
Built-in Chaining:

Introducing Complex

Components into Architectural

Synthesis

Peter Marwedel, Birger Landwehr,

Rainer D�omer

Lehrstuhl Informatik XII

University of Dortmund

Report No. 611

April 1996

Abstract: In this paper, we extend the set of library components which are usually considered

in architectural synthesis by components with built-in chaining. For such components, the result

of some internally computed arithmetic function is made available as an argument to some other

function through a local connection. These components can be used to implement chaining in a

data-path in a single component. Components with built-in chaining are combinatorial circuits.

They correspond to \complex gates" in logic synthesis. If compared to implementations with

several components, components with built-in chaining usually provide a denser layout, reduced

power consumption, and a shorter delay time. Multiplier/accumulators are the most prominent

example of such components. Such components require new approaches for library mapping in

architectural synthesis. In this paper, we describe an ILP-based approach taken in our OSCAR

synthesis system.

2

Chapter 1

Motivation

Architectural synthesis (also known as high-level synthesis (HLS)) can be de�ned as the task

of implementing a given behavioural speci�cation by means of an appropriate register-transfer

(RT-) level architecture. Architectural synthesis is considered to provide the next productivity

boost for designers of information-processing devices.

RT-level components, which have been considered so far, include registers, register-�les, busses,

multiplexers and multi-functional units (ALUs). All functional units were considered to com-

pute essentially a single (possibly control-selectable) standard function, such as addition, sub-

traction, or multiplication. On the other hand, current component libraries contain a growing

number of components with built-in chaining (BIC) or internal chaining. With built-in chain-

ing, the result of some computed standard function is made available as an argument to another

function. For example, multiplier/adders multiply two numbers and add the result to a third

one (see �g. 1.1). With BIC components, chaining in HLS can be implemented by a single

component. In contrast, standard chaining requires external wiring between two or more com-

ponents (therefore, we call it external chaining).

In addition to multiplier/adders, multiplier/adder/accumulators (MACs), ALUs followed by

(internal) shifters, and adders followed by (internal) comparators are components with internal

chaining.

The main advantages of such components include:

� The ability to generate e�cient layout.

The layout of BIC components is usually more e�cient than the combined layout of several

independently designed functional units. For example, abutment of corresponding lines

may be possible.

�This work has been supported by the Commission of the European Communities under contract ESPRIT

6855 (LINK). In addition, the �rst author was partially supported through NATO grant # CRG 950910.

3

*

+

in1 in2

in3

Figure 1.1: Multiplier/adder

� Delay and power consumption may be smaller than for separate components.

The delay of BIC components may be small due to a) the more compact layout, b)

exploitation of context-dependent information during logic synthesis, and c) adjustment

of the strength of drivers.

� Design-reuse of complex components is facilitated.

Exploiting the presence of BIC components is important for re-using available valuable

designs.

Example:

Table 1.1 shows area, delay times and power consumption of adders, multipliers, and multiplier-adders,

respectively. The same information is also included for a multiplier-adder chain, built from individual

multiplier and adder components (external chaining). In order to allow a fair comparison of the values,

64-bit adders have been used in all cases. The information has been generated with the help of the

COMPASS DataPath Synthesizer for a 1� CMOS technology.

Cell Area Power (@ 8 MHz) Propagation

[(k�)2] [mW] delay [ns]

adder (64 Bit) 5.410 unknown 18.44

multiplier (32 Bit) 14.717 20.286 107.76

multiplier-adder-cell (32/64 bit) 15.312 20.832 108.65

(built-in, internal chaining)

multiplier-cells + adder-cells 36.585 unknown 117.66

(external chaining) (32/64 bit)

Table 1.1: Area, power, and propagation delay for commercial library components

4

Fig. 1.2 shows the layout of the design with external chaining.

