
1

Scheduling, Compaction and Binding in a Retargetable Code
Generator using Constraint Logic Programming

Ulrich Bieker, Steven Bashford

University of Dortmund, Dept. of Computer Science, 44221 Dortmund, Germany

email: bieker@ls12.informatik.uni-dortmund.de

Abstract - Code generation for embedded programmable processors is becoming increasingly
important. Many of these processors have irregular architectures and offer instruction-level paral-
lelism (e.g. DSPs). In order to generate code for a wide range of architectures, a code generator
should be retargetable. Most of the previous code generation approaches concentrate on the data-
path, not taking the peculiarities of the controller into account. The controller can have strange
address generation schemes and imposes restrictions on the amount of parallelism in the datapath.
In this paper we propose a new method to model all these restrictions and characteristics of the con-
troller uniformly, in order to perform scheduling, compaction and binding in a retargetable code
generator. For this, we exploit the programming paradigm of constraint logic programming (CLP).
CLP offers a general and uniform model for various constraints, performs consistency checks, and
integrates constraint solving techniques.

1. Introduction and related work
During the recent years, new research activities emerged in the area of code generation for embed-
ded systems [MaGo95]. However, compiler support for embedded processors like DSPs and
ASIPs still must be improved to develop high-quality code and to have a retargetable compiler for
different architectures. Such a retargetable compiler is very useful, e.g., in the context of hardware-
software codesign . A retargetable compiler is target independent and uses a description of the tar-
get architecture as input in order to generate code for a certain algorithm. Different approaches can
be classified by considering the three main target models which are used.

Most of the code generation approaches use an instruction set model of the processor [Faut95,
Hein93, BaHa81]. Instruction set models provide a high level of abstraction but lack in modelling
all details of the processors. Contrary approaches use structural models of the processor, e.g., a
complete register transfer structure [Nowa87]. Furthermore, mixed models are used, describing the
instruction set as well as certain details of the hardware structure [LPKS95, PLMS95]. We propose
to start with a structural model of the processor, in order to capture all specific details of the data-
path and the controller. An instruction set can be extracted from the structural description
[LeMa94, BiNe96].

The task of code generation can be roughly divided in the three following phases: code selection,
register allocation, scheduling and compaction. Code selection is a mapping of source language
statements to machine operations. Register allocation is a mapping between source program vari-
ables and intermediate results to machine registers. Scheduling and compaction determines a total
order of the instructions with respect to a) the parallelism of the target machine (e.g. in VLIW
architectures) and b) the existing dependencies between the instructions.

Early compaction techniques have been developed for microcoded machines. In [LDSM80,
DLSM81], the basic compaction techniques are described, e.g.linear analysis [DaTa76],critical
path[Rama74],branch and bound [YST74], and the class oflist scheduling techniques. The com-
paction methods rely on heuristics to reduce the search space of possible schedules with the aim of
pruning solutions representing no good results. List scheduling is the most popular local technique.

2

There exists a known bound on the time it takes to execute, the complexity is O(n2) [LDSM80].
List scheduling produces good results in the presence of adequate heuristics and is easy to imple-
ment. A detailed introduction to compaction methods, list scheduling, and a summary of heuristics
can be found in [Beat91].

A few classes of instruction scheduling techniques have evolved in the last years (see figure 1).
Many principles developed for compaction techniques can be found in these techniques. A disad-
vantage of local techniques is, that basic blocks generally offer a more limited degree of instruction
level parallelism. Therefore architectures that offer a high amount of parallelism (including deeply
pipelined machines) are not supported appropriatly. Recent research has succeeded in overcoming
the basic block boundaries. Three basic classes of global instruction scheduling techniques have
emerged in recent years.Trace scheduling [Fish81] is an extended list scheduling technique not
restricted to basic block boundaries and employs branching probabilities to select the most likely
execution path of a program. The selected path (trace) is then regarded as if it is a basic block. To
preserve program semantics when moving instructions across conditional jumps,compensation
code has to be inserted.Percolation scheduling also is a global scheduling technique based on four
semantic preserving program tranformation rules performed on the program flow graph (similar to
the control flow graph, but with nodes containing concurrent instructrions) [Nico85]. Percolation
scheduling reduces the generation of superfluous compensation code; code explotion is a major
draw back of trace scheduling.Region scheduling is a technique based on the program dependency
graph and allows movements of machine instructions over wider program regions than percolation
scheduling [GuSo90]. Region scheduling redistributes available parallelism, such that machine
resources are fully utilized. This is also achieved by applying semantic preserving transformation
rules on the program dependence graph. Region scheduling can also be used for coarse grain
scheduling on source code level.

