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Abstract

This paper describes how the TODOS microarchitecture synthesis system1 uses information
about available library components during the synthesis phases. TODOS stands for \TOp Down
Synthesis". TODOS is an extension of the work described in Marwedel (1986). TODOS takes
advantage of this information right from the beginning and contains an assignment algorithm con-
sidering more component-speci�c library details than other algorithms. Special care is taken about
RAMs as library elements. Possible multiple concurrent accesses are considered in the scheduling
and the assignment phases. Possibilities for scheduling reads and writes with common addresses in
the same control step are exploited. The assignment algorithm simultaneously generates bindings
to ALUs, immediate control �elds and memory ports. The paper shows that some control steps
do not in
uence the generated data path. Excluding these control steps from the assigment phase
speeds up this phase. An even more important speedup is obtained by using special simplifying
rules for the assignment problem at hand.

.

1 Introduction

Microarchitecture- or high-level-synthesis (HLS) is concerned with the mapping of behavioral descrip-
tions onto register-transfer-level structural descriptions implementing that behavior. The resulting
structure is intended to be implemented using components from a technology-speci�c library.

In contrast to many other HLS systems, our TODOS system favors RAMs over separate registers.
The advantages RAMs include the following:

� RAM-based designs usually require a simpler interconnection scheme (see e.g. section 8).

� If layout is taken into account, RAM-based designs are even more e�cient. The reason is that
RAMs usually come with full-custom layout quality. Rauscher et al. (1992) mention the use of
RAMs as an important reason for the fact that designs generated by TODOS compete favourably
with manual designs.

1This is a reprint of a contribution for a book edited by G. Saucier. Copyright restrictions of the publisher (Chapman
& Hall) apply. This research was partially supported by projects BMFT-NT 2850 6 (\SALLY") and ESPRIT-BRA 6855
(\LINK").
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� Furthermore, RAMs are easier to test than dedicated registers, because they are usually very
well-connected to the other components.

� An increasing number of cell libraries now contains multi-port memories. These multi-port
memories provide the bandwidth that applications require. Hence, RAM-based architectures
are becoming more and more interesting.

A good link between cell libraries and the HLS system is generally considered to be one of the
important features that have to be implemented before HLS systems will be commercially successful.
This includes a good link to available RAM generators.

For RAM-based synthesis, the way in which the characteristics of available RAMs are taken into
account, is very crucial. If these characteristic are taken into account only during the �nal phases
of HLS, there is a large danger of suboptimal designs. For example, the scheduling phase should
generate control steps not containing "too many" references to variables. Otherwise, even sophisticated
assignment algorithms cannot guarantee any constrained number of memory ports. Furthermore, the
assignment of operations to operators and the assignment of variable references to memory ports
should be done concurrently. Otherwise, there would be a risc of generating a suboptimal number of
interconnections.

In this paper, we will describe how the di�erent tasks have been integrated in our TODOS tool.
This paper is structured as follows: Section 2 describes related work. Section 3 presents the information
made available in the input to our TODOS algorithm. Section 4 explains our method for variable to
storage binding. Section 5 focusses on scheduling and how information about RAMs is used during
that phase. Allocation is brie
y described in section 6. Section 7 contains the main contribution of
this paper. In this section, we describe the assignment phase and the special techniques that we have
developed for integrating operator and RAM port assignment. Results and summary are given in
sections 8 and 9, respectively.

2 Related Work

For a general survey of approaches for architectural synthesis see McFarland (1990). In most ap-
proaches, register-based target architectures have been generated. The use of RAMs, despite its
well-known advantages, has been described only in few papers.

