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1
RETARGETABLE COMPILATION

OF SELF-TEST PROGRAMS

USING CONSTRAINT LOGIC

PROGRAMMING

Ulrich Bieker

Department of Computer Science,

University of Dortmund, D-44221 Dortmund, Germany

ABSTRACT

This chapter presents a retargetable code generator specialized in the compilation of
self-test programs and exploiting new techniques from Constraint Logic Programming
(CLP). Firstly, we show how CLP can be exploited to improve the software production
process especially for retargetable code generation and test generation. CLP combines
the declarative paradigm of logic programming with the e�ciency of constraint solving
techniques. CLP systems come with built-in mechanisms for solving constraints over
various domains. For example, satis�ability checkers support Boolean constraints
and IP-solvers support integer domains. Furthermore, CLP makes it easier to solve
problems concurrently, e.g. the phase coupling problem during code generation.

Secondly, we present a solution for testing embedded processors. Thus we exploit

CLP techniques for retargetable code generation to generate self-test programs, given

a set of test patterns for each of the register transfer processor components.

1 INTRODUCTION

During the recent years, there has been a signi�cant shift in the way complex
electronic systems are implemented: various types of embedded processors are
being used in many designs, which include o�-the-shelf DSPs (e.g. TMS320C25
[27]), ASIPs [2] and in-house core processors. The advantages of these proces-
sors include: a very high 
exibility in performing design changes and a short
time-to-market. This shift in the implementation technology has largely been
ignored by the scienti�c community, with the result that the tools for designing
systems containing embedded processors are rather poor.
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The situation is even worse when it comes to testing these systems. These
systems are tested with ad hoc approaches, although it is well-known that
processors can be tested systematically by running sophisticated test program
diagnostics. Such test programs are used extensively for mainframe proces-
sors, but less so for embedded processors. Moreover, due to the high price
of mainframes, it was acceptable to generate these test programs manually.
For consumer products, this is no longer adequate and alternate, cost-e�ective
ways of testing embedded processors have to be found. This chapter presents
new techniques for testing embedded processors using the internal structure of
the processor and exploiting retargetable compilation techniques to generate
executable self-test programs.

2 RELATED WORK

As mentioned above, this chapter considers three di�erent topics: Constraint
Logic Programming, retargetable code generation and self-test program gene-
ration. To give the reader an impression of the context of this work, we brie
y
discuss some important works in these areas.

Systematic ways for testing microprocessors were �rst described by Abraham
et al. [26, 7]. Their proposal relied on functional testing, i.e. it did neither
require nor exploit knowledge about the internal structure of the processor to
be tested. After some initial enthusiasm it was recognized that this resulted in
a low e�ciency and a poor coverage of real faults. Furthermore, this method
was never integrated into a CAD system.

The interesting approach of Lee and Patel for testing microprocessors [17] uses
the internal structure and a bidirectional discrete-relaxation technique, but
does not aim at generating self-test programs.

This was di�erent for the work on MSST by G. Kr�uger [15, 16]. Kr�uger ex-
ploited knowledge about the internal processor structure and consequently was
able to generate more e�cient test programs. MSST is a tool for hierarchical
test generation: the user can specify test patterns for the processor components
and MSST then produces executable programs generating these patterns and
compares the response with a precomputed expected response.

MSST is possibly the �rst tool with the functionality described above, though
its implementation has some severe limitations. It is implemented in an im-
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perative language (Pascal) and thus su�ers from the poor support of symbolic
variables, automatic memory management and a low-level description style.
Furthermore it is a large program and thus hard to maintain. Due to the above
reasons, MSST cannot be adopted to new requirements (like the generation of
external stimuli, variable instruction word lengths and support of multiple logic
values).

Instead of incrementally trying to improve the situation, we came to the conclu-
sion that the problems just mentioned are inherent in the traditional approach
for implementing (CAD) software. Tools for VLSI CAD systems, commonly
written in imperative languages, consist of a very large amount of source code.
Maintenance, portability and adaptability are recurring problems. We realized
that programming should proceed at a much higher level of abstraction and
hence started to look at software technologies which provide a fundamentally
di�erent approach. We found CLP to be very well suited to our requirements.

