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USING LOGIC PROGRAMMING AND

COROUTINING FOR ELECTRONIC CAD

ULRICH BIEKER AND ANDREAS NEUMANN

. We show how an extended Prolog can be exploited to implement di�er-
ent electronic CAD tools. Starting with a computer hardware description
language (CHDL) several problems like digital circuit analysis, simulation,
test generation and code generation for programmable microprocessors are
discussed. For that purpose the MIMOLA (machine independent micro-
programming language) system MSS (MIMOLA hardware design system)
is presented. It is shown that logic programming techniques have several
advantages especially in the area of integrated circuit design. One of the
main advantages is the small code size which translates to easy mainten-
ance. We make extensive use of two main features of standard Prolog and
constraint logic programming, i.e. backtracking and coroutining mechan-
ism to express Boolean constraints. /

1. Introduction

Due to the increasing complexity of digital circuits, the design process is supported
by design tools covering a wide range of problems like synthesis, simulation, veri-
�cation, test generation, microcode generation, placement, routing etc. For readers
not familiar with VLSI design we �rst describe the design subtasks before describ-
ing our work. Many of these subtasks are of high complexity, e.g. test generation
is even NP-complete. Therefore, electronic CAD systems, commonly written in
imperative languages, consist of a very large amount of source code. Maintenance,
portability and adaptability are problems. We will describe signi�cant software
engineering advantages by the use of Prolog for these problems.
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MIMOLA [2] is a computer language with Pascal-like constructs. It supports
design, test, simulation and programming of digital computers and is integrated into
the CAD system MSS [19, 20]. MIMOLA, in
uenced by other hardware description
languages like VHDL [15], allows structural and behavioral descriptions of circuits.
Originally the complete system was written in Pascal but beginning with MIMOLA
4.0 we started to redesign tools using Prolog.

Using the extended Prolog system ECLIPSE [11] new concepts to solve problems
in the area of digital circuit design have been found. For example coroutining, which
allows the user to express a condition under which a call to a speci�ed goal will
be delayed, is a very useful mechanism to avoid unnecessary backtracking during
simulation, test and code generation.

Several approaches to digital circuit design using logic programming have been
presented [13, 27, 12, 8, 26, 25, 10], most of them concentrating on the gate level
or even lower levels of abstraction. Only a few contributions consider higher levels
of abstraction in the context of logic programming [21, 24, 17, 9, 14].

In this paper we describe the use of Prolog for a very high level of abstraction.
A very elegant simulator, based on a hardware description language and a suitable
Prolog circuit representation based on trees is presented. The simulator is able
to simulate a processor together with a given microprogram. We also present a
concept to generate microcode for a given hardware structure which can be used
to test the processor. The part of the MSS system concerning this paper is shown
in �gure 1.1.
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Starting with a circuit given as a MIMOLA or VHDL RT-level hardware descrip-
tion a tree-based Prolog circuit representation is generated by a front-end compiler.
Afterwards, a circuit analyzer creates a circuit info �le that can be used as input
for the code generator. A retargetable compiler maps a program onto the given
hardware, resulting in a microprogram and a set of external stimuli patterns for
the primary inputs. Finally the generated program can be simulated together with
the circuit description, an initialization �le for registers and memories and the set
of stimuli.

In what follows we �rst introduce a small processor to be used as an example
throughout the paper. We continue with the simulator concept based on three
levels of abstraction, followed by a section describing the circuit analyzer. In the last
section we generate a load instruction as a typical example of microcode generation.

2. SIMPLECPU: A small example processor
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FIGURE 2.1. SIMPLECPU

Figure 2.1 shows SIMPLECPU, a small programmable microprocessor consisting
of 8 modules. The SIMPLECPU controller (shaded area) consists of a program
counter, an instruction memory, an incrementer and a multiplexer. A 16x4 re-
gister �le, a 4-bit ALU, a second multiplexer and a clock are also part of the CPU
structure. The register �le and the program counter are connected to the clock (not
shown) and control signals are denoted by `c' followed by an index range. MIMOLA
hardware descriptions contain register transfer modules, their behavior and their
interconnections. For instance, the 4-bit ALU is speci�ed in MIMOLA as follows:

Example 2.1.
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MODULE ALU (IN a, b : (3:0); IN ctr : (1:0);
OUT result: (3:0); OUT condition:(0:0 ));

BEHAVIOR IS CONBEGIN
result <- CASE ctr OF

0 : a ;
1 : b ;
2 : a+b ;
3 : a-b ;
END AFTER 1;

condition <- CASE ctr OF
0 : a = 0 ;
1 : b = 0 ;
2 : a+b = 0 ;
3 : a-b = 0 ;
END AFTER 0;

CONEND;

CONBEGIN and CONEND denote a concurrent block, containing two case ex-
pressions as assignments to the outputs. In MIMOLA, the default data type is the
bit vector. Its index range is denoted as (high-bit : low-bit), i.e. the ALU has two
4-bit data inputs a and b, a 4-bit output result, a 1-bit output condition and a 2-bit
control input ctr selecting the ALU function.

Using MIMOLA as the input language, we generated a tree-based Prolog in-
termediate format in two steps. First MIMOLA is transformed into TREEMOLA
[7, 5], an intermediate language of the MSS. The second step is done by a converter
written in Prolog, which leads to a circuit representation as a list of module de-
scriptions. Every module consists of a list of connections, a list of storing cells and
a behavior tree as shown in �gure 2.2 for a part of the ALU. Such a tree is easily
represented by a Prolog structure. The list of connections contains information
about inputs and outputs of the module and interconnections to other modules.
Every signal is represented by a logic variable and this variable also occurs in the
behavior tree when the signal is referenced. If signals are instantiated elsewhere,
this leads to an immediate signal propagation to all modules using this signal.

3. Simulation of a CHDL

The implemented simulator is based on three levels of abstraction: the built-in op-
erators, an interpreter for the behavior of a single component and an event driven
simulator for a circuit together with the microcode. Especially for the implement-
ation of the operators, we made extensive use of the coroutining concept of the
Eclipse language.

3.1. Implementation of Operators

In order to interpret a Hardware Description Language, an implementation of its
built-in operators is necessary. These range from logic primitives to complex arith-
metic operators. They are represented as Prolog predicates, which mainly have to
meet the following criteria:
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1. The operators must work bidirectionally, so that they can also be used for
backward simulation of a circuit.

2. They should work deterministically, i.e. subsequent backtracking steps do
not produce the same solution. This is especially important for backward
simulation. This is because the mapping of an operator is not necessarily
de�nitely reversible. Certain backtracking alternatives have to be pruned to
avoid duplicate solutions.

3. The computation must be, at least at the operator level, data driven, i.e.
the application of an operator to unbound variables is propagated symbol-
ically as a delayed goal, until the instantiation of the variables is absolutely
unavoidable. In this way, the number of backtracking steps is reduced.

The third point is achieved by using the coroutining mechanism of the Eclipse
language, which allows the programmer to specify conditions, under which the
execution of a goal shall be delayed, depending on the bindings of its parameters.
Whenever a variable occuring in one of these is bound, either to a value or another
variable, the goal will be enabled, and the delay conditions will be checked again.

At the end of a simulation the set of all delayed constraints must be consistent.
There should be a constraint solver1which �nds contradictions and, if possible,
solutions for variable bindings. Since such a constraint solver is rather complex,
there should only be a few types of constraints. It would be su�cient to consider a
minimalcomplete set of operators, but for e�ciency reasons we used a set containing
AND, OR, XOR and NOT. The Prolog code for those operators is divided into delay
clauses and program clauses, e.g. the logical AND is implemented as and/3, with
X and Y as input parameters and Z as output parameter:

delay and(X,Y,Z) if var(X), var(Y), var(Z), Xn ==Y.
delay and(X,Y,Z) if var(X), var(Y), Z==0, Xn ==Y.

and(X,Y,Z) :- nonvar(Y), !, and1(Y,X,Z).

1We developed a Boolean constraint handler using the constraint handling rules (CHR) of the
Eclipse system.