The basic issues of investigations of the techniques and their superimposed and enhanced
approaches are:

1. Improvements in effective support of instruction level parallelism. Avoid the generation
of superfluous compensation code.

2. Taking resource constraints into account is becoming of much interest. E.g., percolation
scheduling assumes unbounded resources. Many efforts are made to integrate the con-
sideration of a restricted number of machine resources [EnNi89, MoEb92, NoNi92]
(c.f. Global Resource Constraint Scheduling (GRiP)).

3. Consideration of over-, and under- utilized regions of a program with respect to the
underlying target architectures are made (e.g. Region Scheduling, Resource Spacling
[GuSo90, BGS95]).

4. Integration of transformations rules that allow the movement of operations accross large
program regions (Trailblaizing Percolation Scheduling (TiPS) [NoNi93]).

5. Phase coupling with code selection (Mutation Scheduling).

6. Integration of scheduling accross loops (e.g. TiPS, Software pipelining).

Except for region scheduling, the basic scheduling techniques can only handle acyclic code. In
region scheduling, loops are compacted by unrolling its body. This approach can be very inefficient
with regards to code space. Therefore, another class of scheduling techniques based onsoftware
pipelining has been developed. Hereby, a new iteration of the loop is started before the preceeding
iteration has completed. Extended versions based on percolation scheduling and region scheduling
have been developed to incorporate software pipelining (e.g.perfect pipelining [AiNi88],
enhanced pipelining percolation scheduling [EbNa89], andenhanced region scheduling [AJL92]).

The approaches mentioned above do not consider all restrictions of the controller and irregular

3

architectures, e.g. occuring in DSP and ASIP like architectures. Encoding conflicts and restricted
interconnections between machine resources have to be taken into account; retargeting, and the
generation of very high quality code are very important aspects. New approaches have started to
incorporate these aspects [LeMa95b, LPKS95, TSMJ95, Hein93]. However, they do not model all
kinds of restrictions.

2. Contributions of this paper
Because of the mutual dependency of the three code generation phases, different techniques of
phase coupling [Vegd82, NND94] has become increasingly important. Therefore, we propose a
solution for scheduling, compaction and binding which is able to cooperate with code selection and
register allocation. We present a formalism which is flexible and powerful enough to handle a)
complicated address restrictions (even the ones described in [BaHa81]), b) all (encoding) restric-
tions and characteristics imposed by the controller, and c) dependencies between the instructions
and the labels in order to consider unconditional and conditional jumps. The formalism is based on
various types of constraints and is easily solved by a CLP system. Furthermore, the approach is
incremental, i.e., the constraints can be specified at any time during code selection and allocation.
These constraints are delayed until the final phase determines a schedule, but a CLP system per-
forms local consistency checks in order to ensure the satisfiability of the set of constraints. The for-
malism is based on predicates and rules, which can directly be executed as a CLP program.

3. CLP: A brief overview
The constraint programming paradigm [MTP94] and especially constraint logic programming

Local List Scheduling

Trace Scheduling

Percolation Scheduling (PS) Region Scheduling

Enhanced Region Scheduling

Local Compaction

Branch and Bound

Linear Analysis

Critical Path

global extension

GRiP TiPS (Trailblaizing PS)

Mutation Scheduling (MS)

(Global-Resource

Enhanced Pipelined PS Perfect Pipelining

Constraint Scheduling)

Unifiable-Ops

can be integrated

improvements
based on elementary
transformation rules

Software Pipelining

Loop-Handling-
Transformations

figure 1

4

[BeCo93] is becoming increasingly important. CLP is a conservative extension of Prolog, which
allows handling constraints over various domains. We use the CLP-system ECLiPSe [ECRC95],
in which all kinds of constraints can be expressed.

Definition I: Constraint
Let V = {X1, ..., Xn} be a finite set of variables, which take their values from their finite domains
D1, ..., Dn. A constraint c(Xi1, ..., Xik) between k variables from V is a subset of the Cartesian
Product Di1 × ... × Dik.

