
Hardware/Software Partitioning using Integer Programming

Ralf Niemann, Peter Marwedel

Dept. of Computer Science XII

University of Dortmund

D-44221 Dortmund, Germany

Abstract

One of the key problems in hardware/software codesign
is hardware/software partitioning. This paper de-
scribes a new approach to hardware/software parti-
tioning using integer programming (IP). The advant-
age of using IP is that optimal results are calcu-
lated respective to the chosen objective function. The
partitioning approach works fully automatic and sup-
ports multi-processor systems, interfacing and hard-
ware sharing. In contrast to other approaches where
special estimators are used, we use compilation and
synthesis tools for cost estimation. The increased
time for calculating the cost metrics is compensated
by an improved quality of the estimations compared
to the results of estimators. Therefore, fewer itera-
tion steps of partitioning will be needed. The paper
will show that using integer programming to solve the
hardware/software partitioning problem is feasible and
leads to promising results.

1 Introduction

Embedded systems typically consist of application
speci�c hardware parts and programmable parts, i.e.,
processors like DSPs, core processors or ASIPs. In
comparison to the hardware parts, the software parts
can be developed and modi�ed much easier. Thus,
software is less expensive in terms of costs and de-
velopment time. Hardware however, provides better
performance. For this reason, a system designer's
goal is a system which ful�lls all performance con-
straints by using as few as possible hardware. Hard-
ware/software codesign deals with the problem of
designing embedded systems, where automatic parti-
tioning is one key issue. This paper describes a new
approach in hardware/software partitioning for multi-
processor systems working fully automatic. The ap-
proach is based on integer programming (IP) to solve
the partitioning problem optimally. A formulation of

the IP-model will be introduced in detail. The draw-
back of solving IP-models often is a high computation
time. To reduce the computation time, a second ap-
proach has been developed which splits the partition-
ing approach in two phases. In a �rst phase, a map-
ping of nodes to hardware or software is calculated
by estimating the schedule times for each node with
heuristics. During the second phase a correct sched-
ule is calculated for the resulting HW/SW-mapping
of the �rst phase. It will be shown that this heuristic
scheduling approach strongly reduces the computation
time while the results are nearly optimal for the chosen
objective function.

Another new feature of our approach is the cost es-
timation technique. The cost model is not calculated
by estimators like other approaches, because the qual-
ity of estimations is often bad and estimators do not
concern compiler e�ects. In our approach the tools
(a compiler for the software parts and a high-level
synthesis tool for the hardware parts) are used in-
stead of special estimators. The disadvantage of an
increased runtime for calculating the cost metrics is
compensated by a better quality of the cost metrics
compared to the results of estimators. Furthermore,
better cost metrics lead to fewer partitioning itera-
tions.

The outline of the paper is as follows: Section 2
gives an overview of related work in the �eld of hard-
ware/software partitioning. In section 3 our own ap-
proach to partitioning is presented. A formulation of
the hardware/software partitioning problem follows in
section 4. Section 5 describes the problem by an IP-
model. After experimental results of solving these IP-
models have been presented in section 6, a conclusion
is given in section 7 .

2 Related Work

There are only few approaches considering hard-
ware/software partitioning. One of these is the

COSYMA system [EHB93], where hardware/software
partitioning is based on simulated annealing using es-
timated costs. The partitioning algorithm is software-
oriented, because it starts with a �rst non-feasible
solution consisting only of software components. In
an inner loop partitioning (ILP) software parts of the
system are iteratively realized in hardware until all
timing constraints are ful�lled. To handle discrepan-
cies between estimated and real execution time, an
outer loop partitioning (OLP) restarts the ILP with
adapted costs [HE94]. The OLP is repeated un-
til all performance constraints are ful�lled. Another
hardware/software partitioning approach is realized
in the VULCAN system [GCM92]. This approach is
hardware-oriented. It starts with a complete hard-
ware solution and iteratively moves parts of the sys-
tem to the software as long as the performance con-
straints are ful�lled. In this approach performance
satis�ability is not part of the cost function. For this
reason, the algorithm will easily trap in a local min-
imum. The approach of Vahid [VGG94] uses a relaxed
cost function to satisfy performance in an inner par-
titioning loop and to handle hardware minimization
in an outer loop. The cost function consists of a very
heavily weighted term for performance and a second
term for minimizing hardware. The authors present
a binary-constraint search algorithm which determ-
ines the smallest size constraint (by binary search) for
which a performance satisfying solution can be found.
The partitioning algorithm minimizes hardware, but
not execution time. Kalavade and Lee [KL94] present
an algorithm (GCLP) that determines for each node
iteratively the mapping to hardware or software. The
GCLP algorithm does not use a hardwired objective
function, but it selects an appropriate objective ac-
cording a global time-criticality measure and another
measure for local optimum. The results are close to
optimal and the runtime grows quadratically to the
number of nodes. This approach has been extended
to solve the extended partitioning problem [KL95] in-
cluding the implementation selection problem.

