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Abstract{ This paper presents DSP code optimization
techniques, which originate from dedicated memory ad-
dress generation hardware. We de�ne a generic model
of DSP address generation units. Based on this model,
we present e�cient heuristics for computing memory
layouts for program variables, which optimize utiliza-
tion of parallel address generation units. Improvements
and generalizations of previous work are described, and
the e�cacy of the proposed algorithms is demonstrated
through experimental evaluation.

1 Introduction & related work
Design of embedded VLSI systems in form of heteroge-
neous single-chip architectures, comprising both hard-
ware and software components, raises new demands on
electronic CAD tools. Among the most challenging
ones is code generation for embedded DSPs: Limited
area for on-chip program ROMs as well as real-time
constraints demand for generation of extremely com-
pact code, while high compilation speed is no longer
a primary goal. However, current DSP compiler tech-
nology is still too immature to replace assembly-level
programming. Code quality overheads up to several
hundred percent compared to hand-crafted code have
been reported [1], which are unacceptable in most cases.
It has been concluded, that development of more e�-
cient DSP compilers demands for extension of classical
compiler technology by novel and thorough optimiza-
tion techniques [2], in order to eliminate the current
bottleneck in DSP software development.
A new means of advanced code optimization is ad-

dress assignment, i.e. optimization of memory layout for
program variables. Address assignment has hardly been
an issue in classical compilers. In fact, most general-
purpose compilers perform "naive" address assignment,
i.e. program variables are mapped to memory cells ac-
cording to the lexicographic or declaration order of
identi�ers. DSPs provide dedicated address generation
units (AGUs) for parallel next-address computations.
Address generation on AGUs does not employ datapath
resources, and thus leads to higher instruction-level par-
allelism. Essentially, this is achieved by auto-increment
capabilities of AGUs. However, high utilization of auto-
increment addressing demands for appropriate place-
ment of program variables in memory. When the ex-
act sequence of variable accesses is known after code
generation, address assignment can be performed as a
separate code optimization phase.
Address assignment for AGUs with a single address

register (AR) (the simple o�set assignment problem,
SOA) was �rst studied by Bartley [3] and Liao [4]. Liao
also proposed a generalization, which handles any �xed
number k of address registers (general o�set assignment

problem, GOA), but requires external parameters for
each problem instance. Complementary to [3], [4] is the
contribution by Liem [6], who describes methods for ef-
�cient address computation for array accesses, based on
strength reduction of array index computations. As in
[3],[4], in this paper we concentrate on address assign-
ment for basic blocks, and for scalar data, e.g. scalar
variables or spilled values. The organization of the pa-
per is as follows: In Section II, we examine address gen-
eration in DSPs, and we de�ne a generic AGU model,
which captures a subset of addressing capabilities of
many contemporary DSPs. Based on this model, we
describe e�ective address assignment algorithms: Sec-
tion III proposes a heuristic improvement of Liao's SOA
algorithm. In Section IV, an improved GOA algorithm
is presented, which also needs no external parameters.
Section V focuses on utilization of modify registers in
AGUs, and conclusions are given in Section VI.

2 Address generation in DSPs
Address generation hardware in DSPs di�ers from that
of standard processors. Usually, several address regis-
ters (ARs) are available, which can be updated in par-
allel to other machine operations, thereby introducing
no code size or speed overhead. On the other hand,
addressing may be quite restricted: In order to avoid
long combinational delay, many DSPs do not permit
indexing with an o�set, but only post-modi�cation, i.e.
additions or subtractions involving ARs take place only
at the end of a machine cycle.
Besides high code quality, also retargetability is a pri-

mary goal in DSP code generation [2], due to the grow-
ing diversity of DSPs in form of application-speci�c de-
signs (ASIPs). Therefore, we consider a generic AGU
architecture, which re
ects a subset of AGU capabil-
ities of many contemporary DSPs. Our AGU model
(�g. 1) is parameterized by the number k of address
registers (ARs) and the number m of modify registers
(MRs). In case of multiple memory banks we assume
separate AGUs for each bank. Typical AGU con�gura-
tions are k = 4;m = 4 (ADSP-210x), or k = 8;m = 1
(TMS320C2x). The ARs provide e�ective memory ad-
dresses, while MRs store integer modify values for AR
updates. AR and MR �les are indexed by designated
pointers, which select the current AR and MR for each
machine cycle. AR and MR pointer updates usually
does not contribute to code size. The AGU model per-
mits execution of the following primitive AGU opera-
tions in each machine cycle:

immediate AR load: The current AR is loaded with
an immediate value supplied by the instruction word.
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Fig. 1. Generic AGU model

immediate AR modify: An immediate value is
added to or subtracted from the current AR.
auto-increment/decrement: The constant 1 is
added to or subtracted from the current AR.
immediate MR load: The current MR is loaded with
an immediate value.
auto-modify: The contents of the current MR are
added to or subtracted from the current AR.