Test program generation relies heavily on backtracking and the use of symbolic
variables. Hence, logic programming languages such as Prolog provide a higher
level of abstraction for implementing these tools. Thus, it was used by several
researchers for this purpose [13, 25, 8], most of them concentrating on the gate
level or even lower levels of abstraction. Unfortunately, the execution mecha-
nism of standard Prolog results in a lot of backtracking and long execution
times.

The situation is di�erent for CLP languages [5], which became recently available
(Prolog III [23], CHIP [9], ECLIPSE [10]). CLP systems come with built-in
mechanisms for solving constraints over various domains. Satis�ability checkers
support Boolean constraints and IP-solvers support integer domains. Hence,
tools can be implemented at a higher level of abstraction. For example, it
is possible to take advantage of the bidirectionality of clauses and simulate
logic gates in both directions. In contrast to pure Prolog, no backtracking is
required for forward simulation. Furthermore, several problems can be handled
concurrently by specifying the subproblems with constraints and solve them in
one step instead of solving subproblems sequentially. CLP languages have been
used for test generation [24] for the gate level. Our work is the �rst one using
CLP languages at the register transfer level.

It turns out that the techniques we propose can also be applied for retargetable
code generation for general programming languages [12, 18, 29, 21, 22, 28, 11].
In fact, our techniques are capable of compiling a restricted set of programs
into machine code.
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3 RESTART: RETARGETABLE

SELF-TEST PROGRAM GENERATION -

AN OVERVIEW

RESTART is a retargetable self-test program generator which automatically
compiles a user speci�ed test program onto the given target processor. The
result is an executable micro- or machine code and a set of external stimuli. It
is intended to be used as internal o� line tests, e.g. after a processor restart.
RESTART (�g. 1) contains two inputs (processor description, test program
speci�cation) and two outputs (binary code, external stimuli).

HDL

hardware
description

language

TCL

test code

front-end front-end

circuit analysis

binary
code

self-test

retargetable self-test code generator

specification

stimuli

primary

program
input
pattern

Figure 1 RESTART - System Overview

We use the description of the target architecture (hardware) and the test pro-
gram speci�cation (software) as inputs. The target architecture (processor) is
expected to be described at the register transfer level either with VHDL [14]
or MIMOLA [20].

TCL (Test program speCi�cation Language) serves as a comfortable input
language to specify self-test programs. A self-test program is speci�ed by a
test engineer, well acquainted with the RT structure of the processor. It is
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expected that a test engineer runs ATPG tools for each RT component to be
tested, resulting in a set of test patterns for each RT component. Therefore,
the fault coverage depends on the ATPG tool and the internal structure of the
RT component to be tested. RESTART will achieve 100% fault coverage if the
test patterns provided by the ATPG tool covers 100% of the component faults
and if code generation is successful for all patterns. The test patterns are made
available using TCL and RESTART generates binary code and stimuli which
applies every test pattern to the RT components and checks the response. In
this way, RESTART is a hierarchical test generation tool and RESTART
based on single fault assumption, is independent of a special fault model. With
our approach the obtained fault coverage depends on the TCL program. The
human test engineer is responsible for: fault model, test strategy, fault coverage
and test length. If speci�c hardware features for increasing the testability (e.g.
a scan path) is available in the processor and described within the RT structure,
this hardware can be used by the test code generator. A test of the controller
is often a problem because of the low observability of the controller. In most
cases, only an indirect test of the controller is possible.

The result of RESTART is an executable program and a set of external stimuli
patterns. The program consists of a set of instructions. Each instruction is
a pair (Label, BitString), i.e. an address within the instruction memory ad-
dress range and a bit string consisting of 0, 1, X. A stimuli pattern is a triple
(PrimaryInputName, Time, BitString). The time at which the bit string must
stimulate the primary input is computed with respect to the clock cycle time
of the processor. Primary inputs are expected to be justifyable without cons-
traints. To validate the generated binary code an integrated simulator [6, 4] is
able to simulate the circuit together with program and stimuli.

