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Abstract{We address the problem of instruction selec-
tion in code generation for embedded digital signal pro-
cessors. Recent work has shown that this task can be ef-
�ciently solved by tree covering with dynamic program-
ming, even in combination with the task of register al-
location. However, performing instruction selection by
tree covering only does not exploit available instruction-
level parallelism, for instance in form of multiply-
accumulate instructions or parallel data moves. In this
paper we investigate how such complex instructions may
a�ect detection of optimal tree covers, and we present
a two-phase scheme for instruction selection which ex-
ploits available instruction-level parallelism. At the ex-
pense of higher compilation time, this technique may
signi�cantly increase the code quality compared to pre-
vious work, which is demonstrated for a widespread
DSP.1

1 Introduction

With growing market shares of embedded systems com-
pared to general-purpose computers, code generation
for embedded processors has become an important re-
search topic. Although compiler technology has reached
a high level of maturity for general-purpose processors,
it is widely agreed that code generation for embedded
DSPs demands for new techniques [1, 2], because of
very high code quality requirements and irregular ar-
chitectures.

The task of code generation is usually subdivided
into phases of instruction selection, register allocation,
and scheduling. During instruction selection, pattern
matching between data
ow patterns in the source algo-
rithm and instruction patterns is performed, and those
instruction patterns are selected which lead to an opti-
mal cover with respect to a certain cost criterion. Al-
though the data
ow in algorithms in general may show
a DAG structure, instruction selection is mostly done
by tree pattern matching and covering with dynamic
programming [3] in order to avoid exhaustive runtimes.
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Decomposition of DAGs into trees may cause additional
load/store instructions, but the penalty is not very high
for embedded processors with on-chip memory. Fur-
thermore, versatile tools for automatic generation of
tree pattern matchers from an instruction-set model
are already available, which facilitates another impor-
tant issue in code generation for embedded processors:
retargetability. Tree covering in linear time is also pos-
sible with trellis diagrams, as shown by Wess [6]. How-
ever, construction of trellis diagrams frommore general
models is more di�cult than construction of tree pat-
tern matchers.

As Araujo and Malik [4] point out, the phases of in-
struction selection and register allocation are not only
interdependent, but virtually cannot be separated from
each other in presence of irregular processor structures.
Their approach integrates both phases into a single tree
covering phase, and optimal code generation is reported
for the TMS320C25 DSP [7]. This DSP incorporates
so many peculiarities that one can expect to have tech-
niques for a large class of embedded processors, once
the problems are solved for this one. In [4], however,
optimality is only achieved under the assumption that
no instruction-level parallelism (ILP) is available, which
does not apply to the TMS320C25.

Extension of tree pattern matching towards proces-
sors with ILP is straightforward in presence of purely
horizontal instruction formats, i.e. parallel execution of
register transfers (RTs) is only restricted by data de-
pendencies and resource con
icts. In this case the RTs
still can be handled as tree patterns, which may be
parallelized later by local code compaction, for which
good heuristics are known [5]. But, as program ROM
size is also a critical resource for embedded processors,
horizontal resp. VLIW instruction formats are the ex-
ception. In order to reduce ROM size, instructions are
often strongly encoded, i.e. available ILP is reduced to a
few "critical" cases only. This results in the fact, that
there exist atomic instructions, which cannot be fur-
ther subdivided, but which execute a �xed set of RTs
in parallel. We call these complex instructions.

As we point out in section 2, complex instructions do
not �t the dynamic programming approach. Further-
more, they exclude the use of classical, heuristic local



compaction algorithms, because the binary encodings
must be explicitly taken into account, and generation
of incorrect code due to undesired side e�ects must be
avoided. Nevertheless, exploitation of complex instruc-
tions might be mandatory for obtaining su�cient code
quality. The purpose of this paper is to outline the
problems that DSP code generation faces in presence of
complex instructions, and to show how a closer coupling
between instruction selection and compaction leads to
better exploitation of ILP in case of complex instruc-
tions. This is subject of section 3. Experimental results
in section 4 demonstrate that exploitation of complex
instructions can signi�cantly improve code quality, so
that the additional time needed for code generation is
justi�ed.