3 Hardware/Software
Partitioning Approach

Our hardware/software partitioning approach is de-
picted in �gure 1. The designer has to specify the
target architecture by de�ning the set of processors
for the software parts and the component library to
synthesize the hardware parts. The system has to
be de�ned in VHDL as a set of interconnected in-

Design constraints

else

Syntax Graph Model

C code generation

Retargetable Compilation

Target architecture definition

SW costs HW costs

Partitioning Graph

Solving ILP model

Retargetable Compilation

Cluster SW nodes

Refine Partitioning Graph

SW costs

If Solution exists

then

VHDL system specification

VHDL code generation

High-Level Synthesis

Result := ValidPartitioning

ValidPartitioning := Partitioning

Figure 1: Hardware/Software Partitioning

stances of VHDL-entities. Moreover, the designer
has to determine the design constraints, containing
performance constraints (timing) and resource con-
straints (area, memory). Then, the VHDL speci�ca-
tion is compiled into an internal syntax graph model.
For each entity of this model, software source code
(C or DFL) and hardware source code (VHDL) is
generated. The software parts are compiled and the
hardware parts are synthesized by a high-level syn-
thesis tool (OSCAR [LMD94]). The results are soft-
ware cost metrics (software execution time, memory
usage) and hardware cost metrics (hardware execu-
tion time, area) for the entities. The disadvantage of
an increased runtime for calculating the cost metrics
is compensated by a better quality compared to the
results of estimators. Moreover, better cost metrics
lead to fewer partitioning iterations. After the com-
pilation/synthesis phase a partitioning graph is gener-
ated. Nodes represent the instances of VHDL-entities
of the system and edges represent the interconnec-
tions between them. The nodes are weighted with the
hardware and software costs, the edges are weighted
with interface costs which occur if an interface is used
between the nodes of the edge. The interface costs
are approximated by the number and type of data

owing between both nodes. The user-de�ned design
constraints are also matched to the graph. Thus, the
partitioning graph includes all information needed for
partitioning. The partitioning graph is then trans-

formed into an IP-model, which is the key issue of
this paper. Afterwards, the model is solved by an IP-
solver. The calculated design is optimal for the gener-
ated cost model, but nevertheless it is possible to im-
prove the design, because sharing between di�erent in-
stances of same entities is considered, but not sharing
e�ects between di�erent entities. This disadvantage
can be removed by an iterative partitioning approach.
We use a software oriented approach, because com-
pilation is faster than synthesis and software oriented
approaches seem to be superior to hardware oriented
approaches (see [VGG94]). Sets of nodes which have
been mapped on the same processor are clustered. For
each cluster a new cost metric is calculated by compil-
ing all nodes of the cluster together. Then, the parti-
tioning graph is transformed by replacing each cluster
by a new node attached with the new cost metric. Fi-
nally, the rede�ned graph is repartitioned. This iter-
ation will be repeated until no solution is found. The
last valid partitioning represents the resulting design.
The clustering technique is illustrated in �gure 2.

v8

v1

v3v2

v4 v5 v6 v7

v8 v9 v10

v11

v1

v2 v3,v6

v7v9
v5v4

v1

v2

v4 v5

v8

v3,v6,
v7,v9,

v10,v11

v12 v12 v12

v10,
v11

2nd
Partitioning

1st 3rd
Partitioning Partitioning

Figure 2: Partitioning re�nement

4 Formulation of the HW/SW
Partitioning Problem

This section introduces a formulation of the hard-
ware/software partitioning problem. This formulation
is necessary to simplify the description of the problem
with the help of an IP-model. We have to de�ne the
target architecture used to realize the system and the
system itself which has to be partitioned.