CLP-systems come with built-in mechansims for solving, simplifying, and handling constraint
sets. Satisfiability checkers support Boolean constraints and IP-solvers support linear constraints
(integer or rational domain and constraints over linear terms). A CLP-system supports constraints
which cannot be represented by integer programming. Prolog clauses are bidirectional and back-
tracking is already integrated. Extending pure Prolog with domains and constraints increases the
efficiency of logic programs dramatically. Furthermore, CLP is well suited to solve problems con-
currently by specifying the subproblems with constraints and solve them in one step instead of
solving subproblems sequentially (e.g., the phase coupling problem in code generation
[MaGo95]).

4. A CLP model for scheduling, compaction and binding
A formal description of the scheduling, compaction and binding phase follows. Since a real life
example would exceed the size of this paper, we use simple examples to illustrate the formalism.
First a difference between absolute code and relocatable code is made. Thereafter we define what
kind of constraints are allowed to represent dependencies between instructions and labels. Next we
define necessary preconditions for merging instructions, and how to merge instructions. After-
wards a set of rules is defined, describing the successive process from relocatable code to absolute
code. A normal form of a relocatable program is reached, if the domain of each label is constrained
to a single natural number. The last step is to replace all labels of a relocatable program by such
natural numbers (constants).

We assume that a set of relocatable instructions has been generated by code selection and resource
allocation. Control signals originating from the instruction memory control the datapath and the
next instruction of the controller. A control signal is a part of the instruction word and activates an
indivisible operation. An instruction is a set of operations which can be executed in parallel. Let
AM := [Start, End] be theaddress rangeof the instruction memory and n its width. Alabel Li is
an integer domain variable with Start≤ Li ≤ End. Aninstruction is a bit stringI ∈ {0,1,X} n. The
value X denotes a “don’t care”. IMn := { In | In ∈ {0,1,X} n } with |IMn| ≤ End - Start + 1 is aset
of instructions. APn ⊂ AM × IMn is anabsolute program. A tuple (A, In) ∈ APn represents an
absolute addressA and the corresponding unique instruction In.

Definition II: Relocatable instruction, set of relocatable instructions
Let V be a set of Boolean variables. Arelocatable instruction is a tuple RIi = (Li, RIn,i). Li is a
label and RIn,i ∈ {{0, 1, X} ∪ V} n. RIM n = {(L1, RIn,1, ..., (Lm,RIn,m)} is a set of relocatable
instructions.

The set V is used to represent dependencies between the instruction words and the labels. Jump
addresses are often coded as bit strings as part of the instruction. A 2-ary predicatebin2dec/2
expresses the relationship between a bit string (binary value:Bin) and a label (decimal value:Dec).
The predicate is bidirectional and computes binary values to decimal values and vice versa. A
binary value is represented as a listBin. bin2dec/2 behaves like a constraint, if a)Bin is not a
ground term andDec is a variable or b) ifBin is a variable. Examples:

bin2dec([0,1,1], Label) yields Label = 3;

5

bin2dec([X1, X2, X3], 7) yields X1 = X2 = X3 = 1;

bin2dec([X1, X2, X3, X4], Label) is delayed, i.e., the predicate behaves as a constraint.

Assumed, the address range for jumps is restricted to even addresses, imposed by the controller.
Such a restriction can be handled easily by setting the lowest bit of the binary address to 0: The
constraint bin2dec([X1, X2, X3, 0], Label) denotes the relationship between a binary (even) address
[X1, X2, X3, 0] and a decimal label.

Definition III: Relocatable Program
Let L be a set of labels and V be a set of Boolean variables. Arelocatable program is a pair RPn
= (RIMn, C). RIMn is a set of relocatable instructions and C is a set of linear constraints over L∪V.

C is used to express all dependencies between the partially ordered set of relocatable instructions
(e.g., as equations or unequations). Let (Li, RIn,i) and (Lj, RIn,j) be two relocatable instructions:

1. (Li, RIn,i) is data-dependent on (Lj, RIn,j) → Lj < Li

2. (Li, RIn,i) is data-anti-dependent on (Lj, RIn,j) → Lj ≤ Li

3. (Li, RIn,i) is output-dependent on (Lj, RIn,j) → Lj < Li

Beyond these traditionally considered dependencies [DLSM81], several other restrictions and
dependencies are represented as follows:

4. (Li, RIn,i) must be executed in parallel to (Lj, RIn,j) → Lj = Li.