2 Complex instructions

The process of tree covering strongly depends on the
datapath architecture of the embedded processors for
which code is to be generated. We exemplify this using
a 4-tap FIR �lter computation given by the equation

yn = c0 � xn + c1 � xn�1 + c2 � xn�2 + c3 � xn�3

The corresponding expression tree is depicted in �g. 1.
For sake of simplicity, only the operators without load
and store operations are shown. We assume that mul-
tiplications and additions are executed within a single
machine cycle, which applies to most �xed-point DSPs.
In order to achieve both high throughput and short
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Figure 1: Expression tree for 4-tap FIR �lter

combinational delay, DSPs often comprise a multiplier
and an adder operating in a pipelined fashion (�g. 2
a). In one instruction cycle, a product is computed and
stored in a pipeline register (PR), and in the next cy-
cle the product can be accumulated and another mul-
tiplication can take place. Besides MULT and ADD
instructions, the instruction set then includes a MAC
(multiply-accumulate) instruction, which is a non-tree
pattern, however (�g. 2 b). Thus, tree covering by dy-
namic programming cannot detect the optimal cover
with 5 instructions shown in �g. 3 a), but yields a sub-
optimal cover with cost 7 (�g. 3 b). The actual reason
why tree covering with dynamic programming fails in
case of datapaths containing pipeline registers is that
neighboring subtrees are always covered separately. In
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Figure 2: a) Pipelined multiplier/accumulator, b) re-
sulting instruction patterns, c) chained add-with-shift
instruction
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Figure 3: a) Optimal cover for the tree in �g. 1 with
complex MAC (cost: 5), b) suboptimal cover (cost: 7)

the above example, the complex instruction MAC exe-
cutes two di�erent RTs in parallel, and therefore spans
two di�erent subtrees. It is exactly this property, which
makes the di�erence between complex instructions and
chained instructions, such as an add-with-shift (�g. 2
c), for which dynamic programming still �nds the opti-
mal cover.

Thus, if instruction selection is completed after tree
covering, complex instructions are unnecessarily ex-
cluded from code generation and inferior code might
result. Note that also heuristic local compaction tech-
niques may fail to exploit complex instructions, when
applied separately after instruction selection: In order
to illustrate the problem, consider the MPYA (multi-
ply and accumulate previous product) instruction on the
TMS320C25, which performs two �xed RTs in parallel:

(1) PR := TR * <memory value>;
(2) ACCU := ACCU + PR;

MPYA is an "atomic" instruction that cannot be sub-
divided, so that it cannot be modelled in tree pattern
matchers, where each instruction corresponds to ex-
actly one register transfer. The two RTs performed
by MPYA also exist as separate instructions (MPY
and APAC) on the TMS320C25. While on a horizon-
tal machine the binary encoding of MPYA would just



be the combination of MPY and APAC, which can
be easily constructed by heuristic compaction,MPYA
has to be treated as a separate, atomic instruction on
the TMS320C25, due to its strongly encoded instruc-
tion format: the binary encodings of MPY, APAC,
andMPYA are pairwise incompatible. In case instruc-
tion selection for a multiplication is required, it cannot
be decided whether to useMPY orMPYA, before bi-
nary code generaton is performed. As a consequence,
both alternatives have to be kept for code compaction
in order to permit exploitation of available ILP. We
therefore use a closer coupling between instruction se-
lection and code compaction, which is explained in the
following section.

3 Tree covering with complex
instructions

Our approach proceeds in two sequential phases: In
phase 1, we allow atomic (possibly complex) instruc-
tions to be temporarily split into their single RTs, so
that tree covering can be e�ciently performed with dy-
namic programming. In phase 2, the selected RTs are
recombined in a way that they only form valid instruc-
tions again. We therefore characterize a processor by
two di�erent items: Firstly, there is a set of register
transfers which can be executed on the processor data-
path:

RTS = fRT1; : : : ; RTng

A register transfer is a single-cycle tree-pattern opera-
tion which computes a value and stores the result into a
destination memory or register module. Secondly, the
actual instruction set is de�ned as

IS = fI1; : : : ; Img

where each instruction Ik is a set of one or more parallel
RTs:

Ik = fRTk1; : : : ; RTkmk
g; RTki 2 RTS

Thereby, available ILP is encoded in the instructions.
An instruction Ik is called complex, if jIkj > 1. Fur-
thermore, we de�ne a membership function

M : RTS ! P(IS) : RTi 7! fIk j RTi 2 Ikg

so that M (RTi) contains all instructions that comprise
RTi. Using these formulations, tree covers including
complex instructions can be obtained as explained in
the following. Note that we are only dealing with re-
stricted ILP due to encoded instruction formats, while
for horizontal formats the size of IS would explode.