Some authors (see e.g. Peng (1994)) just consider single-port RAMs. Balakrishnan et al. (1988)
describe the assignment of variables to multi-port RAMs. In their algorithm, access requirements for
variables are analysed and used in order to map a compatible subset of variables to a RAM. This
process is repeated for remaining variables, if such variables exist. The mapping problem is modeled
as an IP-problem. In Kim (1993), Kim and Liu map variables (or registers) to RAMs, too. In contrast
to Balakrishnan, several RAMs can be considered concurrently. However, the authors assume that
both the schedule and the assignment of operations to operators is given. Generating the assignment
of operations to operators and of memory accesses to memory ports sequentially may result in non-
optimal interconnection patterns. In Ahmad (1991), Ahmad and Chen present a post processor for
simultaneous assignment of operators and memory ports. The assignment problem is modeled as an
IP-problem. In this approach, the scheduling does not take information about available RAMs into
account.

In all the cases mentioned above, bindings to RAMs and RAM-ports are generated for a �xed
given schedule. It is easy to imagine that this potentially results in suboptimal solutions.



Moreover, most existing algorithms use separate phases for binding arithmetic operations to ALUs
and for binding variable references to ports. Also, none of the approaches considers interconnections
required for generating constants. Suboptimal interconnection schemes may be the result. In this
paper, we will describe how the di�erent tasks have been integrated in our TODOS tool.

3 Input to TODOS

The input to TODOS consists of the behavior of the system to be designed, the behavior of the library
components, and additional user-de�ned bindings.

The description of the system behavior di�ers from that of other HLS algorithms only by features
which are not relevant for the purpose of this paper. The interested reader is therefore requested to
refer to other papers on the synthesis from our language MIMOLA (see Marwedel (1986)).

Example: As a simple running example of the speci�ed system behavior, we will use the following
two assignments:

a:= (b - 2 * i) +1;

i:= 0;

The description of library components contains the functions performed by these components, the
codes required for mode control and information about the required wiring of the ports.

Unfortunately, the meaning of the term port in the sense of memory ports is not consistent with
its use in VHDL. In order to access a memory location, a set of (VHDL-) ports (data, address, control
and clock ports) is usually required. We will call such a set of VHDL-ports a meta port whenever
confusion could occur.

For TODOS, we assume that control steps are free of subcycles and that therefore a single clock
phase is su�cient. All ports have to remain allocated during each of the control steps. Due to that
assumption, we distinguish between four di�erent types of meta ports:

1. Input meta ports

These can be used only to write data.

2. Output meta ports

These can be used only to read data.

3. Bidirectional meta ports

These can be used to read and write data, but only one of these operations can be performed in
a control step. Since read and write operations are mutually exclusive, they can share the same
data port.

4. Shared i/o meta ports

These can be used to read and write data in the same control step.

Due to the absence of time-multiplexing within control steps, shared i/o meta ports require
separate data inputs and output ports. Their address input is not time-multiplexed within a
control step. Shared i/o meta ports can be used to read and write during the same control step,
provided both operations are for the same address.



Example: For the purposes of our running example, let us assume that the libary contains a three-
port memory called ThreePortRAM. We assume that ThreePortRAM has one input (meta) port p1, one
output (meta) port p3, and a shared i/o (meta) port p2.

Modules like ThreePortRAM denote library components. Such components can be instantiated.
User-instantiated components will never be deleted by TODOS. Such components therefore form a
minimum set of components which will always be present in the �nal generated structure.

Storage components must be instantiated by the user. The reason behind this requirement is that
there are usually only few choices for RAMs. Choosing RAMs early in the design process results
in more information about the library being available to the scheduler. This, in turn, results in a
controlled number of accesses to storage components per control step. If required, designs can be
repeated with di�erent RAMs. Note that TODOS allows the user to instantiate several RAMs and
that the approach of TODOS is not limited to the single RAM that will be used in the example.

A subset of the locations of instances of RAMs can be designated as locations for user-de�ned
variables. This is an example of the user-de�ned bindings between hardware resources and the input
behavior.

Now that we have described the input to TODOS, we are going to describe the synthesis process
with emphasis on handling of RAMs.