5. An unconditional jump (Li, RIn,i) to an absolute address A is expressed by Li = A.

6. An unconditional relative jump (Li, RIn,i) to (Lj, RIn,j) over the relative distance D is
expressed by a linear constraint Lj = Li + D.

7. If a jump addresses A is coded within a substringBin of the instruction word, the rela-
tionship is expressed as constraint bin2dec(Bin, A).

Example: Let L = {L1, L2, L3, L4, L5} be a set of labels and V = {X1,X2,X3} be a set of Boolean
variables. RP10 is a relocatable program:

RP10= ({ (L 1, (1,0,X,1,1,0,0,1,1,X)),

(L2, (1,X,X,0,X,0,X,1,0,X)),

(L3, (1,X,X,0,X1,X2,X3,1,0,1)),

(L4, (0,X,X,0,1,0,X,1,1,0)),

(L5, (0,0,X,0,1,0,0,X,1,X))},

{L1 + 1 = L2, L1 < L2, L4 ≤ L5 , bin2dec([X1,X2,X3],L1), X3 = 1})
RI2 is data-dependent on RI1; RI3 is a jump instruction where the jump address[X1,X2,X3] is
restricted to odd addresses by X3 = 1 and L1 is the corresponding decimal address; RI5 is data-anti-
dependent on RI4; RI2 must be an immediate successor of RI1. Sets of linear constraints which are
not simplified are allowed and possible (e.g.,L1 + 1 = L2, L1 < L2).

In opposite to most previous code generators our approach is able tomerge basic block bounda-
ries. In certain cases it is semantically allowed, to execute a conditional jump and the first instruc-
tion of the next basic block in parallel. This is expressed by a constraint Li ≤ Lj, if (Li, RIn,i) is a
conditional jump which may be executed with (Lj, RIn,j) in parallel. Two instructions are candi-
dates to be executed in parallel if they are compatible, i.e., no resource conflicts occur. By using a
structural model of the processor including a detailed structural description of the controller, it is
possible to map resource conflicts to instruction word conflicts.

Definition IV: compatible/2
Let RIi = (Li, RIn,i) and RIj = (Lj, RIn,j) be relocatable instructions with RIn,i, RIn,j ∈ {{0,1,X} ∪

6

V} n. Let P(In, k) be the projection of a bit-string on the k-th bit (high bit on the left of a bit string,
low-bit on the right, the rightmost bit position is 0). The predicatecompatible(RIi, RIj) is true :⇔

i ≠ j ∧ ∀k, 0 ≤ k ≤ n-1:

(P(RIn,i,k) = P(RIn,j,k)) ∨
(P(RIn,i,k) = X) ∨ (P(RIn,j,k) = X) ∨

(P(RIn,i,k) ∈ V ∧ P(RIn,j,k) ∉ V) ∨ (P(RIn,j,k) ∈ V ∧ P(RIn,i,k) ∉ V)

Example: Consider the previous example program RP10: compatible(RI2, RI3) is true; compati-
ble(RI3, RI4) is true; compatible(RI2, RI4) is false.

Above definition considers the fact, that two jump instructions cannot be compacted: at any bit
position k at most one relocatable instruction may have a Boolean variable from V. Next, we define
a function to compact two compatible instructions.

Definition V: compact: RIn × RIn → RIn × CB
Let RIi = (Li, RIn,i) and RIj = (Lj, RIn,j) be relocatable instructions and compatible(RIi, RIj) is
true. The functioncompact(RIn,i, RIn,j) = (RIn,c, CB) is defined as follows:

CB = {A = b | A∈V, b ∈ {0,1}, 0 ≤ k ≤ n-1,

((P(RIn,i,k) = A ∧ P(RIn,j,k) = b)∨ (P(RIn,i,k) = b∧ P(RIn,j,k) = A))}

CB is a set of bindings of Boolean variables, expressed as constraints. In a Prolog-system the func-
tion compact is simply an unification of two relocatable instructions. If the unification step fails
backtracking is performed.

In the following we define rules and the preconditions which must be satisfied to apply a rule.