6

and(X,Y,Z) :- nonvar(X), !, and1(X,Y,Z).
and(X,X,X).

and1(0, ,0).
and1(1,X,X).

The delay clauses cover the case, when the two input parameters are distinct un-
bound variables, and the output parameter is either unbound or zero. In these cases
it is impossible to draw any conclusion, so the call to the predicate is delayed. The
program clauses use the commutativity of the logical AND. The �rst two of them
deal with the case when one of the inputs is bound, and invoke and1/3 with the
bound input as the �rst argument. For the third clause there are, due to the delay
clauses, only two possibilities left: either the output is 1, which forces the inputs to
take the same value, or the two inputs are identical variables, to which the output
will be bound, too. The auxiliary predicate and1/3 expects its �rst input to be
instantiated. If it is bound to a 0, the result must be 0 either, if it is 1, the output
is identical to the second input.

The more complex operators are based on these four logical primitives, e.g. a
full adder can be de�ned as follows:

halfadd(In1, In2, Sum, Cout) :-
and(In1, In2, Cout),
xor(In1, In2, Sum).

fulladd(In1, In2, Cin, Sum, Cout) :-
halfadd(In1, In2, Sum1, Carry1),
halfadd(Cin, Sum1, Sum, Carry2),
or(Carry1, Carry2, CarryOut).

Of course the set of operators is not restricted to single bit operations, but for
each of them there is also a version for bit strings, which are represented as lists.
On top of these there are built arithmetic operators like addition and multiplication
and string manipulation operators like shifting and concatenating.

3.2. Interpretation of a Behavior Tree

For the interpretation of the behavior tree of a module it is necessary to model the
context, i.e. the contents of memory cells and input signals at a given time. A
signal is now represented as a sorted binary tree, with a time and a value mark at
each node. Readers familiar with logic programming recognize this as a common
dictionary. Updates on a signal are realized by the following predicate:

sigValue((T,Val, Before, After), T,Val) :- !.
sigValue((Time, Val, Before, After), T,Val) :-

T<Time, sigValue(Before,T,Val).
sigVal((Time, Val, Before, After), T,Val) :-

T>Time, sigValue(After,T,Val).
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Lookups are realized in a similar way, except that if there is no entry for the
speci�ed time, the least recent entry must be found, because the signals are assumed
to be holding.

Input ports of a module and memory cells are represented by port descriptions,
which are nothing more than lists of such signals. The contents of memory cells of a
circuit are held in a dictionary. This dictionary is stored in a binary tree structure
similar to the signal tree. In this case the search key is an atom consisting of an
identi�er and a list of values. The identi�er can be the name of a register, or a pair
consisting of a memory name and an address. The values are port descriptions.
The comparison predicates in the clauses of the concerned lookup-predicate must
then be replaced by the standard term order comparators.

The interpreter itself has only three parameters: the behavior tree, a time frame
and the dictionary with all global values in it, and is implemented inductively on
the structure of the behavior tree. Such a tree normally consists of some concur-
rent statements, which may contain nested expressions. For the interpretation of
statements, a behavior tree and the corresponding representation as a Prolog term
are shown in �gure 3.1. The �gure shows the statement behavior tree for loading
the program counter when the clock rises.

at_up
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clk
pc input

in

delay

1

at_up(
input(clk),
load(
pc,
input(in),
delay(1)
)

)

FIGURE 3.1. Program Counter Behavior Tree

Calling the interpreter with this statement tree will invoke one of the following
clauses:

interpret(at up(ClkExp,Statement), Time,Dictionary) :-
Time1 is Time-1,
interpret exp(ClkExp, Time, Dictionary,[1]),
interpret exp(ClkExp, Time1, Dictionary,[0]),
!,
interpret(Statement,Time,Dictionary).

interpret(at up( Clk, Stmnt), Time, Dictionary).

If the calls to interpret exp/4 are successful, the interpreter calls itself with the
load statement as an argument. This call will relate to the following clause, which
adds the speci�ed delay factor to the current time and enters the value of the input
expression into the port description of the program counter, which is taken from
the dictionary:
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interpret(load(RegId, Expr, delay(Delay)), Time,Dictionary) :-
lookup(RegId,Dictionary,PartPort),
interpret exp(Expr,Time,Dictionary,Value),
NewTime is Time+Delay,
portValue(PartPort,NewTime,Value).