De�nition 4.1 The target architecture consists of
an ASIC h, a set of processors P = fp1; : : : ; pnP g,
external memory and busses between them. The set
of target architecture components is de�ned as: T A =
fhg [P.

To simplify the notations in the following chapters,
let the ASIC be the �rst element of T A with index 0,
followed by the processors: ta0 := h; tak := pk; 8k 2
f1; : : : ; nPg.

De�nition 4.2 A system is de�ned as a tuple S =
(E ; V; E; I) with the following de�nitions:
E = fen1; : : : ; ennEg de�nes the set of entities. The
set of nodes V = fv1; : : : ; vnV g consists of instances
of entities, de�ned by the function I : V ! E . The set
of edges E � V � V represents the interconnections
between nodes.

The following cost metrics are de�ned for each en-
tity enl: ca(enl) represents the hardware area, c

th(enl)

the hardware execution time, cdm(enl) the used soft-
ware data memory, cpm(enl) the used software pro-

gram memory and cts(enl) the software execution

time. The costs ca(vj), c
th(vj), c

dm(vj), c
pm(vj) and

cts(vj) for the instances vj of an entity enl are equal
to the costs of enl:

I(vj) = enl) cx(enl) = cx(vj) (1)

The following interface costs for an edge e = (v1; v2)
are considered: cia(e) de�nes the additional hardware

area and cit(e) de�nes the communication time for e.
A design represents the realization of a system S

on a target architecture T A. The design quality can
be expressed by the followingdesign metrics: Ca(S)
represents the hardware area, Cpm(S) the used soft-

ware programmemory,Cdm(S) the used software data

memory and Ct(S) the total execution time of S. The
set of design constraints C consists of MAXa(S),

MAXpm(S),MAXdm(S) andMAXt(S) according to
the design metrics of S.

De�nition 4.3 The hardware/software parti-
tioning problem is the problem of �nding a map-
ping map : V ! T A in such a way that all
performance and resource constraints are ful�lled and
the design costs are minimized.

The de�nitions will be used in the following example:
Example 1:

In �gure 3 a system is speci�ed consistingof 2 entities
en1 (circle), en2 (box) and 7 instances v1 ; : : : ; v7 of
these entities. This system will be partitioned for a
target architecture containing one ASIC, one DSP,
memory and a bus connecting these components.

5 The IP-Model

Linear optimization problems can be solved optim-
ally by using integer programming (IP). This paper

DSPASIC

ta1ta0

Target Architecture

Mem.

Specification Partitioning

HW/SW-
en1

en2

Entities

v1

v2 v3

v4 v5 v6

v7

System

Figure 3: Unpartitioned system

will show that our IP-model is able to solve the hard-
ware/software partitioning problem with the following
characteristics: multiprocessor systems are supported,
timing constraints are guaranteed, interface costs are
included, sharing e�ects between di�erent instances of
the same entity are considered, and user constraints
can be adapted easily. To describe the IP-model the
following notations are necessary:

De�nition 5.1 Let J = f1; : : : ; nV g represent the in-
dices of vj 2 V , K = f0; : : : ; nP g the indices of ele-
ments tak 2 T A and L = f1; : : : ; nEg the indices of
elements enl 2 E .
Let cxl;k be the cost metric cx(enl) for entity enl and
cxj;k the cost metric cx(vj) for node vj on target archi-
tecture component tak.
Let Cx

k be the system cost Cx(S) on tak of system S
and MAXx

k the according maximum of Cx
k .

Let TS
j be the execution starting time of node vj .

Let TD
j be the execution time of node vj .

Let TE
j be the execution ending time of node vj.

5.1 The Decision Variables

Our IP-model uses the following 0/1-variables:

De�nition 5.2 Let the following 0/1-variables be
de�ned as:

xj;0 =

�
1 : vj is not shared on ta0;

0 : otherwise:

yj;k =

8<
:

1 : vj is shared on hardware ta0;
1 : processor tak(k � 1) executes vj ;
0 : otherwise:

shl;k =

8<
:

1 : enl is shared on hardware ta0;
1 : processor tak(k � 1) executes enl;
0 : otherwise:

ij1;j2 =

�
1 : vj1 and vj2 need an interface;
0 : otherwise:

bj1;j2;k =

8>><
>>:

1 : vj1 ; vj2 are executed on
: di�erent components;