Definition VI: compaction rule RPn,1 ->c RPn,c
Let RPn = (RIMn,1, C), RP’n = (RIM’n, Cc) be relocatable programs, RIi = (Li, RIn,i) ∈ RPn, RIj =
(Lj, RIn,j) ∈ RPn and compatible(RIi,RIj). Then thecompaction rule RPn ->c RP’n can be
applied:⇔

1. (RI’n ,CB) := compact(RIn,i ,RIn,j)

2. RIM’n := RIMn\ {(L i, RIn,i), (Lj, RIn,j)} ∪ {(L i, RIn,c)}

3. Cc := C∪ {L i = Lj} ∪ CB

4. Cc is a consistent set of linear constraints

Example: RI2 and RI3 of RP10 are compatible, i.e., we can apply the function compact. In a first
step, RP10can be replaced by RP’10:

RP’10= ({ (L 1, (1,0,X,1,1,0,0,1,1,X)),

(L2, (1,X,X,0,0,0,1,1,0,1)),

(L4, (0,X,X,0,1,0,X,1,1,0)),

(L5, (0,0,X,0,1,0,0,X,1,X))},

k 0 k n 1–≤ ≤(),∀ :P RIn c, k,()

0 ⇔ P RIn i, k,() 0= P RIn j, k,() 0=∨

1 ⇔ P RIn i, k,() 1= P RIn j, k,() 1=∨

A V∈ ⇔ P RIn i, k,() A= P RIn j, k,() X=∧

A V∈ ⇔ P RIn j, k,() A= P RIn i, k,()∧ X=

X otherwise











=

7

{L1+1 = L2, L1 < L2, L4 ≤ L5 , bin2dec([X1,X2,X3],L1) , X1 = 0, X2 =0 , X3 = 1, L2 = L3 })
The jump address[X1,X2,X3] has been bound to [0, 0, 1], i.e., L1 = 1, L2 = 2. RI4 and RI5 may be
compacted in the next step. In a CLP-system the set of constraints is automatically simplified, e.g.,
by eliminating constraints in which all arguments are instantiated. The compaction rule reduces the
set of relocatable instructions and the domain of the labels step by step.

Definition VII: selectVar/2, selectValue/2
Let V = {X1, ..., Xm} be a finite set of variables with associated finite domains D1, ..., Dm. The
predicateselectVar(V, Xi) is true :⇔ Xi ∈ V ∧ |Di| > 1 (1≤ i ≤ m). The predicateselectValue(Xi,
Vi) is true :⇔ Vi ∈ Di.

This simple definition is very useful in a CLP-system. ByselectVar/2 we can select a variable Xi
to be instantiated withselectValue/2 by a value Vi out of its domain Di. If the domain of a variable
has only one element (|Di| = 1), the variable is automatically bound to this value. Several heuristics
can be integrated: E.g., the most constrained variable or the variable with the smallest/largest
domain can be selected. This search process in finite domains is calledlabelling.

Let S1 -> S2 be a rule which rewrites a state S1 by a state S2. S1 ->
* Sn denotes a chain of applica-

tions of this rule (->* denotes the transitive and reflexive closure). Usually a relocatable program
RPn has several successor programs RP’n, which can be derived from the compaction rule. How-
ever, the rules are not confluent. Therefore, the backtracking mechanism of a CLP-system is
exploited. After applying the compaction rule several times, the relocatable program cannot be
compacted any more. Now a labelling rule has to be applied.

Definition VIII: labelling rule RP n,c ->l RPn,l
Let RPn, RPn,t, RPn,c = (RIMn,c,Cc) and RPn,l = (RIMn,l, Cl) be relocatable programs. RPn ->c

*

RPn,c is a chain of applications of the compaction rule and the following holds:¬∃ RPn,t: RPn,c -
>c RPn,t. LV := L ∪ V is the union of the labels and the Boolean variables of RPn,c.
The labelling rule RPn,c ->l RPn,l can be applied :⇔

1. RIMn,l := RIMn,c

2. selectVar(LV, Xi)

3. selectValue(Xi, Vi)

4. Cl := Cc ∪ {X i = Vi}

5. Cl is a consistent set of linear constraints

If the labelling rule is applied, it selects for exactly one domain variable a value out of the domain.
A chain of applications of the labelling rule selects values for all variables. Afterwards, the result-
ing program has to be syntactically transformed into an absolute program. This is done by the last
rule:

Definition IX: bind: RPn → APn
RPn, RPn,t and RPn,l = (RIMn,l, Cl) are relocatable programs and APn is an absolute program. L is
the set of labels of RPn,l. RPn ->l

* RPn,l is a chain of applications of the of the labelling rule, such
that it cannot be applied again to RPn,l: ¬∃ RPn,t: RPn,l ->l RPn,t. The functionbind(RPn,l) = APn
is defined as follows: APn := { (Vi, RIn,i) | (Li, RIn,i) ∈ RIMn,l ∧ ∃Ci ∈ Cl: Li = Vi) }

Example: The resulting semantically equivalent absolute program for RP10 is:

AP10= ({ (1, (1,0,X,1,1,0,0,1,1,X)),

(2, (1,X,X,0,0,0,1,1,0,1)),

(3, (0,0,X,0,1,0,0,1,1,0)) }

Labels L4 and L5 have been bound to address 3 in order to take the autoincrement operation of the

8

program counter into account (if the instruction is not a conditional or unconditional jump).

The termination of scheduling, compaction and binding is guaranteed, because the above defined
rules derives a more and more restrictive set of constraints. It is not guaranteed, that the above pre-
sented approach generates an optimal solution, due to the NP-hardness of optimal code compac-
tion. The set of rules have quadratical run time, because at most all pairs of relocatable instructions
can be applied by the compaction rule. The formalism can be easily extended to get an optimal
solution. With a minimum of programming effort, we could use a ECLiPSe built-in predicate to
search for an optimal solution for an objective function (number of code lines). Furthermore, it is
possible to perform an optional compaction, i.e., to perform just scheduling and binding without
exploiting the parallelism of the target architecture. This is possible by specifying simply an addi-
tional constraintalldifferent(L) for the set of labels L. Hereby, it is requested that all labels have
different values. Such a constraint is an ECLiPSe built-in predicate.

5. Results
The presented formalism is implemented inRESTART [BiMa95, Biek95a, Biek95b] (retargetable
compilation ofself-test programs using constraint logic programming). RESTART has been suc-
cessfully used to compile self-test programs for various processors. However, the presented CLP
model is general enough to be integrated in any retargetable code generator. The complete sched-
uling, compaction and binding phase consists of about 350 lines of ECLiPSe code. Table 1
describes some example circuits: the general purpose microprocessors SIMPLECPU [BiNe96],
DEMOCPU [Biek95], MAC-1 [Tane90], REF [MIMO94] and manocpu [Mano93]; prips
[ABMN93] is a coprocessor with a RISC-like instruction set, which provides data types and
instructions supporting the execution of Prolog programs. The processor has to be described at the
register transfer (RT) level (MIMOLA [MIMO94] or VHDL). The number of RTL components,
the width of the datapath, the width of the microinstruction controller, the number of registers, the
number of arithmetical logical units and the length of the hardware description in lines is given.

Table 2 shows results for the total retargetable code generation process and the scheduling, com-
paction and binding phase. The number of generated (micro-) instructions (#I), CPU time in sec-
onds for the total retargetable code generation process (sec. total), time for scheduling, compaction
and binding in seconds (scb.time) and the ratio #I/scb.time is given. All times are measured on a
SPARC 20 workstation. Different (self-test) programs have been compiled. Of course, we can not
expect a retargetable compiler to be as fast as a usual (target dependent) compiler.

6. Conclusions
We presented a flexible and powerful formalism for scheduling, compaction and binding which is

Table 1: Target architectures

processor #RT data path controller #registers #ALUs #HDL-lines

SIMPLECPU 10 4 20 16 1 275

DEMOCPU 11 4 18 16 1 273

MAC-1 14 16 32 18 2 380

REF 16 16 84 16 3 349

MANOCPU 21 16 50 9 1 531

PRIPS 50 32 83 37 8 1290

9

directly executable in a CLP-system. The incremental approach can be coupled with the other code
generation phases, namely code selection and resource allocation. It is intended to be used in a
retargetable code generator and is integrated in RESTART, a retargetable compiler for self-test pro-
grams. A CLP-system handles a set of constraints concurrently to the execution of other tasks and
inconsistencies can be immediately detected in order to find the best backtracking entry point. A
good strategy to avoid wrong decisions during a search process is to delay the decisions as long as
possible. This is done by constraints and the CLP-inherent delay mechanism (coroutining). Fur-
thermore, the presented formalism is capable of handling different controller pecularities, restric-
tions and address generation schemes.