A summary of the main features of RESTART includes:

1. Optional compaction of the generated code.

2. Generation of external stimuli.

3. Test speci�cation with a comfortable test speci�cation language (TCL).

4. Declaration of an arbitrary number of variables in a register or memory
component.

5. Concurrent application of transformation rules during resource allocation.

6. Concurrent and global scheduling, compaction and binding of the code.

7. Support for residual control.
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The task of RESTART is to compile self-test programs. Compared to general
programming languages, TCL is just a restricted language. RESTART exploits
the special features of TCL programs to e�ciently generate code for a wide ran-
ge of architectures. Self-test programs contain a large amount of conditional
jumps, comparison operations and constants ('the test patterns') to be alloca-
ted. Therefore RESTART has knowledge about a set of transformation rules,
e.g. for IF statements and comparison expressions. The special features of
RESTART which are helpful to compile self-test programs are:

1. Compaction of the generated code is optional. The compaction phase
can be switched o� to simplify subsequent fault localization. If many
instructions are executed in parallel, it could be more di�cult to localize
a fault.

2. Generation of external stimuli is possible, because the code generator must
be able to allocate constants for all signals including primary inputs.

3. To deal with di�erent hardware realizations for conditional jumps and
comparison operations, a concurrent application of transformation rules
during resource allocation is performed (i.e. code selection and resource
allocation are coupled).

4. In order to allocate constants e�ciently, potential constant sources and
the paths from these sources to certain destinations are precomputed in a
circuit analysis phase.

4 INPUT SPECIFICATION:

HARDWARE AND SOFTWARE

4.1 Processor Description

For the speci�cation of the target processor we use structural models. Data-
path and controller must be completely described with MIMOLA or VHDL.
Hardware descriptions must contain RT modules, their behavior and their in-
terconnections. From this we generate an intermediate tree based format, re-
presenting the processor as a netlist of RT modules and the behavior of every
RT module as a tree (see also �g. 6). The architectural assumptions under
which a self-test program can be compiled are mentioned below. These as-
sumptions must be made, in order to check if the output values of a component
under test are as expected.
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1. The processor must be able to perform a comparison operation (see �g. 7).

2. The processor must be able to perform a conditional jump.

DEMOCPU: A small Example Target Architecture

Instruction

Memory

Program
Counter

6

6

AluMux

Incre-
menter

alu

Clock

pcmux

REG
file

AdrReg
address

1

4

4

DEMOCPU

4

ab

c(17:0)

c(7
:2

)

c(1:0)

c(12:11)

c(17:17)
c(1

6
:1

3
)

c(10:10)

c(9:8)

b

AluMux

4

c(9:9)

c(1
6

:1
3

)

a

control
word

Figure 2 Example Target Processor

Fig. 2 shows a simple 4-bit processor consisting of 10 components. The datapath
consists of a 16 x 4 register �le, an address counter register, an alu and two
multiplexers. A program counter, an instruction memory, an incrementer and
a multiplexer make up the controller. All registers are synchronized by a clock.
Control signals are denoted by c followed by an index range (high-bit:low-bit).
The 6-bit program counter addresses the 64 x 18 bit instruction memory. The
alu is speci�ed in VHDL as shown in �g. 3, with a condition output that enables
the controller multiplexer to perform conditional jumps. DEMOCPU serves as
a running example throughout the chapter.
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ENTITY alu IS PORT

(a, b : IN bit vector (3 Downto 0);

ctr : IN bit vector (1 Downto 0);

result: OUT bit vector (3 Downto 0); condition: OUT bit);

END alu;

ARCHITECTURE behavior OF alu IS BEGIN

WITH ctr SELECT result <=

a WHEN "00",

b WHEN "01",

a+b WHEN "10",

a-b WHEN "11";