4 Variable to storage binding

In order to guarantee that the �nal structure does not require more accesses to variables than possible
with the given RAMs, TODOS performs the variable to storage binding for user-de�ned variables
quite early.

Example: Assuming that reg has been declared as an instance of ThreeportRAM and that reg is
the designated memory for variables, TODOS would transform the variables of our running example
into:

reg[0]:= (reg[1] - 2 * reg[2]) + 1; -- a => reg[0]; b => reg[1];

reg[2]:= 0; -- i => reg[2]

5 Scheduling

The idea underlying scheduling in TODOS is that an even distribution of operations over control steps
like the one generated by force-directed scheduling (Paulin (1987)) is not a primary design goal. The
primary goal is to create the fastest possible design under a given set of design constraints. Therefore,
it is important not to generate control steps for which the constraints are not met. The constraints
should be made as tight as possible. Stok (1991) comes to the same conclusion:

The best way to seems to develop algorithms, that can deal with both strong hardware
bounds and strong time constraints. They can produce good results taking advantage of
the reduction in search space provided by these hard bounds.

This requirement is ful�lled by the TODOS ASAP scheduler, which relies on strong resource
constraints. If the assignment of an operation to the current control step would violate the design
constaints, its assignment is deferred. In the context of this paper, we just consider checking (meta)
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Figure 1: Internal representation of the running example

port constraints for RAMs. This check is complicated by the fact that shared address meta ports can
be assigned to two operations in the same control step if their address is identical.

Example: For the running example, TODOS would �nd that all memory references can be assigned
to the same control step, because reg has enough meta ports. As a result, TODOS would assign all
operations to the same control step. If we had put a tighter constraint on the number of ports, more
control steps had been generated.

This consideration of library information during scheduling is not possible with any HLS system
we are aware of. In fact, for available systems, the number of variable references per control step is
even unbounded.

6 Allocation

Next to scheduling, TODOS performs allocation of arithmetic components (ALUs). Automatic allo-
cation of ALUs in TODOS is based upon the IP-formulation described in detail in Marwedel (1990).

Example: For the running example, we need to implement +, -, and * operations in the same
control step. Given a library with types aluType (able to implement all three operations), subType
(able to implement -) and mulType (able to implement *, + and DIV), TODOS could allocate, for
example, one instance of each of the component types. Let us assume, they will be called alu, sub,
and mul, respectively.

7 Assignment

7.1 Problem description

The assignment phase in TODOS is special in that it simultaneously generates bindings for ALUs,
immediate control �elds and RAM meta ports. In this context, the term immediate control �eld
denotes a set of controller output bits used to generate constants which are present in the behavioral
description and address constants generated during variable to storage binding.

Example: Consider our running example. In the internal representation of this example, all opera-
tions, including reads and writes, are made explicit (see �g. 1). This �gure just describes the data 
ow
within a single control step and in the general case, there would be one such �gure for each control



step. In this �gure, operations are shown in bold. For reads and writes, the address is used as one of
the arguments. For each of the operations, there is a set of candidate hardware resources. In �g. 1
candidate hardware resources are shown with thin lines. For reads and writes we have candidate meta
ports, for +,- and * we have alu, sub and mul as candidate resources and for all the constants, we
have candidate immediate control �elds (all �elds of the width of the constant, not shown in �g. 1).
Hardware resources are represented by dashed lines, if they are not yet assigned to operations and by
non-dashed lines otherwise.

The question is: which assignment of resources to operations minimizes interconnect? The as-
signment is not immediately obvious (at least not to the computer) and several assignments could be
tried.

Simultaneous assignment for (meta) ports, ALUs and immediate �elds is essential, because the
generation of these assignments in sequence would be unable to optimize interconnect. If, for example,
we would generate the bindings for ALUs �rst, we would have no information about the (meta) ports
used to read the arguments and to store the results. Hence, we do not partition the assignment phase
into subphases for ALU assignment, port assignment and interconnect assignment.