3.1 Phase 1: Tree covering by RTs

In phase 1, we temporarily consider the RT set RTS
as the instruction set. Tree covering then proceeds by

dynamic programming. The instructions are modelled
as tree patterns, and an optimal cover (including pure
data transport operations) is computed, under the as-
sumption that no ILP is available. In our case we use
the iburg pattern matcher generator [8]. iburg takes
as input a tree grammar describing the available RT
patterns on a processor and (similar to yacc) produces
C source code for a fast, processor-speci�c tree pattern
matcher. As proposed in [4], we include register-speci�c
patterns into the tree grammar, in order to integrate
register allocation and instruction selection. In con-
trast to other approaches, the iburg tree grammar it-
self is not constructed manually, but is derived from a
processor model in the MIMOLA hardware description
language. In this way, a closer link to ECAD environ-
ments is provided. Our retargetable compiler system
Record uses a BDD-based technique [9] for extracting
the instruction set from this processor model. Tree cov-
ering also includes application of transformations (e.g.
algebraic rules), which are however beyond the scope of
this paper.

In order to enable selection of complex instructions
in phase 2, each subtree covered by one RTi is collapsed
to a supernode labelled with M (RTi), of which one I 2
M (RTi) can be selected later. For instance, suppose a
processor with an RT set

RTS = fRT1; RT2; RT3; RT4g

and an instruction set

IS = fI1; I2; I3; I4; I5; I6g

where

I1 = fRT1g; I2 = fRT2g; I3 = fRT3g
I4 = fRT4g; I5 = fRT2; RT3g; I6 = fRT2; RT4g

Fig. 4 shows a covered expression tree (a) and the re-
sulting tree with labelled supernodes (b). While in
phase 1 neighboring subtrees are only considered apart
from each other, phase 2 uses a global view of the tree
in order to assign supernodes to real (possibly complex)
instructions.

3.2 Phase 2: Composition of RTs

According to [4] there exists a criterion (RTG criterion)
under which an optimal schedule can be derived from a
previously covered tree in linear runtime by selecting an
appropriate tree evaluation order. For processors ful-
�lling that criterion, super
uous spill instructions can
always be avoided by adding additional resource depen-
dency edges to the tree. After that, scheduling the tree
basically requires topological sorting. Optimal sched-
ules are obtained only for expression trees which do not
contain potentially parallel operations, i.e. those trees,
for which complex instructions are useless.

In fact, the problem of optimal scheduling becomes
much more di�cult for arbitrary trees, where the
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Figure 4: a) Expression tree covered with RTs, b) corre-
sponding tree with labelled supernodes and its covering
by (complex) instructions

scheduling problem turns into a compaction problem:
The dependency relations induced by the tree edges
have to be obeyed, and two nodes with labels

M (RTj) = fIj1; : : : ; Ijng; M (RTk) = fIk1; : : : ; Ikmg

may only be parallelized if there exist a corresponding
complex instruction, i.e.:

M (RTj) \M (RTk) 6= ;

Under the assumption that a spill-free schedule exists,
and that appropriate resource dependency edges have
been added to the tree, this is obviously equivalent to
resource-constrained scheduling, known to be NP-hard.
However, good exploitation of ILP demands for an ex-
act solution, i.e. an optimal selection of instructions has
to be made, which minimizes the total code length. Ex-
act scheduling yields the following optimal schedule for
the above example, which makes use of two complex
instructions: (dashed ellipses in �g. 4 b)

(1) I1 = fRT1g
(2) I5 = fRT2; RT3g
(3) I1 = fRT1g
(4) I6 = fRT2; RT4g
(5) I1 = fRT1g