WITH ctr SELECT condition <=

bool2bit(a = 0) WHEN "00",

bool2bit(b = 0) WHEN "01",

bool2bit((a + b) = 0) WHEN "10",

bool2bit((a - b) = 0) WHEN "11";

END behavior;

Figure 3 DEMOCPU alu

4.2 TCL

TCL is an imperative language in which the following kinds of test statements
can be used by a test engineer to specify a self-test program (# precedes a
hexadecimal number; % precedes a binary number; a variable location is re-
ferred to by hComponentNamei/hV ariableNamei; all examples are related to
DEMOCPU, see �g. 2):

An Initialization causes the test generator to produce code for loading
a register or one cell of a memory with a constant initialization value.
Examples: REG/�le[1] := #A; AdrReg/addr := 6;

A Read Test makes the test generator produce code for testing, if a
memory cell or a register contains a certain value.
Examples: TEST REG/�le[1] = #A; TEST AdrReg/addr = 6;

An Initialization and Read Test combines an initialization with a read
test, i.e. the generated code �rst loads the speci�ed location with a value
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and then checks, if it really contains that value.
Examples: TEST REG/�le[1] := #A; TEST AdrReg/addr := 6;

A Component Test makes the test generator produce code for testing
the functionality of any module, i.e. the related module's input ports are
stimulated with the speci�ed values, and then the outputs are checked for
correctness. The programmer has only to specify the input values and an
integrated structure simulator calculates the corresponding output values.
An underscore may be used to denote a port of the module which is not
relevant to the test whereas X denotes a binary don't care.
Example: TEST alu(#A,#F,%11);

A Loop is used to apply one of the �rst four kinds of statements several
times with one argument iterating over a range of values. Examples:
FOR adr := 1 TO 15 DO TEST REG/�le[adr] := #A;
FOR ctr := 0 TO 3 DO TEST alu(#5,#F,ctr);

The meaning of the keyword TEST is the following: RESTART is directed to
generate code that checks if the output ports of a certain component are as
expected. Therefore a conditional jump is generated:

IF component answer = expected answer

THEN increment program counter ELSE jump to error label;

If no error occurs, the program continues with the execution of the next in-
struction of the self-test program, otherwise a jump to an error procedure is
performed. TCL allows the speci�cation of all kinds of tests including memory
test loops. A TCL program is a sequence of TCL statements.

5 RETARGETABLE CODE GENERATION:

TECHNIQUES

5.1 Circuit Analysis

In the circuit analysis phase (�g. 1), the given processor is analyzed and a
subset of the instruction set is extracted. The result is a list of microoperations
the processor can perform and contains: register transfer moves, conditional
and unconditional jumps, counter increment operations, etc. The considered
subset is powerful enough to deal with the compilation of TCL programs as
described above.
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Microoperations are stored as facts (a fact with arity n and functor f is a term
f(x1; : : : ; xn)), e.g. transparent(alu, (result,%0000,%10), (result,condition))
considers the fact, that the DEMOCPU alu is able to switch the input a to
the output result by adding a to the neutral element %0000 (add operation
selected by the binary control code c(12:11) = %10).

An important subtask of code generation, is to generate code for uncondi-
tional jumps, i.e. to move a constant value into the program counter wi-
thout consideration of a condition from the datapath. DEMOCPU has on-
ly one possibility (see also �g. 6) to perform such an unconditional jump by
selecting c(1:0) = %01 as control code for the multiplexer pcmux. Therefo-
re, the fact jump([(instructionmemory,( )), (pcmux,(%X,%01, ,JUMPADR)),
(programcounter,(JUMPADR,%X))]) simply denotes a path from the instruc-
tion memory (source) to the program counter (destination). JUMPADR is the
symbolic jump address. For every component of the path the values of the
input ports are precomputed.