1 : vj1 ends before vj2 starts on tak;

0 : otherwise:

Example 2:

v

t
v1

v7

v4
v3

v2

Timing Diagram

v6

memory area

Resource Diagram

v5,v6

v4,v7

v3

v2

v1

costs

v5

resource

SW SW

HW HW

shared v3

v1

v5 v6v4

v7

v2

Figure 4: Partitioned system

The result of hardware/software partitioning of the
system depicted in �gure 3 is shown in �gure 4. Gray
shaded nodes are realized in hardware. Shared nodes
are enclosed by a dashed line. The following table
shows the 0/1-variables for executing nodes shared
or not shared on hardware or software.

vj !
HW/SW var v1 v2 v3 v4 v5 v6 v7

unshared HW xj;0 0 0 1 0 0 0 0
shared HW yj;0 0 0 0 1 1 1 1

SW yj;1 1 1 0 0 0 0 0

The nodes v1 and v2 are executed on the processor
ta1 (y1;1 = y2;1 = 1). Therefore, sh1;1 = sh2;1 = 1,
because v1 is of entity type en1 and v2 is of entity
type en2 . v3 is executed unshared on the hardware
(x3;0 = 1). The other four nodes v4; : : : ; v7 are ex-
ecuted shared on the hardware. In total, 2 interfaces
are needed: i2;4 = i1;3 = 1. The timing diagram
shows that unshared nodes in hardware (v3) can be
executed in parallel to instances of the same entity
(v4). Shared nodes (v5; v6) have to be sequential-
ized, but result in less hardware area as shown in the
resource diagram.

5.2 The Constraints

The following constraints have to be ful�lled:

1. General Constraints: Each node vj is executed
exactly on one target architecture component tak.

8j 2 J : xj;0 +
X
k2K

yj;k = 1 (2)

2. Resource Constraints: The values for used
data memory Cdm

k (eq. 3) and program memory
C
pm

k (eq. 4) on each processor tak may not exceed
a given maximum. The used hardware area Ca

0

(eq. 5) is the sum of hardware area of unshared
instances, shared entities, and the total interface
area CIa

0
(eq. 14). Ca

0
may not exceed a given

maximum.

8k 2Knf0g : Cdm
k =

X
l2L

shl;k � c
dm
l;k �MAXdm

k (3)

8k 2Knf0g : C
pm

k
=
X
l2L

shl;k � c
pm

l;k
�MAX

pm

k
(4)

Ca
0 =
X
j2J

xj;0 � c
a
j;0 +

X
l2L

shl;0 � c
a
l;0 + CIa0 �MAXa

0 (5)

3. Timing Constraints:
The timing costs cannot be calculated by accumu-
lating the execution time of the nodes, because
nodes, that are not shared on the ASIC can be
executed in parallel. To determine the starting
time and ending time for each node, scheduling
has to be performed. The execution time TD

j (eq.
6) of vj is either the hardware or the software
execution time. The ending time TE

j (eq. 7) is

the sum of starting time TS
j and execution time

TD
j . The starting times TS

j (eq. 9) of nodes have
to be in their ASAP/ALAP-range which can be
calculated in a preprocessing step. Data depend-
encies (eq. 10) have to be considered for all edges
e = (vj1 ; vj2) including interface communication
time T I

j1;j2
of equation 12. The system execution

time Ct (eq. 11) is the maximum of all ending
times and may not violate the constraint.

8j 2 J : 8e = (vj1 ; vj2) 2 E :

TDj = xj;0 � c
th
j;0 + yj;0 � c

th
j;0 +

X
k2Knf0g

yj;k � c
ts
j;k (6)

TEj = TSj + TDj (7)

(8)

ASAP (vj) � TSj � ALAP (vj) (9)

TSj2 � TEj1 + T Ij1;j2 (10)

TEj � Ct �MAXt (11)

5.3 Interfacing

An interface has to be realized for an edge e =
(vj1 ; vj2), if vj1 and vj2 are realized on di�erent tar-
get architecture components. This fact is formulated
with help of additional constraints for the interface
0/1-variable ij1;j2 (see [NM95]). Then, the following
interface costs can be calculated: interface execution
time T I

j1;j2
(eq. 12), interface hardware area AI

j1;j2

(eq. 13), and the area of all interfaces CIa
0
(eq. 14).