Figure 1.2: Layout for multiplier/adder with external vs. internal chaining

Most importantly, the area for external chaining (computed as the bounding box of the combined

layout), is more than two times larger than the BIC solution. This is caused by a very poor abutment

of the two components. Some of the wiring area of the bounding box can possibly be saved, but

external chaining will never be as e�cient as internal chaining.

The propagation delay has been computed with the COMPASS QTV timing analyser. Indicated values

represent the maximum of the values for rising and falling edges. It is obvious, that the delay of the

implementation with external chaining is less than the sum of the delays of the individual components

(this is the reason for using non-additive delays models, see e.g. Rabaey et al.). Nevertheless, the

delay is even smaller if internal chaining is used.

BIC is important for many designs. Many digital signal processing architectures meet their constraints

only because BIC is available. For example, many �lter algorithms require MACs in order to meet

their throughput constraints. Hence, the support of BIC in HLS is a must, despite the fact that the

number of BIC components in libraries may not be very large.

The behavioural speci�cation of digital signal processing architectures can be represented by data-
ow

graphs (DFGs). Fig. 1.3 shows the DFG of the well-known elliptical wave �lter and indicates where

multiplier/adders can be used. It is obvious that quite a number of operations can be implemented

by multiplier/adders.

1.1 Previous Work

In HLS synthesis, there has been only a very limited amount of work which took BIC components

into account.

Work on the Cathedral silicon compilers (see e.g. [MRS87]) is one of the few contributions to the

area. The execution unit (EXU) model of Cathedral includes BIC. However, only an essentially �xed

5

+

+

+

*

+

+

+

*

+

+

*

+

+

+

+

+

+

+

+

*

+

+

*

+

+

+

*

+

+

*

+

+

*

+1

2

3

4

5

6

7

8

9

10

11

12

13

14

2

2

2

2

2

2

2

2

a b

+

c*

f

X

+

out

in1 in2 in3

Figure 1.3: Use for multiplier/adders for elliptical wave �lter

number of EXU types has been considered and no results are known which contribute to the topic of

the paper.

Research at the University of Eindhoven is directed at creating regular layouts from netlists in which

regularity is not immediately obvious [NJ94]. As a special case, these algorithms would be able to

create a regular layout if, for example, an adder follows a multiplier in the netlist. However, the

approach does not include exploitation of BIC components in HLS.

In logic synthesis, the situation is di�erent. So-called complex gates have been used in library mapping

for many years (see [Keu87] as an example).

6

Chapter 2

The problem

In order to support BIC components in HLS, several issues have to be considered. Let's start with an

example to make these issues clear. Fig. 2.1 shows a section of a data
ow-graph (DFG).

*

+

j

jj
3

1

2

Figure 2.1: DFG with associated operation labels

Assume that a library containing adders, multipliers and multiplier/adders is given. There are several

options for implementing this section of the DFG:

1. Implement + and � with two separate components in di�erent control steps.

2. Implement + and � with two separate components in a single control step using standard

chaining.

3. Implement + and � with a multiplier/adder in a single control step.

4. Implement + and � with a multiplier/adder performing a multi-cycle operation.

Clearly, decisions have to take many factors into account: delay, cost (power and area), intended

clocking frequency, predicted wiring delays, and surrounding operations. Also, one might want to

consider testability and error-recovery aspects of the di�erent design options [HO94].

7

In this context, it has to be mentioned, that well-established standard techniques in HLS have to be

revisited:

1. Scheduling and resource assignment can be modelled by functions taking DFG nodes (opera-

tions) as arguments and returning the corresponding control step and resource. In the context of

BIC components, it is sometimes more adequate to use sets of nodes or operations as arguments.

2. The function performed by a component can no longer be described by a single operation

identi�er or an expression involving such a single identi�er. Rather, expressions including several

operation identi�ers are required.