5.2 Retargetable Code Generation

Fig. 4 shows the program 
ow of the retargetable code generator. A hardware
description, the output of the circuit analysis phase and the TCL program
serve as inputs. The code generation phase described in the next subsection
computes a relocatable program. With respect to a certain program counter
initialization value, the relocatable program has to be scheduled and linked to a
designated program start address. The retargetable self-test code generator is
able to compact the generated code optionally. To allow a) detailed analyses of
the hardware and b) subsequent fault localization, it must be possible to switch
o� the compaction phase. The user is asked if the code should be compacted or
left uncompacted. Finally unused registers, memories and tristate bus drivers
must be disabled and the instructions are composed to complete control store
words by adding a program counter increment or jump operation (with respect
to the realization of the controller). An absolute program and a set of external
stimuli is the result.

Code Generation

The task of the code generator is to map a sequence of TCL statements onto
the hardware. Each TCL statement is decomposed into a set of simple in-
structions consisting of assignments and conditional jumps. The main idea of
the code generation algorithm is as follows:
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RTL structure
netlist

circuit
analysis data

TCL test
specification

code generation (allocation)

program start
address

program counter
init value

scheduling, (optional) compaction, binding

With all generated instructions do:
1. Disable unused memories and registers if possible.
2. Disable unused tristate drivers if possible.
3. Add increment program counter or unconditional jump operation if

the instruction is not a conditional jump.

binary code stimuli pattern

Figure 4 Program Flow

1. A simple instruction can be represented as a tree.

2. The behavior of every RT component can be represented as a tree.

3. Retargetable compilationmeans: Mapping of a sequence of simple instruc-
tion trees to a netlist where each node consists of a behavior tree of an RT
component.

EXAMPLE: Assume, the following conditional jump statement has to be
compiled onto DEMOCPU:

IF condition THEN increment program counter ELSE jump to label;

Fig. 5 shows the tree representation of above conditional jump statement. Fig. 6
shows the view of the corresponding part of the hardware. IF statements are
nested in a CASE construct to allow a conditional selection of one of two
input branches. To compile the conditional jump statement, an allocation
routine has to search for a multiplexer (i.e. a (sub-) tree as shown in Fig. 5),
starting from the destination (program counter) backwards through the circuit
to the sources (condition, program counter, instruction memory). The resulting
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instruction justi�es the control input of pcmux with 2 (binary %10) and loads
the program counter.

To deal with di�erent target architectures, di�erent alternatives to map simple
instruction trees on RT behavior trees must be taken into account. This is
done by transformation rules. For instance a statement X := Y+1 can
be transformed to X := increment(Y). A comparison operation, as needed
for the TEST statement, (component answer = expected answer) can be
transformed to ((component answer - expected answer) = 0). Loops are
transformed into a sequence of simple instructions. To represent transformation
rules for simple instructions we use structural constraints implemented in
CLP. Consider the following de�nitions:

De�nition 1.1 (Constraint) Let V = fX1; : : : ; Xng be a �nite set of varia-
bles, which take their values from their �nite domains D1; : : : ; Dn. A constraint
c(Xi1 ; : : : ; Xik) between k variables from V is a subset of the Cartesian Product
Di1 � : : :�Dik .

The domain of variables within structural constraints is the set of trees, whereas
the domain of variables within linear constraints is the set of integer numbers.

De�nition 1.2 (Transformation Rule) Let X1; X2 be two variables, both
variables representing a tree. A transformation rule for a simple statement is
a structural constraint tr(X1; X2).

The meaning is: A tree X1 can be transformed to a tree X2 if tr(X1,X2) is true.

load PC

IF

condition THEN ELSE

increment

read PC

label

Figure 5 Tree representation of a

conditional jump statement

pcmux output

control c(1:0) of 0 of 1 of 2 of 3

condition

IF

THEN ELSE

IF

case

c(7:2) c(7:2)increment increment

condition THEN ELSE

c(7:2)increment

Figure 6 Behavior tree of the multi-

plexer pcmux
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Example: Let X1 be a comparison operation (A=B). Then X1 can be trans-
formed to trees X2 as shown in �g. 7. Of course there exists further trees
into which X1 can be transformed, e.g. commutativity can be exploited by
exchanging the sons of a commutative operator.