Note that the delay structure in the behavior tree is distinct from the coroutining
built-in with the same name. Other constructs like conditional or case statements,
writing to an output port, concurrent nodes etc. are implemented similarly.

The interpreter for expressions has one more argument for returning the value of
an expression. Except for this, its structure is the same (consider the behavior of
the program counter incrementer (�g. 3.2)). The interpreter clause for the output

output(
out,
incr(
input(in)
)

)

output

out incr

input

in

FIGURE 3.2. Incrementer Behavior Tree

tree, which is very similar to that for the load statement, will call interpret exp/4
with the incr subexpression, invoking the following clause:

interpret exp(incr(Expr), Time,Dictionary,Value) :-
interpret exp(Expr,Time,Dictionary,Value),
incr(Expr,Value).

The method is, �rst to evaluate the arguments of an operator and then to apply
it to the results. The dictionary is needed here only for the read expression, which is
evaluated as the value of a storage. More complex expressions like the conditional
or case construct are implemented in the same way.

3.3. An Event Driven Simulator

The task of the simulator is to simulate the behavior of a circuit, given the initial
state of the storage and the values of the primary inputs for the considered time
interval. The circuit consists of a set of modules with a speci�ed behavior which
are interconnected by some signals. In an event driven simulator an event is a pair
consisting of a time and a module behavior. All events yet to be simulated are held
in a queue, which is initialized at the start of the simulation by all events which are
involved by the change of a primary input, the toggle of a clock or the initialization
of a register or memory. A new event for a module is generated if and only if at
least one of its input signals or one of its storing cells has changed due to simulation
of a former event. Thus the execution of one event is the following:
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doOneEvent(Modul,Time,Dictionary,NewEvents):-
Modul = (Name, Behavior, Connections, Stores),
interpret(Behavior,Time,Dictionary),
storeEvents(Stores,Name,Time,Events1),
newEvents(Connections,Time,Events2),
append(Events1,Events2,NewEvents).

newEvents([ ] , , [ ] ).
newEvents([(Mod,Signals)jRestCons],Time, [(Mod,ChangeTime|RestEvents]):-

lastChange(Signals,ChangeTime),
ChangeTime > Time, !,
newEvents(RestCons, Time,RestEvents).

newEvents([ jRestConnections], Time,Events):-
newEvents(RestConnections, Time,Events).

The predicate storeEvents/4 is similar to newEvents/3, but checks the storage of
the module for changes and if any is detected, generates an event for the same mod-
ule. Note that the event queue must be sorted and allow no duplicates. Moreover,
there must be a kind of priority for the order of simulation of two events with the
same time, a feature which was omitted here.

The simulator itself is now de�ned as follows:

simulate circuit(CircuitName,MaxTime) :-
... % get the circuit informations
doClocks(Clocks,MaxTime,ClockEvents),
doInPorts(Stimuli,InPorts,InputEvents),
initStores(InitLines,Dictionary,InitEvents),
mergeEvents(ClockEvents,InputEvents,InitEvents,Events),
doAllEvents(Events,Dictionary,MaxTime).

doAllEvents([ ] , , ).
doAllEvents([( , Time) j ], , MaxTime) :-

Time > MaxTime.
doAllEvents([Eventj RestEvents], Dict, MaxTime):-

doOneEvent(Event,Dict,NewEvents),
merge(NewEvents,RestEvents,EventsAfter),
doAllEvents(EventsAfter,Dic,MaxTime).

The predicate merges the new events after each step with the remaining ones
from the queue and calls itself recursively with the result, until the queue is empty
or the maximum time is reached.

For simulating a circuit together with a microprogram, one only has to specify
the code as initialization to di�erent lines of the instruction memory and start the
simulator. Consider the following example program for SIMPLECPU:

Example 3.1.