8

Chapter 3

Approach taken in OSCAR

3.1 Naming conventions

For our HLS system OSCAR (Optimum simultaneous scheduling, allocation and resource assignment),

the ability to consider BIC components has been a major design goal. A very essential part of this

is to select components for the �nal architecture. We use binary decision variables for modelling the

selection of certain components:

bk =

(
1; if instance k is selected

0; otherwise
(3.1)

Each k 2 K denotes a potential instance of a library element type m 2M . Before synthesis is started,

a su�cient set of instance identi�ers is made available for each m 2 M [to be added]. Fig. 3.1 is a

graphical representation of naming in our model.

structure

behaviourlayout
J

K M

instance type

type

optype
operation

componentex
ec

ut
ab

le
 o

n

ex
ec

ut
ab

le
 o

n

J’ U J’’
= =

G

G’ U G’’

Figure 3.1: Naming conventions in the OSCAR model

We distinguish between behavioural and structural domains. For each of these, we distinguish between

types and instances. Speci�c types and instances are denoted by elements taken from sets of discrete

9

elements. In actual implementations, sets of integers are used. In the paper, we are sometimes using

sets of characters in order to improve readability. As can be seen from �g. 3.1, the sets for operation

instances, operation types, component instances and component types are denoted by J;G;K; and

M , respectively.

Component functionality is modelled by relation executable on.

Def.: 8j 2 J; k 2 K : j executable on k () k 2 K is able to perform operation j 2 J .

We assume that all components are only able to start a limited number of operations. More precisely,

we assume that component k is able to start a new operation after `(j; k) control steps if j is the

operation most recently started. `(j; k) is called the component data initiation intervall (dii).

Let G0 denote the set of standard operations which are supported for an HLS system. In the case

of OSCAR, G0 corresponds to operations described in standard synthesis packages such as [Spe93].

These operations can be represented by expressions containing single operation identi�ers, for example

"+" and "�". These operations are called simple operations.

In addition to these operations, OSCAR considers complex operations or macro operations, operations

which can be performed by BIC components. If, for example, the library contains a MAC, then ((in1

� in2) + in3) will be considered as a complex operation. Let G00 denote complex operation types.

Def.: G = G0 [G00. G denotes the set of all operation types.

Operation instances corresponding to G;G0 and G00 are denoted by sets J; J 0 and J 00, respectively.

In OSCAR, complex operations in the DFG are labelled just like simple operations (see �g. 2.1). Note

that a certain node in the DFG may belong to several labels, to one for the node as a simple operation

and possibly also to others if it is an element of complex operations.

The essential task of HLS is to establish bindings between operation and component instances.

Moreover, most HLS algorithms also generate bindings to control steps at which these operations

are started. In OSCAR, control steps are represented by integers i from an index set I . Bindings

are represented by decision variables x. In the case of prede�ned instance bindings or cost func-

tions containing interconnect costs, OSCAR uses triple-indexed decision variables with the following

de�nition:

xi;j;k =

(
1; if operation j is started on component instance k at control step i

0; otherwise
(3.2)

For each operation j 2 J , R(j) denotes the set of control steps during which j could be executed.

R(j) can be computed by a simple ASAP/ALAP analysis or by techniques taking resource constraints

into account.

10

3.2 The model

For a given component library, the cost function is a linear function of these variables.

X
m2M

(COSTS(m) �
X
k2K

type(k)=m

bk) (3.3)

This cost function is minimized under constraints describing correct solutions. The following con-

straints are not a�ected by the need of modelling BIC (see [LMD94] for detailed equations):

1. Timing constraints:

these constraints can be used to specify minimum and maximum delay between operations.

Applied on read/write-operations it allows to meet given timing speci�cations.

2. Precedence constraints:

These constraints re
ect that operations cannot be started before their arguments have been

computed.

3. Chaining constraints

These constraints re
ect the fact that the total combinatorial delay of the design should not

exceed a given threshhold. In OSCAR, we assume that such a threshhold is known during

the design process. An outer loop can be used to �nd a good threshhold [JPD94]. Using

this threshhold, OSCAR generates constraints in case the combined delay of data-dependent

operations exceeds the threshhold.