=

A B

=

0 -

A B

=

0 ⊕ (xor)

A B

<>

A B

¬

Figure 7 Transformations for a Comparison Operation

Allocation: We now describe the allocation of a simple instruction. In con-
trast to most previous retargetable compilers, allocation and application of
transformation rules can be done concurrently within a CLP system. There-
fore a variable, representing a simple instruction which has to be allocated in
the circuit, is constrained to a set of alternative trees. Allocation starts at the
destination (e.g. the left hand side of an assignment) and from there a recursive
search backward through the circuit is performed as follows:

allocate(statement tree, destination)
The predecessor RT component of the destination is determined and the follo-
wing cases are distinguished:

1. The statement tree can be mapped onto the predecessor behavior tree:
success

2. The predecessor is a register or memory: insert a new control step and use
the predecessor as temporary cell; call allocate(statement tree, predeces-
sor)

3. A subtree including the root of the statement tree can be mapped onto
the predecessor behavior tree: call allocate(`rest' of statement tree, prede-
cessor)

4. The output of the predecessor can be switched to an input (transparent
mode): call allocate(statement tree, predecessor)
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5. otherwise: fail

Steps 1. and 4. allow the application of a transformation rule. During allo-
cation, components currently under test, are locked to avoid failure masking,
i.e. no data transfers through these components are permitted. Allocation of
constants terminates at components allowed as constant sources: instruction
memory, primary inputs and decoders. Due to lack of space, the complexity
of the allocation phase is not discussed. Constant allocation in general is NP-
complete. The allocation result is a relocatable program and a set of constraints
representing data dependencies, dependencies between addresses etc.

Example: Assume, the statement REG/�le[1] := #F; has to be compiled on
DEMOCPU. Therefore, two constants have to be allocated: address (%0001)
and data (%1111). To allocate data, the predecessor component of the register
�le is determined: the alu output result. Because the constant %1111 can not
be mapped to the alu the algorithm tries to switch the alu in a transparent
mode. This is done by setting c(12:11) to %00. A recursive search for input a
of the alu is started. Control signal c(9:9) is set to %0 and �nally the constant
allocation terminates at the instruction memory by setting c(16:13) to %1111.
To allocate the address, the address register has to be loaded in a previous
instruction (case 2 of above allocation procedure). Afterwards, the constant
%0001 is allocated using component AluMuxb.

Note, for e�ciency reasons the allocation of constants is accelerated by using
the precomputed facts from the circuit analysis phase. Consequently, the above
allocation of the constant %1111 is just a move instruction (path) from the
instruction memory to the register �le and is computed without backtracking.
Some heuristics are used during allocation. E.g. operations with a smaller
number of necessary constants are preferred.

Table 1 shows the resulting relocatable program. Additionally the constraint
L1 < L2 has been generated. Note, till now no increment operation for the
program counter has been generated (c(1:0) is unbound).

Label 17 16:13 12:11 10 9:8 7:2 1:0 Comment
L1 1 0001 01 1 10 XXXXXX XX AdrReg := 1
L2 X 1111 00 0 00 XXXXXX XX REG[1]:=#F

Table 1 Relocatable Program
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Scheduling, Compaction, Binding

After code generation, a relocatable program consisting of a set of instructions
and a set of partially ordered labels is generated. Therefore, three tasks have
to be done: A program has to be scheduled, linked and optionally compac-
ted. Every label has to be bound to a number within the address range of
the instruction memory and a total order of the labels and the corresponding
instructions has to be found. Relocatable code is mapped to absolute code.
Instructions which can be executed in parallel can be compacted, i.e. two or
more instructions are merged to one instruction.