PROGRAM sum up IS
VAR x : nibble;
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BEGIN
x := 1;
REPEAT x := x+pi; UNTIL x = 0;

STOP;

After initializing a variable x with 1, a loop adds x to the value of the primary
input, until x is zero. The microcode shown in table 3.1 consists of 5 instructions.
IM 0 denotes the memory content of the instruction memory with address 0.

Bits 19 18:15 14:9 8:7 6:5 4 3:0
IM 0 0 0001 XXXXXX 00 01 0 0000
IM 1 X XXXX XXXXXX 00 XX 1 XXXX
IM 2 1 XXXX XXXXXX 00 10 0 0000
IM 3 X XXXX 000001 10 00 1 0000
IM 4 X XXXX XXXXXX 00 XX 1 XXXX

TABLE 3.1. Example microprogram

With the primary input constantly set to [0,1,0,1], the simulation of this program
passed 149 events, which took 0.83 seconds of cputime on a SPARC 10 workstation.
Note that every event means simulation of a complete behavior tree.

4. Circuit Analysis

4.1. Simulator Priorities

When simulating a circuit it is necessary to give priorities to di�erent modules con-
cerning the order in which to simulate two events at the same time. The reason for
this are the causal dependencies between components which are connected without
delay. This priority can be compared to the �-delay of VHDL. The intention is
that an event may be simulated only when all events its inputs depend on have been
considered before, i.e. the priority of a module is the maximum of the priorities of
all its predecessors incremented by one. Assume that we have already computed a
priority list of triples (Mod,Prio,Preds), where Pred is a list of pairs (Mod',Prio'),
so that every occurence of a module in the whole structure have its Prio component
bound to the same variable. Now, for each element of the priority list, we only have
to compute the maximum priorities in the predecessor list and bind the priority to
this value incremented by one.

delay max(A,B,M) if var(A).
delay max(A,B,M) if var(B).

max(A,B,A) :- A > B,!.
max(A,B,B).
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maxPriority([ ], Max, Max).
maxPriority([( , Prio)j Rest], Max0,Max) :-

max(Prio,Max0,Max1),
maxPriority(Rest,Max1,Max).

setPriorities([ ]).
setPriorities([(Mod,Prio,Preds) j Rest]) :-

maxPriority(Preds,0,MaxPrio),
plus(MaxPrio,1,Prio),
setPriorities(Rest).

In standard Prolog this would lead to di�culties because we could not compare
unbound variables. This is easily resolved by delaying the max/3 predicate. If there
are no critical races in the circuit, i.e. there are no cyclic dependencies, there must
be at least one module whose predecessor list is empty, so it will get priority 1.
This will wake up at least one other max goal, and so on, so that all priorities will
be computed correctly. If there is a cycle, then a con
ict occurs and an error must
be raised. Such a con 
ict can easily be detected by checking for delayed goals by
a system call. Note that the plus/3 predicate must also be delayed, which is done
automatically by Eclipse.

4.2. Microcode Preparation

To prepare code generation, several tasks are done by the circuit analyzer. The
main task is to generate a lot of facts describing special characteristics of a given
circuit to reduce the complexity of code generation. Application of some facts is
shown in the following section. Table 4.1 gives an overview of some generated facts
but due to the lack of space not all generated facts can be considered in detail. In
the following we want to describe these facts and the methods to generate them.

One of these facts is transparent/3, denoting an identity mapping from one input
to at least one output, so that the module becomes `transparent'. That means that
with a special control code, the considered module is able to pass one input to one
output. Most of these facts might be found at multiplexer modules. On the other
hand the transparent/3 example of table 4.1 shows a possibility to switch input a of
the SIMPLECPU alu to the output result, i.e. the signal list [D,C,B,A] is switched.
This is done by unifying input b with the neutral element [0,0,0,0], to perform an
identity mapping for the selected operator. The binary control code c(6:5) = [1,0]
selects the add operator of the concerned ALU.

How can we generate a transparent/3 fact? Using the interpreter and the oper-
ators de�ned in section 3, this task is easy to solve. The basic idea is to unify one
module input with one module output and to perform an interpretation step for
this module. The interpretation step has to lead to an instantiation of some inputs
for the following reasons:

1. Choosing a control code to select an operation that is able to perform an
identity mapping (e.g. c(6:5) = [1,0] to select ALU addition).