8e = (vj1 ; vj2) 2 E :

T Ij1;j2 = ij1;j2 � ci
t
j1;j2

(12)

AIj1 ;j2
= ij1;j2 � ci

a
j1;j2

(13)

CIa0 =
X

e=(vj1 ;vj2)2E

AIj1;j2 (14)

5.4 Sharing

An entity enl is shared on hardware ta0 (eq. 15), if at
least two nodes vj1 ; vj2 which are instances of entity
enl are executed shared on ta0. An entity enl is shared
on processor tak (eq. 16), if at least one instance of
entity enl is executed on tak.

8l 2 L : 8j1; j2 2 J : I(vj1) = I(vj2) = enl :

shl;0 � yj1;0 + yj2 ;0 � 1 (15)

8k 2Knf0g : 8l 2 L : 8j 2 J : I(vj) = enl :

shl;k � yj;k (16)

5.5 Scheduling

If two nodes vj1 ; vj2 should be sequentialized, then
the scheduling variables bj1;j2;k and bj2;j1;k have to
be di�erent, otherwise both have to be 1. The addi-
tional constraints for bj1;j2;k and bj2;j1;k are de�ned in
[NM95]. With bj1;j2;k,bj2;j1;k nodes can be sequential-
ized (eq. 17,18) by:

8k 2K : TSj1
� TEj2

�1 � bj1;j2;k (17)

TSj2 � TEj1 �1 � bj2;j1;k (18)

5.6 Heuristic Scheduling

Optimal scheduling of the nodes is a complex problem,
because the number of the 0/1-variables bj1;j2;k can
grow quadratically in the number of nodes. An idea

to solve this problem is to execute partitioning while
iterating the following steps:

1. Solve an IP-model for the hardware/software
mapping with help of approximated time values.

2. Solve an IP-model for calculating an exact sched-
ule with nodes mapped to hardware or software.

3. If the resulting total time violates the timing con-
straint, repeat the �rst two steps with a timing
constraint that is tighter than the approximated
total time of step 1. (see �gure 5).

Approximation

1. Iteration 2.Iteration

new Constraint
Approximation

Exact
CONSTRAINT

Exact

t t

Figure 5: Heuristic scheduling

The following constraints are used additionally to the
equations 6-11 to approximate time values:

� The starting time TS
j of a node vj is equal or

greater than the accumulated software execution
times of all predecessor nodes vj .

� TS
j is equal or greater than the accumulated hard-

ware execution times of all shared predecessor
nodes of vj .

� TS
j is equal or greater than the sum of the end-

ing time of each dominator node vi of vj and the
software execution times on processor tak of all
nodes on the paths between vi and vj.

� TS
j is equal or greater than the sum of the end-

ing time of each dominator node vi of vj and the
hardware execution times of all shared nodes on
the paths between vi and vj.

The correct constraints can be found in [NM95].

6 Results

The interesting parameter for partitioning is the num-
ber of nodes n which have to be partitioned. For this
reason, we have developed some examples containing
a lot of instances of small VHDL-entities. The target

architecture for all examples consists of a processor,
an ASIC, memory and a bus connecting all compon-
ents. All calculated partitionings concern interface
costs and sharing e�ects between nodes. The compu-
tation times of the examples represent CPU seconds
on a Sun SPARCstation20.

The heuristic partitioning approach can be evalu-
ated by examining

� the quality and

� the computation time

compared to the optimal result.
The quality of the heuristic approach can be evalu-

ated by determining the deviation between the exact
and the approximated solution. If the heuristic par-
titioning approach does not consider interfacing, then
the results are always exact, and therefore optimal. If
interfacing is considered however, then the approxim-
ated system execution time may di�er from the exact
value. Therefore, we have partitioned 6 di�erent sys-
tems (see �gures 6,8) with the optimal and the heur-
istic approach. For each system, solutions have been
calculated for a set of constraints. In �gure 6 it is

5.13%

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

design number

sy
st

em
 e

xe
cu

ti
o

n
 t

im
e

[n
s]

n=19 (optimal)

n=19 (heuristic)

n=16 (optimal)

n=16 (heuristic)

n=13 (optimal)

n=13 (heuristic)

n=10 (optimal)

n=10 (heuristic)

n=7 (optimal)

n=7 (heuristic)

n=4 (optimal)

n=4 (heuristic)

Figure 6: System execution time (exact/heuristic ap-
proach)

shown that the approximated execution time is equal
or very close to the exact value. The maximal devi-
ation between the exact and the approximated exe-
cution time is 5:13%, the average deviation is smaller
than 1% for all examined systems.