The optimization potential of address assignment is in-
duced by the cost metric for these operations. The
instruction encodings of immediate loads and modifys
tend to occupy a large portion of the total instruction-
word length. Therefore, these operations usually con-
sume an extra instruction word. In contrast, auto-
increment/decrement and auto-modify operations only
employ AGU resources, and can thus be executed in
parallel to other operations. Thus, we assign zero cost
to "auto" operations and unit cost to AGU operations
involving immediate values. The goal of address as-
signment is maximum usage of zero-cost AGU opera-
tions. In order to outline the e�ect of address assign-
ment, consider a basic block, in which the variable set
V = fa; b; c; dg is referenced in the sequence

S = (b; d; a; c; d; a; c; b; a; d; a; c; d)

Fig. 2 a) shows a naive memory layout, with variables
placed in lexicographic order, and the corresponding
sequence of AGU operations, assuming only one AR is
available. The total addressing cost is 9. This cost can
be reduced to 3, as shown in �g. 2 b). Using a bet-
ter variable permutation, most addresses can be gen-
erated by zero-cost operations. Modify value 2, which
has three occurrences in the sequence, can be assigned
to a modify register MR in order to achieve further cost
reduction. The next sections describe algorithms which
compute such cheap AGU operation sequences.

3 Simple o�set assignment
Given a variable set V and a variable access sequence
S of a basic block, simple o�set assignment (SOA) is
the problem of �nding a permutation

� : V ! f0; : : : ; jV j � 1g

of variables to memory addresses, which minimizes
the total addressing costs in presence of a single AR.
Though SOA is an over-simpli�ed problem, SOA algo-
rithms can be employed as subroutines for more general
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Fig. 2. Address assignment: a) naive memory layout, b) im-
proved layout, with usage of modify register MR. ++/{ {
denote auto-increment/decrement, +=/{= denote immedi-
ate and auto-modifys.
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problems. Liao [4] models SOA by an undirected, edge-
weighted access graph AG = (V;E). Nodes in AG cor-
respond to variables while edges represent the frequency
of access transitions between each pair of variables in
a given access sequence (�g. 3). Obviously, nodes con-
nected by heavy edges should be placed into consecutive
memory cells, in order to enable zero-cost addressing.
As shown in [4], SOA is equivalent to constructing a
maximum weighted path, touching each node in AG ex-
actly once. Since the variable pairs with the highest
transition frequencies have to be assigned to consecu-
tive addresses, traversing such a Hamiltonian path in-
duces an optimum address assignment. The cost of the
assignment is equal to the accumulated weight of AG
edges not contained in the path. Due to NP-hardness
of SOA, [4] describes a heuristic procedure, which re-
sembles Kruskal's maximum spanning tree algorithm
for graphs:

1) Sort the edges in E in descending order of weight,
and begin with an empty path P .
2) While P is not a Hamiltonian path: Select the next
valid edge e with highest weight, and add e to P . An
edge is valid, if it causes neither cycles nor trees in P .

The sorting procedure in step 1 does not prescribe or-
dering of edges with equal weights. Exploiting AG
information, we can heuristically break such ties, so
as to further reduce SOA costs: For an access graph
AG = (V;E;w), the tie-break function T : E ! N0

is de�ned by

T (e) =
X

e02E

w(e0); with e \ e0 6= ;

Intuitively, giving priority to edges with high T value
appears to be a good choice. However, the opposite is
true: A high T (e) value indicates high relative probabil-
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jV j jSj naive Liao % with T %
5 10 4.85 2.22 46 2.18 45
5 20 8.65 5.30 61 5.26 61
15 20 13.38 6.59 49 6.09 46
10 50 30.86 21.80 71 21.30 69
40 50 37.82 19.56 52 17.87 47
10 100 60.86 48.04 79 47.73 78
50 100 76.41 46.91 61 43.78 57
80 100 77.67 40.72 52 36.86 47
100 200 156.61 98.74 63 91.04 58

TABLE I
Comparison of SOA algorithms

ity, that including neighboring edges of e in the Hamil-
tonian path would be favorable. Selection of e however
restricts the number of valid edges in its neighborhood.
Thus, if w(e1) = w(e2), we give priority to e1, exactly
if T (e1) < T (e2).
The e�cacy of tie-breaking is demonstrated in ta-

ble I. In order to permit unbiased comparison of tech-
niques, we performed experiments on 100 random ac-
cess sequences. Columns 1 and 2 show the problem
parameters (jV j = number of di�erent variables, jSj
= access sequence length). The average cost of naive
address assignment (100 %) is given in column 3. The
absolute and relative costs achieved by Liao's algorithm
are listed in columns 4 and 5, while columns 6 and 7
show the corresponding data when using the additional
tie-break heuristic. On average, tie-breaking saves ad-
ditional 3 % addressing cost, at virtually no increase in
computation time, which { even for large SOA instances
{ is in the range of milliseconds on a SPARC-10.