7.2 General assignment algorithm

The general assignment algorithm is based upon the observation that {except for the �rst few control
steps{ new control steps require only a small number of new interconnections. Therefore, we are
using the following approach: We compute a lower bound on the number of missing interconnections.
Starting with that lower bound, we execute a branch and bound procedure trying to assign resources
to each of the operations, counting the number of required new interconnections. If the number of new
connections exceeds the current lower bound, the assignment procedure is aborted and restarted with
an increased lower bound. This process terminates as long as the scheduler has not ignored resource
constraints.

Two special features are implemented:

� Commutative operations are exploited

� Common subexpressions can be computed either once or several times, depending on what �ts
resource constraints and required interconnections better. This feature is not implemented in
any other HLS system.

7.3 Simpli�cation rules

7.3.1 Removal of redundant control steps

The TODOS assignment algorithm simultaneously generates bindings which are normally generated in
sequential order. As a consequence, the complexity is very high. In fact, in the worst case, the running
time of the assignment algorithm is an exponential function of the number of operations. In order
to solve practical cases in reasonable time, control steps are considered step after step. Motivated by
the fact that control steps with a large number of operations have the largest impact on the resulting
data path, TODOS sorts control steps with respect to their number of operations. Assignment then
proceeds from the \largest" control step towards the \smallest" control step.

In order to reduce the running time as well as storage requirements, one simpli�cation is used:
many of the control steps are equivalent in the sense that they will generate the same data path.



Example: All control steps containing just transfers between two storage units are data-path
equivalent, regardless of source and destination addresses. For TODOS, the controller is responsible
for generating these addresses.

It is su�cient to consider only one representative for each set of equivalent control steps. This idea
is implemented in TODOS as follows:

De�nition: Control steps i and j are data-path equivalent () their 
ow graphs {except for the
value of constants{ are identical.

This de�nition is conservative in the sense that it guarantees that TODOS generates the same data
path for both control steps. The de�nition could, however, be extended to reduce the set of control
steps that have to be considered further.

The actual procedure for control step ordering uses a list csl of control steps, sorted by the number
of operations. Each newly generated control step is checked against all control steps with the same
number of operations and ignored if data-path equivalent to an existing control step.

7.3.2 Exploitation of resource set cardinalities

The running time of the assignment algorithm remains high, even if we consider only single control
steps at a time. This is caused by the fact that in practical cases we found up to 80 operations per
control step (this includes reads, writes, concatenations, constants and arithmetic operations). The
assignment problem becomes seemingly complex especially if RAMs with several (meta) ports are used.
Analysing practical cases, we found that the running time could be reduced by orders of magnitude, if
the special structure of the assignment algorithm at hand is exploited using a few simpli�cation rules.
With these rules, the running time becomes acceptable for all the cases that we have studied so far.

De�nition: Operation o is said to be in relation � with operation o0 () there exists a resource
r which is able to execute both o and o0.

De�nition: Relation �* is the transitive closure of relation �.

These relations are used in the following procedure which is iterated until no further simpli�cation
is possible:

FOR ALL operations op of the current control step DO

BEGIN

O := fojo �* opg;
R := frjr can execute at least one operation in Og;
IF jRj = jOj AND 9r0 2 R : r0 can only perform operation o0

THEN assign r0 to o0

ELSE IF jRj < jOj THEN --more operations than resources; shared ports required

IF NumberOfSharedReads= jRj -- all shared ports required

THEN reduce resource candidates of shared READS and WRITES to shared ports.

IF jresource candidates for opj = 1 THEN assign resource to op.

END;

Example: For the running example, the steps of the algorithm would be as follows:

� Let op denote the second write-operation. The set O of operations will then contain all reads
and writes, because the p2 is able to perform both operations, implying that the assignment
of these operations is not independent. The corresponding set R contains the three meta ports.
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Since jRj < jOj, some of the reads and writes must have a common address (otherwise the
scheduler is faulty). Since exactly one read and one write have a common address (2 in this
case) and since there is exactly one shared port, reading and writing of location 2 will be assigned
to the shared port (see highlighted areas in �g. 2 (left)).