2. If necessary, choosing a neutral element for the selected operation (some
operations do not need a neutral element, e.g. a multiplexer or the ALU
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fact/arity arguments example

transparent module name transparent(alu,
/3 list of inputs [ [D,C,B,A], [0,0,0,0], [1,0] ],

list of outputs [ [D,C,B,A], [Condition] ]).

path source path(im,reg, [
/3 destination (im,[[ , , , , , ]], [[0,D,C,B,A, , , , , , , , ,0,1, , , , , ]]),

Path (mux, [[ , , , ], [D,C,B,A], [0]], [[D,C,B,A]]),
(alu,[[ , , , ], [D,C,B,A],[0,1]], [[D,C,B,A],[ ]]),
(reg, [[ , , , ], [D,C,B,A],[ ],[ ]], [[ , , , ]] )]).

incrementPC delayed goal incrementPC(incr([F,E,D,C,B,A], [L,K,J,I,H,G]), [
/2 Path (inc, [[F,E,D,C,B,A]], [[L,K,J,I,H,G]]),

(pcmux, [[ ],[0,0],[L,K,J,I,H,G],[ , , , , , ]], [[L,K,J,I,H,G]]),
(pcreg, [[L,K,J,I,H,G], [ ]], [[F,E,D,C,B,A]]) ]).

jump Path jump([
/1 (im,[[ , , , , , ]], [[ , , , , ,F,E,D,C,B,A,0,1, , , , , , , ]]),

(pcmux,[[ ],[0,1],[ , , , , , ],[F,E,D,C,B,A]],[[F,E,D,C,B,A]]),
(pcreg, [[F,E,D,C,B,A], [ ]], [[ , , , , , ]] )]).

TABLE 4.1. Some selected facts, generated by circuit analysis

operation selected by the control code c(6:5) = [0,0] to switch input a to the
output result).

A successive selection of all operations performed by a module is done by backtrack-
ing. Afterwards, the selected operation has to be executed symbolically, holding the
input port to be switched as list of variables. Execution of the selected operation
Op is done by the clause �ndTransparent/4. The lists library predicate checklist/2
succeeds if var/1 succeeds for every element of SwitchPort, ensuring that the selec-
ted input is switched to the selected output for all possible values of SwitchPort.
Finally, we assert the generated fact.

�ndTransparent(Module, Op, InPorts, OutPorts):-
member(SwitchPort, InPorts),
member(SwitchPort, OutPorts),
Operation =.. [Op, InPorts, OutPorts],
call(Operation),
checklist(var, SwitchPort),
assert(transparent(Module, InPorts, OutPorts)),
fail.

�ndTransparent( , , , ).

The fact considered next is path/3, describing a path from a source module to
a destination module, possibly through certain other modules which are able to
perform an identity mapping. A fact path/3 is a triple with parameters source,
destination and Path. Path is a list of triples (module name, list of inputs, list
of outputs). The �rst element of the list is the source module whereas the last
element is the destination module. All modules between source and destination are
able to switch an input to an output by the use of transparent/3. A path/3 fact
contains all control codes, i.e. signals which have to be 0 or 1 to switch the Path.
As source and destination only sequential modules, i.e. modules that are able to
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store a value, are considered. Additionally, modules able to yield a constant, e.g. a
decoder, can serve as a source. The example given in table 4.1 shows a Path from
the instruction memory im through the multiplexer mux and the alu to the register
�le reg. Therefore binary control codes c(19) = [0] for the multiplexer and c(6:5)
= [0,1] to switch a via through the alu are selected. [D,C,B,A] is the list of values
connected by this path.

A simpli�ed version of the predicate generating path/3 facts is �ndPath/3. The
�rst clause terminates the search of a path if Destin is a direct successor of Source.
In the second clause we try to �nd a path through a module Next, which has
to be a successor of the current Source and must be switched into a transparent
mode. Afterwards, a recursive search with Next as source is started. A lot of
implementation details are omitted, e.g. the check to prevent entering a cycle and
the complete circuit representation.