Example:

Assume that the combined delay of j1 and j2 in �g. 2.1 exceeds the threshhold. Then, the

following constraints can be generated:

8i 2 R(j1)\ R(j2) :
X
k

(xij1k + xij2k) � 1 (3.4)

2

Chaining constraints are required in order to avoid solution 2 of chapter 3 in case high clocking

frequencies have been speci�ed. These constraints are not part of any other IP-model we are

aware of.

Other constraints are a�ected by the need to model BIC:

4. Resource assignment constraints

Resource assigment constraints guarantee that generated solutions respect the minimum data

initiation intervall dii. dii's are modelled by the following constraints:

11

8k 2 K :
X
j2J

j executable on k

i+`(j;k)�1X
i0=i

i2R(j)

xi0;j;k � bk (3.5)

Example:

Consider �g. 3.2. For the sake of better readability, we use a;m;M to denote an adder, a mul-

tiplier and a MAC, respectively. Furthermore, we use +; �;
 to denote addition, multiplication

and MAC operations.

If the macro operation is assigned to a MAC and to control step i = 2, then no other operation

can be performed on this component for control steps in the range [i; i+`(j; k)�1] = [2; 1+`(j; k)].

This is the situation described in �g. 3.2.

blocked for
 (j,k)= ()
control
steps

*

+

x =1

1

2

3

4

5

6

Ox
Ox

2 M

Ox M

k=M (MAC) k=a k=m

control steps

instancescomponent

,

Figure 3.2: Graphical interpretation of assignment constraints

2

Since (3.5) does not distinguish between simple and complex operations, our model is able to

handle components which can execute a mix of simple and complex operations.

The form of equation (3.5) is very similar to resource constraints for other IP-based models.

However, in our model, the set J includes complex operations. Also, two operations j1; j2 2 J

may, in fact, represent overlapping segments of the DFG.

In previous approaches [GE92], constant 1 is used on the right hand side of resource constraints.

The current approach is required for HLS with integrated scheduling and assignment in order

to avoid solutions, in which operations are assigned to non-selected component instances, i.e.

instances for which bk is 0.

5. Operation assignment constraints

These constraints re
ect the fact that each operation has to be performed by a suitable hardware

resource. This is guaranteed by the following constraints:

12

8j0 2 J 0 :
X

i2R(j0)

X
k2K

j exec on k

xi;j0;k +
X

j002J00:
j02j00

X
i2R(j00)

X
k2K

j00 exec on k

xi;j00;k = 1 (3.6)

The meaning of these constraints is as follows:

Each simple operation j0 has to be implemented. There are two ways of doing this:

a) j0 is implemented individualy. In this case, the sum of xi;j0;k over all possible control steps

R(j0) and all components will be 1 (1st term in (3.6) = 1).

b) j0 is implemented as part of a macro operation j00. j 0 may actually be part of several macro

operations, but only one of these can be implemented as a macro operation. Hence, the

sum of xi;j00;k over all macro operations j00 enclosing j0, over all control steps R(j00), and

over all resources k capable of executing j00 must be one (second term in (3.6)).

Example:

Let us assume that R(+) = 3; R(�) = 2; R(
) = [2::3]. Then, the following equations will be

generated:

j 0 = � : x2�m + x2
M + x3
M = 1 (3.7)

j0 = + : x3+a + x2
M + x3
M = 1 (3.8)

These equations guarantee that either the macro operation
 or the simple operations will be

bound to a hardware component.

2

By considering simple operations as a special case of macro operations, it would be possible to

use just the right term of equation 3.6, but this would lead to some redundant computations.

13

Chapter 4

Results

In the following, we will describe our results for two standard examples: the elliptical wave �lter

(EWF) and an edge-detection algorithm. All results use the components described in table 1.1. The

cycle time has been set to 50 ns in order to allow a controller and multiplexer delay of about 34 ns for

single-cycle adds. For this cycle time, multiplications and multiply/adds will always be multi-cycle

operations.