4 General o�set assignment
Higher AGU utilization than in SOA can be achieved
by using all available ARs, which leads to the problem
of general o�set assignment. GOA is the generalization
of SOA towards an arbitrary number k of ARs. A rea-
sonable heuristic approach is to compute a partitioning

P : V ! fV1; : : : ; Vkg

of variable set V into k disjoint subsets, for each of
which a separate AR is used. Each AR[i] addresses the
subsequence S(Vi), i.e. the subsequence of S exclusively
referencing elements of Vi. In this way, GOA is reduced
to k SOA problems.
In [4], the following partitioning heuristic was pro-

posed: Starting with an access sequence S on variable
set V and k ARs, a variable subset V 0 � V is deter-
mined. Then, the subsequences S(V 0) and S(V nV 0)
and the corresponding access graphs are constructed.
If the sum of SOA costs for S(V 0) and S(V nV 0) is lower
than the SOA cost for the original sequence S, then sub-
set V 0 is "accepted", i.e. is assigned to the k-th AR, and
the algorithm is called recursively for S(V nV 0), V 0, and
k � 1. Otherwise the algorithm terminates. If k = 1,
then all remaining variables are assigned to one AR,
and recursion stops.
Unfortunately, no general procedure was described

for determining the subsets V 0, which is a crucial step
of the procedure. Instead, it was suggested to select
subsets of �xed size s (typically 2 to 6), based on a cer-
tain edge-weight criterion. However, this leads to badly

algorithm SolveGOA(V; S; k)
begin
AG = (V;E;w) := access graph for S;
L := sorted list of non-zero edges in E
in descending order of weight;

V1; : : : ; Vk := ;;
i := 0;
repeat
i := i+ 1;
fu; vg := next edge in L with u; v 62 V1 [ : : : [ Vk;
Vi := fu; vg;

until (i = k) or (fu; vg = ;);
l := i;
for all v 2 V , v 62 V1 [ : : : [ Vl do
V � := the element of fV1; : : : ; Vlg, such that

SOA cost(S(V � [ fvg)) { SOA cost(S(V �))! min;
V � := V � [ fvg;

end for
return SolveSOA(S(V1)) � : : : � SolveSOA(S(Vl));

end algorithm

Fig. 4. Algorithm for General O�set Assignment

jV j jSj k Liao SolveGOA gain (%)
10 50 2 13.14 11.93 9
10 50 4 9.30 5.02 46
40 50 4 10.40 7.65 26
40 50 8 8.14 8.22 -1
10 100 4 17.16 8.45 51
10 100 8 17.29 5.00 71
50 100 8 21.34 12.69 41
80 100 8 17.80 11.30 37
100 200 8 59.61 37.84 37

TABLE II
Comparison of GOA algorithms

balanced partionings with k � 1 subsets of size s, and
one large subset of size jV j � s � k. Moreover, Liao ob-
served that the optimal s value strongly depends on the
given access sequence, so that manual parameterization
for each problem instance is required.

Our GOA algorithm (�g. 4) avoids these problems,
and determines an individual variable subset size for
each AR, using SOA as a subroutine for cost estima-
tions. We start with l, l � k, subsets V1; : : : ; Vl of size
two, by selecting the l disjoint edges of highest weight in
the access graph and assigning the corresponding node
pairs to one subset each. If the access graph contains k
or more disjoint non-zero edges, then l = k. Otherwise,
all of these edges are taken, and l < k. The initial SOA
cost for each subset is one, due to AR initialization.
Then, all remaining variables v are consecutively as-
signed to the subset V �, for which the increase in SOA
cost caused by adding v to V � is minimal. After all
variables have been assigned, the solution is obtained
by concatenating l SOA solutions. Statistical per-
formance results for di�erent V; S; k con�gurations are
listed in table II. Columns 4 and 5 show GOA cost
values achieved by Liao's procedure (with s = 3) and
algorithm SolveGOA, respectively. In total, we ob-
served that SolveGOA outperforms Liao's algorithm
by 22 % on average. Both algorithms require compara-
ble CPU times (up to a few seconds on a SPARC-10).