�ndPath(Source, Destin, [Source, Destin]):-
successor(Source, Destin).

�ndPath(Source,Destin, [Source j RestPath]):-
successor(Source, Next),
transparent(Next, Inputs, Outputs),
�ndPath(Next, Destin, RestPath).

A frequent subtask of microcode generation is to increment the program counter.
Therefore we generate a symbolic increment instruction where the address is un-
bound. The real address will be instantiated at the end of code generation. For
that reason we generate a delayed goal, so that the code generator is able to
bind these addresses to real values with respect to certain constraints. As a con-
sequence of that, an increment instruction incrementPC/2 is a pair, containing a
delayed goal which performs the increment operation and a Path from the output
of the program counter to the input of the program counter. In the generated
Path two occurences of the program counter are avoided by omitting the program
counter as source. Path is a list of triples as described above. The given ex-
ample of table 4.1 shows the unique solution to increment the program counter
pcreg for the example processor. Therefore the binary control code c(8:7) = [0,0]
is selected for the multiplexer pcmux. [F,E,D,C,B,A] is the current state of the
program counter whereas [L,K,J,I,H,G] will be the next state. The delayed goal
incr([F,E,D,C,B,A],[L,K,J,I,H,G]) denotes the operation to be executed at the end
of code generation.

A further subtask of code generation is to perfom unconditional jumps, i.e. to
move a constant value into the program counter without consideration of a condition
from the arithmetic unit. Therefore, jump/1 is simply a fact denoting a Path from
a sequential source module to the program counter. SIMPLECPU has only one
possibility to perform such an unconditional jump by selecting c(8:7) = [0,1] as
control code for the multiplexer pcmux as shown in table 4.1. The new symbolic
jump address [F,E,D,C,B,A] originates from the instruction memory im.

The facts incrementPC/2 and jump/1 are mainly generated by the use of path/3
and transparent/3. Using failure driven loops (see e.g. �ndTransparent/4), all
possible solutions of the described facts are generated and asserted.

We conclude this section by enumerating some additional facts not considered
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here:

1. constant/3: denotes a module that is able to yield a constant as output (e.g.
a decoder).

2. conditionalJump/2: denotes a conditional jump version, i.e. a conditional
path to the program counter.

3. noload/3: denotes a micro instruction, indicating that the contents of a
register or memory must not change to prevent side e�ects.

We have tested the circuit analyzer with several examples. One of them is PRIPS,
a coprocessor with a RISC-like instruction set, which provides data types and in-
structions supporting the execution of Prolog programs. The structure consists of
50 register transfer modules. A complete circuit analysis took 77 seconds leading
to 1/2 MB of facts.

5. Code Generation

A microcode generator is a tool for mapping algorithms to prede�ned hardware
structures, by generating the required binary code. If such a compiler is target
independent, i.e. the programmable microprocessor is an input of the compiler,
we call this method retargetable compilation [6, 23, 22]. The original intention for
this work is to generate self-test microcode, i.e. microcode that is able to perform
a test for programmable microprocessors. The following example describes code
generation for a variable assignment, called load instruction.

Assuming the assignment reg[0] := 1 to be generated as used as �rst instruction
of the simulation example, i.e. we want to load register 0 of the register �le with
1. The binary values are [0,0,0,0] for the address and [0,0,0,1] for the data to be
loaded. After a justi�cation step has driven necessary values for the load instruction
to the inputs of the register �le, the following three values have to be generated:

address = [0,0,0,0]; data = [0,0,0,1]; c(4:4) = [0];
Having uni�ed the input ports of the register �le with these values, we have to per-
form a backward simulation to search for modules which are able to yield the con-
stants. This module is usually the programmable instruction memory or a decoder.
Backward simulation in general is non-deterministic and therefore backtracking and
bidirectionality of Prolog is advantageous.