In contrast to the partitioning quality, the com-
putation times are very di�erent. Figure 7 depicts
the computation times of both approaches for a sys-
tem, which consists of 7 nodes. This system has
been partitioned for 8 di�erent system execution time
constraints. The maximal computation time is 246
seconds for the optimal partitioning approach and 2
seconds for the heuristic one, i.e., computation time
is drastically decreased. In �gure 8 the computation
time of the heuristic approach is depicted for 6 di�er-
ent systems. For all of these systems several di�erent

0

50

100

150

200

250

1 2 3 4 5 6 7 8

design number

IP
-s

o
lv

er
 c

o
m

p
u

ta
ti

o
n

 t
im

e
[s

]

optimal
heuristic

Figure 7: Computation time (exact/heuristic ap-
proach)

1 3 5 7 9 11 13 15 17 19

n=4
n=7

n=10
n=13

n=16
n=19

0

10

20

30

40

50

60

70

IP
-s

o
lv

er
 c

o
m

p
u

ta
ti

o
n

 t
im

e
[s

]

design number

n=4

n=7

n=10

n=13

n=16

n=19

Figure 8: Computation times of the heuristic approach

designs have been calculated with help of a set of sys-
tem execution time constraints for each system.

It becomes clear, that the heuristic approach is su-
perior to the optimal approach, because the results
are always nearly optimal and the computation times
have been drastically reduced.

7 Conclusion

This paper presents a new approach of full-automated
hardware/software partitioning supporting multi-
processor systems, interfacing and hardware sharing.
The partitioning approach itself is based on integer
programming leading to optimal results. In contrast
to other approaches, where hardware and software
costs are estimated, our approach follows the idea of
'using the tools' for cost estimation. The disadvant-
age of an increased calculation time is compensated by
better metrics and therefore fewer iteration steps. The
presented results are very promising, because nearly
optimal results are calculated in short time. Future
work will deal with design studies of real system level
examples.

References

[EHB93] Rolf Ernst, J�org Henkel, and Thomas Ben-
ner. Hardware-software cosynthesis for microcon-
trollers. IEEE Design & Test, Vol.12, pages 64{
75, 1993.

[GCM92] Rajesh K. Gupta, Claudionor Nunes
Coelho Jr., and Giovanni De Micheli. Syn-
thesis and simulation of digital systems contain-
ing interacting hardware and software compon-
ents. 29th ACM, IEEE Design Automation Con-
ference, pages 225{230, 1992.

[HE94] D. Henkel J. Herrmann and R. Ernst. An
approach to the adaption of estimated cost
parameters in the cosyma system. Third
International Workshop on Hardware/Software
Codesign, Grenoble, pages 100{107, 1994.

[KL94] Asawaree Kalavade and Edward A. Lee. A
global critically/local phase driven algorithm for
the constrained hardware/software partitioning
problem. Third International Workshop on Hard-
ware/Software Codesign, Grenoble, pages 42{48,
1994.

[KL95] Asawaree Kalavade and Edward A. Lee.
The extended partitioning problem: Hard-
ware/software mapping and implementation-bin
selection. Proceedings of the 6th International
Workshop on Rapid Systems Prototyping, 1995.

[LMD94] B. Landwehr, P. Marwedel, and R. D�omer.
OSCAR: Optimum Simultaneous Scheduling, Al-
location and Resource Binding Based on Integer
Programming. Proceedings of the EURO-DAC,
pages 90{95, 1994.

[NM95] R. Niemann, and P. Marwedel. Hard-
ware/Software Partitioning using Integer Pro-
gramming. Technical Report 586, Dept. of Com-
puter Science XII, University of Dortmund, 1995.

[PK93] Zebo Peng and Krzysztof Kuchcinski. An al-
gorithm for partitioning of application speci�c
systems. Proceedings of the European Conference
on Design Automation (EDAC), pages 316{321,
1993.

[VGG94] Frank Vahid, Jie Gong, and Daniel Gajski.
A binary-constraint search algorithm for minim-
izing hardware during hardware/software parti-
tioning. European Design Automation Conference
(EURO-DAC), pages 214{219, 1994.