5 Modify registers
Further reduction of addressing costs is possible by as-
signment of multiply required modify values to MRs
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(cf. �g. 2 b) in a post-pass phase, because, as ar-
gued in Section II, retrieving modify values from MRs
causes zero cost. On AGU operation sequences com-
puted by SolveGOA, optimal utilization of m MRs
can be obtained e�ciently: Let U = (u1; : : : ; un) de-
note the sequence of required modify values, i.e. the
sequence of immediate values that occur in AGU oper-
ations of type "immediate AR modify". For the exam-
ple in �g. 2 a), U = (2;�3; 2;�3; 2; 3;�3; 2). If only
one MR is available, it must be decided, whether a cer-
tain ui should be kept as an immediate value or should
be implemented by "immediate MR load" and "auto-
modify" operations, so as to maximize potential reuse
of MR contents for later occurences of ui in U . The
optimal choice can be made sequentially for each ui
(starting with u1) by inspecting the current MR con-
tents c(MR) (initially unde�ned) and the rest sequence
Ui = (ui+1; : : : ; un). Whenever ui = c(MR), then ui
can be generated by "auto-modify", which saves one
cost unit compared to the original AGU operation se-
quence. Otherwise, there is a choice to either keep
c(MR) in MR, or to overwrite MR by ui. For any
value x, let next(x) denote the index of the next occur-
rence of u in Ui (1 in case of no further occurrence). If
next(c(MR)) =1 or c(MR) is unde�ned, then c(MR)
cannot be reused, so that overwriting MR causes no dis-
advantage, and MR is loaded with ui, if next(ui) <1.
For next(c(MR)) < 1 and next(ui) < 1, the better
choice depends on whether c(MR) or ui recurs �rst in
Ui. If next(c(MR)) < next(ui), reusability of ui im-
plies reusability of c(MR). Conversely, if c(MR) can-
not be reused because MR is overwritten again before
next(c(MR)), then also ui cannot be reused. There-
fore, keeping c(MR) in MR is at least as good as over-
writing MR by ui. If next(c(MR)) > next(ui), then a
dual argumentation shows that loading MR with ui is
the better alternative.

In case of m > 1 available MRs, it must be addi-
tionally decided, which MR should be overwritten. It
is easily seen, that this corresponds to the problem of
minimizing memory page faults in demand-paging op-
erating systems, i.e. which page frame should be over-
written in case a memory page not present in main
memory is referenced. Since the sequence U is known
in advance, one can apply Belady's optimum replace-
ment algorithm [7]. Belady showed, that if the com-
plete page access sequence is known, overwriting the
frame containing the page with the largest forward ac-
cess distance is optimal. Analogously, in case a new
modify value has to be loaded into the MR �le, the reg-
ister MR� must be selected, for which next(c(MR�)) is
maximal. Whenever assigning a modify value to an MR
is favorable, MR� is guaranteed to be the optimal one.
This permits to combine the above criteria and Belady's
algorithm to obtain optimal utilization of m MRs for a
previously generated sequence of AGU operations. Ta-
ble III gives experimental results for di�erent jU j and
m values. Column 3 shows the average cost reduction
achieved by applying MR optimization on AGU oper-
ation sequences generated by SolveGOA (cf. Section
III). The results show that the e�cacy of MR optimiza-
tion depends on both the problem size and the number
of MRs. For small jU j, the optimization potential of
MR usage is low, and an increase in m does not lead
to further gains, because of a "saturation" e�ect. For

jU j m % cost reduction
20 2 2
20 4 2
50 2 3
50 4 4
100 2 20
100 4 22
100 8 29
300 4 33
300 8 48

TABLE III
Experimental results of MR optimization

larger sequences, the cost reduction becomes signi�cant
and also grows with m. The runtime complexity of MR
optimization is O(m � jU j2). In practice, however, run-
times linear in jU j can be observed, because the number
of occurrences of identical modify values in U is mostly
bounded by a constant c� jU j.
Compared to naive address assignment, SolveGOA

with post-pass MR optimization often achieves 80{90 %
reduction on the number of instructions for address gen-
eration. According to [5], these instructions may con-
stitute about 20 % of total machine code size. Hence,
address assignment may provide a sign�cant increase in
code quality at low computational e�ort.

6 Conclusions
Generation of e�cient machine code for embedded
DSPs demands for new optimization techniques. In this
paper, we have presented algorithms, which yield high
utilization of parallel AGUs by computing appropriate
memory layouts for program variables, and which im-
mediately apply to contemporary DSPs. Further im-
provements can be expected from algorithms for more
general de�nitions of address assignment problems, and
direct incorporation of modify registers into address as-
signment.
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