7. References
[ABMN93] C. Albrecht, S. Bashford, P. Marwedel, A. Neumann, W. Schenk. The design of the PRIPS microprocessor,

4th EUROCHIP-Workshop on VLSI Training, Toledo, 1993.
[AiNi88] A. Aiken, A. Nicolau. Perfect Pipelining: A new Loop Parallelization Technique. European Symposium

on Programming, Springer LNCS 300, 1988.
[AJLS92] V.H. Allan, J. Janardhan, R.M. Lee and M. Srinivas. Enhanced Region Scheduling on a Program Depen-

dence Graph. MICRO-25, pp. 72-80, 1992.
[BaHa81] T. Baba, H. Hagiwara. The MPG System: A Machine-Independent Efficient Microprogram Generator.

IEEE Trans. on Computers, Vol. C-30, pp. 373 - 395, June 1981.
[Beat91] S.J. Beaty. Instruction Scheduling Using Genetic Algorithms. Ph.D. Thesis, Department of Mechanical

Engineering, Colorado State University, Fort Collins, Colorado, 1991.
[BeCo93] F. Benhamou, A. Colmerauer (eds.). Constraint Logic Programming. Selected Research. MIT Press, Cam-

bridge, London, 1993.
[BGS95] D.A. Berson, R. Gupta, M.L. Soffa. GURRR: A Global Unified Resource Requirements Representation.

SIGPLAN Notices, Proceedings of the ACM SIGPLAN on Intermediate Representations IR’95, Vol.
30(4), pp. 23-34, San Francisco, California USA, April 1995, http://www.cs.pitt.edu/~berson/papers.html.

[Biek95a] U. Bieker. Retargetable Compilation of Self-Test Programs Using Constraint Logic Programming. In
[MaGo95], May 1995.

[Biek95b] U. Bieker. Retargierbare Compilierung von Selbsttestprogrammen digitaler Prozessoren mittels Con-
straint-logischer Programmierung. Dissertation, Shaker Verlag, Aachen, ISBN 3-8265-10925, December
1995.

[BiMa95] U. Bieker, P. Marwedel. Retargetable Self-Test Program Generation Using Constraint Logic Pro-
gramming. 32nd Design Automation Conference, pp. 605 - 611, San Francisco, June 1995.

[BiNe96] U. Bieker, A. Neumann. Using Logic Programming and Coroutining for electronic CAD. Journal of Logic
Programming, February 1996.

[DaTa76] S. Dasgupta, J. Tartar. The Identification of Maximal Parallelism in Straight-line Microcode. IEEE Tran-
sactions on Computers, Vol. C-25(10), pp. 986-992, October 1976.

[DLSM81] S. Davidson, D. Landskov, B. Shriver, P. Mallett. Some Experiments in Local Microcode Compaction for
Horizontal Machines. IEEE Trans. on Computers, Vol. C-30, pp. 460 - 477, July 1981.

Table 2: Results: Retargetable code generation; scheduling, compaction and binding

processor #I sec. total scb.time #I/scb.time

SIMPLECPU 54 4.7 1.53 35.3

DEMOCPU 31 2.6 0.55 56.3

MAC-1 78 57.9 6.23 12.5

REF 108 35.7 9.53 11.3

MANOCPU 122 43 10.23 11.9

PRIPS 35 69.3 4.8 7.3

10

[EbNa89] K. Ebcioglu and T. Nakatani. A new Compilation Technique for Parallelizing Loops with Unpredictable
Branches. 2nd Workshop on Programming Languages and Compilers for Parallel Computing, 1989.

[EbNi89] K. Ebcioglu, A. Nicolau. A Global Resource Constrained Parallelization Technique.Proceedings of the
2nd International Conference on Supercomputing, pp. 154-163, 1989.

[ECRC95] ECLIPSE 3.5 User Manual. ECRC Common Logic Programming System. ECRC GmbH, Arabellastr. 17,
München, 1995.