While most previous compaction algorithms rely on
heuristics, Timmer [10] recently presented a technique
that performs exact code compaction very e�ciently us-
ing a branch-and-bound search in combination with an
a-priori reduction of the search space. This technique
can be used, whenever each single RT is also a valid
instruction, i.e. in our formulation

8RTi 2 RTS 9Ik 2 IS : Ik = fRTig

which is often the case. Furthermore, con
icts be-
tween RTs must be modelled statically before schedul-
ing, which requires for arbitrary RTs RTi; RTj; RTk 2
RTS:

8I; I0 2 IS :

I 2M (RTi) \M (RTj) ^ I0 2M (RTi) \M (RTk)

) 9I00 2 IS : fRTi; RTj; RTkg � I00

i.e. whether or not two RTs can be parallelized must
not depend on selection of a certain complex instruc-
tion. Unfortunately, this condition does not apply to
arbitrary cases, restricting Timmer's technique to code
compaction for purely horizontal instruction formats.
In case of encoded instruction formats, more versatile
methods are required. As an example, consider three
RTs on the TMS320C25:

(1) T register := memory value (load TR)
(2) ACCU := ACCU + PR (accumulate)
(3) PR := TR * memory value (multiply)

With respect to these RTs, the following membership
relations hold for the complex TMS320C25 instructions
LTA and MPYA:

LTA 2M (accumulate) \M (load TR)

MPYA 2M (accumulate) \M (multiply)

However, there exists no instruction I 2 IS, for which

faccumulate; load TR;multiplyg � I

for two di�erent memory values, so that static con
ict
modelling in advance is impossible for this processor.

Therefore, our approach is based on more general
de�nition of the compaction problem by means of Inte-
ger Programming (IP), which requires exponential run-
time in the worst case, but exactly solves the schedul-
ing problem for arbitrary cases: It neither requires that
each RT is a valid instruction on its own, nor that all
RT con
icts can be modelled statically before schedul-
ing. The details of the IP model itself are subject of
another paper [11]. Given a tree with labelled super-
nodes as in �g. 4 b), it yields the optimal assignment
of RTs to instructions, i.e. for each supernode labelled
with possible instructions

M (RTj) = fIj1; : : : ; Ijnjg

exactly one Ijk 2 M (RTj) is selected, such that the
total schedule length is minimized. Code compaction
including complex instructions can be regarded as a
generalization of the classical compaction problem, due
to the following reasons: Firstly, compaction in pres-
ence of complex instructions necessarily must employ
a mechanism for version shu�ing, i.e. for each RT
a set of alternative binary encodings must be main-
tained, from which the most appropriate one is selected
for each control step. Some classical compaction algo-
rithms do include version shu�ing [5], but do not take
into account possible side e�ects: On the TMS320C25,
for instance, both the MPY (multiply) and MPYA
(multiply-accumulate) instructions represent are valid
encodings versions for a multiplication. However, in
case that code for a multiplication is to be generated,



but no accumulate operation is ready to be scheduled in
parallel, the compaction mechanism must ensure, that
MPY is selected rather than MPYA. Otherwise, the
accumulator register, possibly containing a live value,
would be overwritten as a side e�ect. Nowak's MSSQ
code generator [12] uses the concept of "no-operations"
(NOPs) in order to avoid undesired side e�ects dur-
ing compaction. While other approaches assume that
appropriate NOPs are implicit in the binary encoding
of each instruction, MSSQ explicitly packs NOPs into
each control step. NOPs ensure that unused sequen-
tial components (registers and memories) retain their
state during one control step. MSSQ however performs
heuristic packing of NOPs as a postpass phase, so that
decisions concerning version selection are never revised.
As a consequence, code compaction in MSSQ might fail,
because an undesired side e�ect cannot be avoided, al-
though a solution exists. In contrast, our IP-based
technique permits to revise compaction decisions at any
point in time, so that optimal solutions are guaranteed
to be found.

It should be noted, that although our approach pro-
vides a close coupling of instruction selection and com-
paction, and each of both phases is solved optimally,
the overall result is not necessarily globally optimal for
an expression tree. This is due to the fact, that instruc-
tion selection by tree covering cannot take into account
whether or not two RTs can be parallized by means
of a complex instruction. One can construct examples,
where optimal tree covering in terms of the smallest
number of RTs does not lead to the most compact code.