� The next operation considered will the read'reg(1). Only a single resource (p3) is left for this
operation and it is assigned (see highlighted area in �g. 2 (right)).

� The same arguments hold for the �rst write operation and it is bound to p1 (see highlighted
area in �g. 3 (left)).

� Next, operation - could be considered. - is in relation �* with the other operations and cannot
be assigned independently. O will be set to +, -, *. R will contain mul, alu, sub. We will
have jRj = jOj. Hence, all resources within R are required. Since sub is only able to perform
-, it will be assigned (see highlighted area in �g. 3 (right)). Note that we have concluded, that
we cannot use the subtraction mode of alu. This decision would not have been possible with a
covering approach.

� Finally, resource assignments for operations + and * will be made such that interconnections
between resources will be minimized, taking prede�ned connections into account if such con-
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nections exist. Concurrently, the same will be done for the immediate �elds i1 to i6. Fig. 4
contains possible assignments.

8 Results

Table 1 shows that the PDP-8, if synthesized with TODOS, actually contains a reduced number of
input ports if a RAM-based architectural style is chosen. The RAM based design was automatically
generated with TODOS. Due to the limited support of register-based architectures in TODOS, the
register-based architecture was generated after manually binding variables to registers.

Table 1: Comparison between register- and RAM-based structures generated by TODOS
Example Input ports input ports � bitwidth

register-based RAM-based register-based RAM-based

PDP-8 58 51 796 603

Table 2 shows that 4 out of 5 examples contain data-path redundant control steps. From the table,
it can be seen that large examples usually contain a higher percentage of data-path redundant control
steps. Hence, this type of redundancy cannot be exploited for the usual small HLS benchmarks. It
is, however, important for real applications. Diffeq is the standard di�erential equation solver, Ref
and page68 are available from the authors. PDP-8 and mergesort are standard algorithms although
we did not use the standard HLSW benchmark sources.

Fig. 5 shows how di�erent constraints for the number of memory ports can be used to generate
the fastest design under those constraints. A single RAM with multiple shared i/o (meta) ports has
been used. The left part of �g. 5 shows the mergesort example. The right part shows results for
the elliptical wave �lter example (see e.g. Tsai (1992) for a 
ow graph). It is important to analyze
the solutions a) and b). If the selected library component has 5 (meta) ports, TODOS immediately
generates a solution with 10 control steps (solution a) ). Time-constrained scheduling with post-
synthesis RAM generation could end up with solution b), which is as fast as solution a) but more
expensive. The results cannot be directly compared with other synthesis systems because TODOS



Table 2: E�ect of eliminating data-path redundant control steps
Example Total number Redundant steps Redundant steps

of steps (absolute) (in % )

Di�eq 1-12 (several constraints) 0 (for every set of constraints) 0 %
Ref 60 40 66.7 %
page68 86 63 73.2 %
PDP-8 101 47 46.5 %
mergesort 161 134 83.2 %
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Figure 5: Resource constrained scheduling for mergesort (left) and the elliptical wave �lter (right)

unfortunately does not support multi-cycle operations and the elliptical wave �lter example has been
partially prescheduled to a minimum of 8 control steps. Nevertheless, the essential point is clear:
scheduling should take (meta) port constraints into account.

9 Summary

This paper describes various aspects of handling RAM library components in the TODOS high-level
synthesis system. The contributions of this paper are in the following areas:

� TODOS uses resource constrained scheduling taking characteristics available RAMs into account.

� The assignment phase in TODOS integrates operator-, port-, and immediate �eld assignments.

� The paper introduces the notion of data-path redundant control steps. Redundant control steps
are eliminated in order to reduce the running time of the assignment algorithm.

� Furthermore, information about how to reduce the complexity of memory port assignment is
given. The important case of shared I/O-ports is considered.
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