None of the results uses external chaining. Hence, the following tables mainly demonstrate the e�ect

of built-in chaining.

Tables 4.1 and 4.2 show the results for the elliptical wave �lter.

adders multipliers active runtime of OSCAR

control area [s]

steps [(k�)2]

20 3 4 66.083 � 1

21 2 3 48.961 � 1

22 2 2 34.244 3

Table 4.1: Results for EWF without BIC components

adders multipliers multiplier- active runtime of OSCAR

control adders area [s]

steps [(k�)2]

17 3 1 3 67.872 � 1

18 2 1 2 50.154 37

19 2 0 2 35.434 216

Table 4.2: Results for EWF with BIC components

Note that the use of BIC can be exploited in two ways: a) to get a smaller design if the cycle budget

is �xed and b) to get a faster design if the area budget is �xed.

14

Tables 4.3 and 4.4 show the results for the edge detector algorithm.

adders subtractor multiplier active runtime of OSCAR

control area [s]

steps [(k�)2]

12 2 2 8 127.418 � 1

13 2 2 7 112.700 � 1

14 2 2 4 68.548 57

Table 4.3: Results for edge detector without BIC components

adders subtractor multiplier multiplier- active runtime of OSCAR

control adders area [s]

steps [(k�)2]

12 2 2 4 1 83.860 2

13 1 2 3 1 66.737 10

14 1 1 3 1 64.304 192

Table 4.4: Results for edge detector with BIC components

15

Chapter 5

Conclusion

In this paper, we have proposed to pay attention to the need of modelling components with built-

in chaining (BIC). We have stressed the importance of the support of these components in high-level

synthesis. As an example, we have shown how BIC can be modelled in integer-programming (IP) based

synthesis algorithms. IP-models provide a basis for adding support for BIC in a rather straightforward

way. Due to recent advances in IP-based modelling, we have been able to generate designs in acceptable

computation time [LMD94]. These results demonstrate the e�ciency of designs using BIC.

The authors appreciate the comments of Fadi Kurdahi and Nikil Dutt (UC Irvine) on an earlier version

of the manuscript.

16

Bibliography

[GE92] C. H. Gebotys and M. I. Elmasry. Optimal VLSI Architectural Synthesis. Kluwer Academic

Publishers, 1992.

[HO94] I. G. Harris and A. Orailoglu. Microarchitectural synthesis of VLSI designs with high test

concurrency. 31st ACM/IEEE Design Automation Conference, pages 206{211, 1994.

[JPD94] P. K. Jha, S. Parameswaran, and N. D. Dutt. Reclocking controllers for minimum execution

time. Technical Report 94-40, Information and Computer Science, University of California at

Irvine, 1994.

[Keu87] K. Keutzer. DAGON: Technology binding and local optimization by DAG matching. 24th

Design Automation Conference, pages 341{347, 1987.

[LMD94] B. Landwehr, P. Marwedel, and R. D�omer. OSCAR: Optimum simultaneous scheduling,

allocation and resource binding based on integer programming. Euro-DAC, 1994.

[MRS87] H. De Man, J. Rabaey, and P. Six. CATHEDRAL II: A synthesis and module generation

system for multiprocessor systems on a chip. in: G.DeMicheli, A.Sangiovanni-Vincentelli,

P.Antognetti: Design Systems for VLSI Circuits{Logic Synthesis and Silicon Compilation{

,Martinus Nijho� Publishers, 1987.

[NJ94] R. Nijssen and J.A.G. Jess. Data path regularity extraction. IFIP Workshop on Logic and

Architecture Synthesis, 1994.

[Spe93] Special Interest Group on Synthesis from VHDL. VHDL arithmetic package

for synthesis. repository at INTERNET host \vhdl.org", login \anonymous", �le

\vi/vhdlsynth/numeric bit.vhd", 1993.

17