[Faut95] A. Fauth. Beyond Tool-Specific Machine Descriptions. In [MaGo95], 1995.
[Fish81] J.A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Transactions on

Computers, Vol. C-30(7), pp. 478-490, July, 1981.
[Gasp89] F. Gasperoni. Compilation Techniques for VLIW Architectures. Ph.D. Thesis, Courant Institute of Mathe-

mathical Science, New York University, March, 1998.
[GuSo90] R. Gupta, M.L. Soffa. Region Scheduling: An Aproach for Detecting and Redistributing Parallelism. IEEE

Trans. on Software Engineering, Vol. 16(4), pp. 421-431, April, 1990.
[Hein93] W. Heinrich. Formal Description of Parallel Computer Architectures as a Basis of Optimizing Code Gene-

ration. Ph.D. Thesis, Institut für Informatik, TU München, 1993.
[LDSM80] D. Landskov, S. Davidson, B.D. Shriver, P.W. Mallet. Local Microcode Compaction Techniques. ACM

Computing Surveys, Vol. 12(3), pp. 261-294, 1980.
[LeMa94] R. Leupers, M. Marwedel. Instruction Set Extraction from Programmable Structures. EURO-DAC,

Grenoble, pp. 156 - 161, September 1994.
[LeMa95] R. Leupers, P. Marwedel.Time-constrained Code Compaction for DSPs. Int. Symp. on System Synthesis

(ISSS), September 1995.
[LPKS95] D. Lanneer, J. V. Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, G. Goossens. CHESS: Retargetable

Code Generation for Embedded DSP Processors. In [MaGo95], 1995.
[MaGo95] P. Marwedel, G. Goossens (eds.). Code Generation for Embedded Processors, Kluwer Academic

Publishers, London, 1995.
[Mano93] M. Morris Mano. Computer System Architecture. Prentice-Hall International, Inc., Third Edition, 1993.
[MIMO94] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, D. Voggenauer. The

MIMOLA Language - Version 4.1. Technical Report, Computer Science Dept., University of Dortmund,
September 1994.

[MoEb92] S. Moon, K. Ebcioglu. An Efficient Resource Constraint Global Scheduling Technique for Superscalar and
VLIW Processors . MICRO-25, pp. 55-71, December, 1992.

[MTP94] B. Mayoh, E. Tyugu, J. Penjam (eds.). Constraint Programming, Springer, Berlin, 1994.
[Nico85] A. Nicolau. Percolation Scheduling: A Parallel Compilation Technique. Ph.D. Thesis, Department of

Computer Science, Cornell University,Ithaca, New York, May, 1985.
[NoNi92] S. Novack, A. Nicolau. An Efficient Global Resource Constrained Technique for Exploiting Instruction

Level Parallelism. Proceedings of the International Conference on Parallel Processing. pp. II 297-301,
August 1992.

NoNi93] S. Novack, A. Nicolau. Trailblaizing: A Hierarchical Approach to Percolation Scheduling. Irvine Univer-
sity, Technical Repoert TR-92-56, August 1993.

[Nowa87] L. Nowak. Graph Based Retargetable Microcode Compilation in the MIMOLA Design System. Proc. of
the 20th An. Workshop on Microprogramming (MICRO-20), pp. 126 - 132, 1987.

[NND94] S. Novack, A. Nicolau, N. Dutt. A Unified Code Generation Approach using Mutation Scheduling. Tech-
nical Report 94-35, University of California, Irvine, 1994.

[PLMS95] P. G. Paulin, C. Liem, T. C. May, S. Sutarwala. Flexware: A Flexible Firmware Development Environment
for Embedded Systems. In [MaGo95], 1995.

[Rama74] C.V. Ramamoorthy, M. Tsuchiya. A High-Level Language for Horizontal Microprogramming. IEEE Tran-
sactions on Computers, Vol. C-23(8), pp. 791-801, August 1974.

[Tane90] A. Tanenbaum. Structured Computer Organization. 3. Edition. Prentice-Hall, Inc., 1990.
[TSMJ95] A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, J. A. G. Jess. Conflict Modelling and Instruction Sche-

duling in Code Generation for In-House DSP Cores. Proceedings of the 32nd Design Automation Confe-
rence, pp. 593 - 598, San Francisco, June 1995.

[Vegd82] S. R. Vegdahl. Phase Coupling and Constant Generation in an Optimizing Microcode Compiler. MICRO-
15, pp. 125 - 133, Palo Alto, October 1982.

[YST74] S.S. Yau, A.C. Schowe, M. Tsuchhiya. On Storage Optimization of Horizontal Microprograms, MICRO-
7, pp. 98-106, 1974.