The next section discusses the practical application
of the two-phase instruction selection technique for the
TMS320C25 processor.

4 Experimental results

As a �rst example, consider the expression tree in �g.
5. Six TMS320C25 instruction patterns are necessary
for covering the tree:

LT: (T register := memory value)
MPY: (P register := T register * memory value)
PAC: (ACCU := P register)
APAC: (ACCU := ACCU + P register)
SPAC: (ACCU := ACCU - P register)
SACL: (memory cell := ACCU)

Code generation according to [4] leads to the sched-
ule of length 16 in �g. 6 a). Exploiting the complex
TMS320C25 instructions

LTP = fLT, PACg
LTA = fLT, APACg
MPYA = fMPY, APACg

however leads to the code of length 12 shown in �g. 6
b). Four pairs of instructions have been replaced by
one complex instruction each. In case of the MPYA
instruction, the execution order needed to be changed:
In order to enable exploitation of MPYA, operation

+

** +
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*

m5 m6
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-

m1 m2 m3 m4
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Figure 5: Expression tree with potential parallelism. m1
to m9 refer to values in memory.

LT m3 is scheduled before the originally preceeding
APAC operation.
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Figure 6: Generated code sequences for the expression
tree in �g. 5: a) without complex instructions, b) com-
pact code with complex instructions LTP, LTA, and
MPYA (tmp refers to a temporary cell in memory).

Further experiments also indicate that complex in-
structions should be exploited whenever very high code
quality must be ensured. Table 1 lists results for ex-
pression trees which have been extracted from DSP al-
gorithms. Columns 2 and 3 show the number of in-
structions generated by tree covering without consid-
eration of instruction-level parallelism (ILP), and the
number achieved by our approach, respectively. The
CPU seconds (measured on a SUN SparcStation 20,
Integer Programs solved with Optimization Subroutine
Library (OSL) V 1.2 from IBM) are given in column 4,
while column 5 shows the relative improvement. The
experiments demonstrate that up to one third of the in-
structions can be saved by optimal exploitation of avail-



exp. tree no ILP ILP CPU % gain

�g. 5 16 12 2 25
adaptive1 20 17 8 15
adaptive2 19 14 6 26
pidctrl 13 9 30 30
lattice2 18 17 35 5
�r12 33 24 4 27
equalize 39 27 3 31
dct 23 20 6 15
bassboost 31 23 18 25

Table 1: Code quality improvements by exploitation of
complex instructions

able parallelism after tree covering. Time for dynamic
programming was always less than 1 second and can be
neglected. Due to the usage of an IP solver for schedul-
ing, the CPU times are relatively high in some cases,
and are not proportional to the problem size. As men-
tioned in section 1, however, there may be good reasons
to spend more time for code optimization, whenever sig-
ni�cant improvements are the result. This is obviously
the case here. Beyond tree sizes of 40 however, the re-
quired runtime often exceeds the acceptable amount.
We therefore consider our technique to be complemen-
tary to heuristic compaction methods. Its main appli-
cation area can be identi�ed as code optimization for
very time-critical pieces of DSP algorithms, such as loop
bodies.

5 Conclusions and future work

It was shown that instruction selection in code gener-
ation for embedded processors is strongly a�ected by
the presence of instruction-level parallelism in form of
complex instructions. Complex instructions prohibit
one-phase optimal tree covering by dynamic program-
ming because they result in non-tree patterns. By par-
tially postponing the instruction selection phase to the
compaction phase, tree covers can be generated which
also exploit complex instructions. This is achieved
by a combination of dynamic programming and exact
code compaction. Examples for a popular DSP, the
TMS320C25, showed that this technique signi�cantly
improves earlier work in terms of code quality. To our
knowledge, this is the �rst time, that systematic ex-
ploitation of complex instructions is reported for that
processor.

Similar to the optimality criterion provided in [4],
deeper theoretical investigations are necessary to iden-
tify those processors, for which tree covering followed
by exact compaction actually leads to optimal code
in presence of complex instructions. Future work is
also necessary to combine the presented technique with
other compilation phases. Furthermore, as already in-

dicated by Timmer's results [10], we expect that much
of the time needed for compaction could be saved at
the expense of lower retargetability, when only certain
instruction formats need to be considered.
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