In our example, the control code c(4:4) and the address = c(3:0) are direct
predecessors of the instruction memory. More di�cult is to have the data loaded,
because we have to pass the value [0,0,0,1] through certain modules. However,
with the use of the path/3 facts generated before, the problem is easy to solve.
The path/3 fact shown in table 4.1 gives all information to generate a solution
for the required data transfer. Table 5.1 shows the resulting binary code. If this
instruction is part of a complete microprogram, additional tasks could be done
concurrently. The address for the next instruction has to be determined which
could be done by incrementing the program counter by c(8:7) = [0,0]. Alternativly
a jump or a conditional jump could be performed, leading to values for the 6-bit
jump address c(14:9). Therefore the facts jump/1 and conditionalJump/2 are used,
whereas incrementPC/2 is used to increment the program counter.
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Bits 19 18:15 14:9 8:7 6:5 4 3:0
Code 0 0001 XXXXXX 00 01 0 0000

TABLE 5.1. Binary code for reg[0] := 1

At the end of code generation the microprogramhas to be bound to real addresses
of the instruction memory. We perform global scheduling while concurrently com-
pacting and binding the code. Here we make extensive use of linear constraints
over the integer domain. In this way it is possible to exploit the parallelism of
the target processor (e.g. in VLIW architectures). At the beginning we unify the
symbolic address of the �rst instruction with the start address e.g. 0. Delayed goals
like incr/2 are woken and this leads to a successive binding of concerned addresses.
The process is supported by a labelling procedure. The resulting microprogram can
be simulated by the simulator described above. We would like to extend the code
generator to handle pipelined architectures.

6. Experimental Results

The tools described above have been applied to several target structures. Table 6.1
gives information about the example circuits: simplecpu, as shown in section 2,
demo [2], prips [1] and mano [18]. The number of RTL components, the width of
the microinstruction controller and the width of the datapath are given. The results
shown here indicate that the tools can be applied even to realistic structures. All
times are measured on a SPARC 10 workstation.

circuit RTL modules instruction width datapath width
simplecpu 10 20 4
demo 16 84 16
prips 50 83 32
mano 21 50 16

TABLE 6.1. Example Circuits

The times shown in table 6.2 are achieved by simulating a simple loop, such as
the program mentioned in section 3. Every event means simulation of a complete
behavior tree (RT-events). The original MIMOLA simulator (written in Pascal for
an earlier, more restricted version of MIMOLA) simulates on average about 300
RT-events/sec. Although the Prolog simulator is slower by a factor of 3 to 5, its
main advantages are the support for backward and symbolic simulation. These
features are important for test generation, e.g. to justify signals.

The results shown in table 6.3 are measured for the microcode preparation phase
of section 4.2. We can see that for larger circuits a lot of facts are generated
by the circuit analyzer. Therefore, the given hardware has been analyzed and
microoperations which can be executed by the hardware have been extracted.
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circuit events CPU sec events/sec
simplecpu 149 0.83 179.5
demo 1394 25.05 55.6
prips 1003 21.99 45.6
mano 478 4.3 111.1

TABLE 6.2. Simulation CPU times

circuit generated facts CPU sec
simplecpu 26 0.56
demo 61 2.96
prips 415 77.03
mano 131 11.85

TABLE 6.3. Circuit Analysis Times

7. Conclusion

We have described how logic programming and coroutining can be exploited for
some tools in the MIMOLA hardware design system. A simulator for structural
hardware models, described in a hardware description language, has been presented.
The simulator consists of 2700 lines of code whereas the original Pascal simulator
has about four times more lines of code. Most of the new simulator can be used bi-
directionally and symbolically which is very important for code and test generation.
Using coroutining to express certain constraints, many backtracking steps can be
avoided. The circuit analyzer consists of 2200 lines of code whereras a compareable
C++ implementation [16] has about 10000 lines. The circuit analyzer cooperates
with a retargetable self-test program compiler [4].

The original simulator was very di�cult to maintain. The time to develop VLSI
tools using logic programming is much shorter than for imperative languages. On
the other hand, software written in standard Prolog is slower. With the new concept
of constraint logic programming [3] this disadvantage becomes smaller, because this
technique leads to a signi�cant reduction of unnecessary backtracking steps.

Additionally, a tool to generate schematics for structural hardware models has
been implemented in Prolog.

This work was supported by the DFG, the German research foundation.
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