We perform global scheduling while concurrently compacting and binding
the code. Here we make extensive use of linear constraints over the integer
domain. In this way it is possible to exploit the parallelism of the target pro-
cessor. Global scheduling is possible because of the speci�c structure of the
basic blocks of self-test programs, mainly consisting of move and conditional
jump statements. A (simpli�ed) formal description of the scheduling, compac-
tion and binding phase follows. First we distinguish between absolute code and
relocatable code. Thereafter, we de�ne what kind of constraints are allowed to
represent dependencies between variables and labels. Next, we de�ne necessary
preconditions to merge two instructions. An example illustrates, how instruc-
tions are merged together. Let Start, Address, End and n be natural numbers.
Start � Address � End, is the address range of the instruction memory and n
its width.

De�nition 1.3 (Relocatable Code) Let L be a set of labels and V be a set of
variables. Relocatable Code RC is a tuple RC = (P,C) with P = f(Li; Ii)jLi 2
L; Ii 2 ff0; 1; Xg[ V gng and C is a set of linear constraints over L [ V .

The set V is used to represent dependencies between the instructions and the
labels. For instance jump addresses usually are coded within the instructions
and every variable Vi 2 V �nally represents a binary number.

De�nition 1.4 (Absolute Code) Absolute Code AC is a set of tuples AC
= f(Li; Ii)jStart � Li � End; Ii 2 f0; 1; Xgng, i.e. Li is a bound label and Ii
is the corresponding instruction.

Let P(I, k) be the projection of a bit string on the k-th bit (high-bit on the
left, low-bit on the right of a bit string. The rightmost bit position is 0).
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De�nition 1.5 (compatible) Assuming Ii; Ij 2 ff0; 1; Xg [ V gn are reloca-
table instructions. The predicate compatible(Ii; Ij) is true i�: 8k; 0 � k �
n� 1 :

(P (Ii; k) = P (Ij ; k)) _ (P (Ii; k) = X) _ (P (Ij; k) = X) _

(P (Ii; k) 2 V ^ P (Ij ; k) =2 V ) _ (P (Ij ; k) 2 V ^ P (Ii; k) =2 V )

If compatible(Ii; Ij) is true, we say Ii and Ij are compatible. Instructions
which are compatible are candidates to be compacted. With above formalism,
scheduling, compaction and binding is reduced to the problem of solving a
system of linear equations and inequalities.

Example: The followingTCL program is an extension of the previous example:

REG/�le[1] := #F; { load register cell 1
PCREG/pc := 10; { jump to 10
TEST AdrReg/addr = 1; { check if address register content is 1

Label 17 16:13 12:11 10 9:8 7:2 1:0 Comment
L1 1 0001 01 X 10 XXXXXX XX AdrReg := 1
L2 X 1111 00 0 0X XXXXXX XX REG[1] :=#F
L3 X XXXX XX X XX ABDEFG XX PC:=10
L4 0 0001 11 X 0X HIJKLM 10 check address

Table 2 Relocatable Program P

After allocation the relocatable program RC = (P,C) as shown in table 2 is
generated. The set of constraints is C = fL1 < L2; L2 � L3; L3 � L4; L1 =
6; L4 = 10; G+2F+4E+8D+16B+32A = L4;M+2L+4K+8J+16I+32H =
ErrorLabel; 8Vi 2 fA;B;D;E; F;G;H; I; J;K;L;Mg : Vi 2 f0; 1gg.

RC can be mapped to the absolute code AC given in table 3 (A = address).
Note, RC has been linked to the (selected) constant program start address 6.
Additionally, RC has been composed to complete control store words. Therefore
e.g. a jump instruction has been merged to the instruction with address 7 by
setting c(1:0) = %10. Instructions L2 and L3 have been compacted. Some
unused registers have been disabled at certain control steps (e.g. the register
�le by setting c(10) = %1). The error label (c(7:2) = 63) is given by the user.
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A 17 16:13 12:11 10 9:8 7:2 1:0 Comment
6 1 0001 01 1 10 X� � �X 00 AdrReg := 1
7 X 1111 00 0 00 001010 01 REG[1]:=#F; PC:=10
10 0 0001 11 1 00 111111 10 check address

Table 3 Absolute Code for DEMOCPU

Above formalism is 
exible and powerful enough to handle complex address
restrictions. Linear constraints are general enough to express strange address
generation schemes (even the ones described in [3]). Scheduling, compaction
and binding can be handled concurrently and with a minimumof programming
e�ort (the complete scheduling, compaction and binding phase has about 200
lines of code!) using the built-in constraint solving mechanism for the integer
domain and the Prolog inherent backtracking mechanism.

