (�g.5). The initialized MIS can
be regarded as an instruction decoder. The decoder input
is an address, and the output is the corresponding microin-
struction. Integrating this decoder constructed by MSSC
into the TMS processor model and applying MSSC again
to the extended model is the basic idea of phase 2 in our
approach, which is described in the following.

<further instructions>

149

0100............................0X11

10X0............................1101

0
.

(LACK)

(CMPL)

Figure 5: Contents of MIS

2.1 Decoder integration: The decoder generated in
phase 1 becomes part of the controller structure. Micropro-
gram counter and incrementer of phase 1 are dropped. The
new controller structure is shown in �g.6.

ROM

Pgm

MIS
PC control

lines
-
-
-

?
6

address

address

Figure 6: Controller in Phase 2

The program counter PC addresses one line in the TMS
program ROM. The program ROM in turn steers the in-
struction decoder, which directly controls all modules. As
mentioned in section 3, MSSC is capable of passing control
codes to modules via decoders. Due to the controller struc-
ture, the only way to control modules is now via the instruc-
tion decoder, which in turn only contains microinstructions
implementing valid assembly instructions. Thus, having the
program ROM marked as location for instructions, MSSC is
forced to generate control codes for the instruction decoder
during code generation. These control codes can be inter-
preted as encoded assembly instructions, since each possible
decoder output corresponds to exactly one assembly instruc-
tion. Therefore, MSSC can now be used for translating HLL
programs into TMS machine code.

2.2 HLL program translation: MSSC is applied again,
this time to the extended hardware structure including the
instruction decoder, and an arbitrary PASCAL program. In
order to explain the basic idea, we consider code generation
for the single statement

x := 42;

Since this statement cannot be allocated in the TMS hard-
ware within a single cycle, MSSC splits it into the sequence

(1) ACC := 42;

(2) DataRAM[1] := ACC;

+

ACC2

instruction
word

RAM

addr

DataBus2

data

Figure 7: New adder-accumulator unit

using the TMS accumulator as a temporary cell and assum-
ing variable x has been mapped to data RAM cell 1. Each
statement can now be allocated within a single cycle, since
the TMS provides suitable instructions: LACK for loading
the accumulator with an immediate constant and SACL for
storing the accumulator into a data RAM cell. MSSC �nds
corresponding microcode within the instruction decoder and
generates intermediate code for addressing the decoder. The
intermediate code can easily be translated into real TMS
machine code by table lookup. In our example one obtains:

Mnemonic Machine Code
LACK 42 1100101000101010
SACL 1 0110000000000001

5 Exploring architectural alternatives

The main purpose of our retargetable assembly code genera-
tion technique is to support the designer of a heterogeneous
system in studying performance e�ects of di�erent acceler-
ator datapaths without compiler redesign.

As an example for a datapath change we consider an
additional adder-accumulator unit. Although this datapath
modi�cation results in a changed instruction set, the HLL
system behavioral description can remain unchanged and
can be mapped onto the new structure by our retargetable
compiler. In order to recompile programs onto the new
structure the designer simply repeats phase 1, i.e. adding
the new datapaths elements to the structural description,
specifying the behavior of the resulting new assembly in-
structions, and using MSSC for generating the correspond-
ing new instruction decoder.

We consider the e�ects of placing the second adder-ac-
cumulator unit into the datapath in order to enable perfor-
mance enhancements by instruction-level parallelism. Fig.7
shows the architectural extensions.

The new unit works in parallel to the original TMS ALU-
accumulator unit, thereby allowing parallel additions and
data RAM manipulations. By supplying separate control
signals to the new modules and assuming the adder to have
a transparent mode, �ve new instructions arise from this
measurement:

LDA <memadr>: (load ACC2)
ACC2 := DataRAM[<memadr>]

LDI <cnst>: (load ACC2 immediate)
ACC2 := <cnst>

ADA <memadr>: (add to ACC2)
ACC2 := ACC2 + DataRAM[<memadr>]

ADI <cnst>: (add to ACC2 immediate)
ACC2 := ACC2 + <cnst>

STA <memadr>: (store ACC2)
DataRAM[<memadr>] := ACC2

As a case study, we mapped two well-known DSP bench-
marks onto the original and the extended TMS structure:
the di�erential equation solver and the elliptical wave �lter.
Due to the limited space we only mention the results here:

prog PASCAL original extended CPU
statements TMS320C25 TMS320C25 sec

ellip 38 184 105 54
di�eq 35 100 73 64

Columns 3 and 4 show the number of machine instruc-
tions that have been generated for the original TMS instruc-
tion set and the extended instruction set allowing parallel
additions, as well as the compilation time on a SPARC-10.

The above data indicate, that using the new parallel
adder-accumulator unit accelerates execution of ellip by 43
% and execution of di�eq by 27 % at the expense of larger
chip area. Using our exploration technique, a system de-
signer can quickly obtain this information by adapting the
hardware model and recompiling the programs. Compila-
tion speed is slow compared to a target-speci�c compiler,
but this is more than compensated by retargetability in this
context.

6 Conclusions

A hardware/software codesign strategy for heterogeneous
information processing systems built around a DSP core
was presented, which establishes a new role of compilers
in electronic CAD tools for system design: The compiler
does not just generate the required code, but is involved in
the iterative system design process. Furthermore, contem-
porary DSP architectures require more sophisticated code
generation techniques than currently available DSP compil-
ers o�er. Therefore, we propose the usage of a retargetable
compiler which maps algorithms to
exible DSPs and which
exploits available instruction-level parallelism. Compiler re-
targetability ensures relatively short turnaround times. 2

References

[1] F. Onion, A. Nicolau, N. Dutt: Incorporating Compiler
Feedback into the Design of ASIPs, European Design & Test
Conference (ED & TC), Paris, March 1995

[2] G. Menez, M. Auguin, F Boeri, C. Carriere: Contribution of
CompilationTechniques to the Synthesis of DedicatedVLIW
Architectures, PACT-93, pp. 217-228

[3] S.R. Vegdahl: Local Code Generation and Compaction
in Optimising Microcode Compilers, PhD Thesis and Re-
port CMUCS-82-153, Carnegie-Mellon-University, Pitts-
burgh, 1982

[4] T. Baba, H. Hagiwara: The MPG System: A Machine-
Independent E�cient Microprogram Generator, IEEE
Trans. Comp., Vol C-30, 6(1981), pp. 373-395

[5] P. Marwedel, W. Schenk: Cooperation of Synthesis, Retar-
getable Code Generation and Test Generation in the MI-
MOLA Software System, European Design & Test Confer-
ence (ED & TC), 1993, pp. 63-69

2This work has been partially supported by the European Union,
ESPRIT BRA project 9138 (CHIPS)

[6] L. Nowak: Graph Based Retargetable Microcode Compila-
tion in the MIMOLA Design System, 20th Annual Micro-
programmingWorkshop (MICRO-20), 1987, pp. 126-132

[7] R. Leupers, W. Schenk, P. Marwedel: Microcode Generation
for
exible parallel target architectures, PACT-94, pp. 247-
256