6 RESULTS

A retargetable self-test code generator (6500 lines of code) has been fully im-
plemented in the constraint logic programming language ECLIPSE [10]. Half
of these lines of code are comments and so CLP programs are pretty short com-
pared to imperative implementations (ratio �1:4). We applied the system to a
variety of digital processors to show the e�ciency of the new techniques. The
results shown here, indicate that an implementation with CLP can be applied
to realistic structures.

Circuit RTL modules instruction memory width datapath width
simplecpu 10 20 4
democpu 11 18 4
demo 16 84 16
prips 50 83 32
mano 21 50 16

Table 4 Example Processors Circuit Information
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Table 4 describes the example circuits: the general purpose microprocessors
simplecpu [6], demo [20], mano [19] and DEMOCPU (�g. 2); prips [1] is a
coprocessor with a RISC-like instruction set, which provides data types and
instructions supporting the execution of Prolog programs. The number of RTL
components, the width of the datapath and the width of the microinstruction
controller is given.

uncompacted compacted
Circuit #TCL #S #�I sec #�I/s #�I sec #�I/s
simplecpu 7 5 11 0.71 15.5 11 0.71 15.5
democpu 5 0 20 1.09 18.3 18 1.15 15.6
demo 17 73 102 26.1 3.9 91 26.46 3.4
prips 7 0 17 20.2 0.84 17 20.5 0.83
mano 15 1 136 37.41 3.63 113 36.5 3.1

Table 5 RESTART Results

Table 5 shows the results for the retargetable self-test program generator. The
number of compiled TCL instructions (note, even a memory test loop is on-
ly one TCL instruction), the generated number of stimuli patterns (#S), the
number of generated instructions (#�I), CPU time in seconds and the ratio (ge-
nerated instructions per second) is given. All times are measured on a SPARC
20 workstation. The results for code generation without compaction and the
results for programs which have been compacted are given. It can be seen, that
the CPU times for both cases are very similar because a) the compaction is do-
ne very fast and b) the saved time is consumed by the output handling of more
instructions. These TCL programs just serve to demonstrate the compilation
speed. All generated programs have been validated with the above mentioned
simulator. A small number of primary input stimuli patterns indicates, that
the processor is mainly able to test itself, whereas a large amount of stimuli
patterns indicates that certain constants can not be allocated within the circuit.
Compaction of self-test programs only results in 10% - 20% less code because
test programs usually are not highly parallel.

One of the 5 TCL instructions for democpu is a test loop for detecting faults
in the instruction decoding and control function of AluMuxa: FOR ctr := 0
TO 1 DO TEST alumuxa(#A,#C,ctr); This test loop has been compiled by
RESTART and the resulting self-test program has been stored as initializati-
on for the microinstruction memory. Now we slightly modi�ed the hardware
description of the multiplexer, i.e. we modi�ed the instruction decoding and
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control function of the multiplexer resulting in a "faulty" multiplexer. The rest
of the processor has been left unchanged. An RT simulation of the "faulty"
processor together with the self-test program has been performed and of course
the injected fault has been detected.

7 CONCLUSIONS

We have shown that test programs for embedded processors can be automa-
tically generated. The generation process essentially consists of matching a
test code speci�cation against a structural description of the processor. This
process has been viewed as a special case of retargetable code generation. It
has been possible to compile self-test programs for several processors.

Furthermore, we have shown how the built-in support for symbolic variables
and constraints over these can lead to a more e�cient software production
process. Several subproblems can be handled concurrently. It is well known
that the consideration of all relevant design constraints is a key issue in CAD.
CLP languages have built-in mechanisms for such constraints and we have
successfully exploited the potential that is inherent in one of these languages.
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