
Instruction-Set Modelling for ASIP Code Generation

Rainer Leupers, Peter Marwedel

University of Dortmund

Department of Computer Science XII

44221 Dortmund, Germany

email: leupersjmarwedel@ls12.informatik.uni-dortmund.de

Abstract

A main objective in code generation for ASIPs is to
develop retargetable compilers in order to permit ex-
ploration of di�erent architectural alternatives within
short turnaround time. Retargetability requires that
the compiler is supplied with a formal description of
the target processor. This description is usually trans-
formed into an internal instruction set model, on which
the actual code generation operates. In this contribu-
tion we analyze the demands on instruction set models
for retargetable code generation, and we present a for-
mal instruction set model which meets these demands.
Compared to previous work, it covers a broad range
of instruction formats and includes a detailed view of
inter-instruction restrictions. 1

1 Introduction
ASIPs (application-speci�c instruction set proces-

sors) can be regarded as hardware components bridg-
ing the gap between ASICs and general-purpose pro-
cessors. One major bottleneck in ASIP-based design is
code generation, which is either done manually or by
using compilers. Manual code generation at the assem-
bly level is both time-consuming and error-prone, and
reuse of software is hardly possible. On the other hand,
compiling code from a high-level language description
to a number of di�erent ASIPs requires sophisticated
compilers capable of e�ciently mapping algorithms to
varying target processors. Therefore, retargetable com-
pilation has received attention in the CAD research
community. An overview of recent techniques is given
in [2].

Usually, the compiler transforms a processor de-
scription into an internal instruction set model, on
which the actual code generation operates. In the �rst
place, the style of such an instruction set model de-
pends on the controller architecture of an ASIP. Ki
i
[3] describes di�erent options for ASIP controller ar-
chitectures which are currently used. The most com-
monly used controller architecture is the programmable
microcoded controller (PMC, �g. 1), due to its high
speed e�ciency and low design e�ort. The basic oper-
ation of a PMC is the execution of one or more register
transfers (RTs) in each machine cycle. Therefore, the

1Publication: 9th International Conference on VLSI Design,
Bangalore/India, Jan. 1996, c
IEEE

granularity of an instruction set model should be the
RT-level.

The purpose of this paper is to introduce an instruc-
tion set model for ASIPs with PMC architecture, which
supports retargetable compilation. The main advan-
tage of this model is that a broad range of possible in-
struction formats is covered, thereby permitting a high
degree of retargetability. The model is an essential fea-
ture of the retargetable compiler Record, aiming at
ASIPs in the DSP domain [4, 5].

instruction
memory

instruction
decoder

data path

IR

next address

PC

control signals

flags, addresses

branching logic

Figure 1: Programmable microcoded controller (PMC)
architecture for ASIPs. The instruction register (IR)
and the instruction decoder are optional.

The organization of this paper is as follows: In sec-
tion 2 we analyze the demands on instruction set mod-
els which arise from contemporary ASIP architectures.
Section 3 discusses to what extent these demands are
met by previous work in the area of microprogramming
and retargetable compilation. Our new instruction set
model is formally described in section 4, and its appli-
cation in practice is exempli�ed in section 5.

2 Demands on ASIP instruction set

models
Essentially, an instruction set model suited for re-

targetable compilation should be capable of covering
a broad range of possible instruction formats. We de-
scribe demands on instruction set models by means of
RTs. In particular, a versatile model should re
ect the

+/-

R1 := R2 + R3

R4 := R5 - R6

a)

F EXT

16

32

e)

IR

R1 := R2 + R3

R4 := R5 -R6

010xx011

010xx011

d)

S

R

BUS

c)

IR

010xx000

1010xxx1

R1 := R2 + R3

R4 := R5 -R6

b)

Figure 2: a) Resource con
ict: Both operators in the RTs are mapped to the same ALU in di�erent modes.
b) Instruction set con
ict: Two RTs require incompatible opcodes in the instruction register IR. c) Alternative
versions: Two possible data routes exist for moving data from register S to R. d) Side e�ect: Both RTs have to
same partial control word and thereby imply each other. e) Residual control: The state of
ag F decides whether
component EXT performs sign or zero extension on its input data.

followings items, which arise from instruction formats
of realistic ASIP architectures:

Resource con
icts: (Fig. 2 a) RTs, which use the
same resource in di�erent modes may not be executed
within the same machine cycle. For instance, an ALU
will perform either addition or subtraction at a time,
and a register can only load one certain value in each
instruction cycle.

Instruction set con
icts: (Fig. 2 b) The binary en-
coding of the control word may prohibit simultaneous
execution of two resource-compatible RTs. In many
processors, such encodings are used to decrease the
control word length.

Alternative versions: (Fig. 2 c) For each RT, there
may exist alternative code versions, i.e. di�erent partial
control word settings which trigger execution of that
RT, e.g. due to di�erent data routes through a pro-
cessor's datapath with same sources and destination,
or application of algebraic rules like commutativity of
ALU operators.

Side e�ects: (Fig. 2 d) Di�erent RTs may share par-
tial control word settings, i.e. execution of one RT nec-
essarily implies another di�erent RT.Whenever a regis-
ter contains a live value, its destruction by a side e�ect
must be prevented during code generation. In other
cases it may be favorable to exploit the side e�ect in
order to increase parallelism or to just tolerate it.

Residual control: (Fig. 2 e) Control signals are usu-
ally assumed to be originating at the instruction mem-
ory or register. In case that certain control signals are
likely to change only rarely, they may be relocated to
residual control registers in order to minimize the con-
trol word length. Therefore, the instruction set model
not only has to account for partial control words as-
sociated with RTs, but also for the required machine
state regarding the residual control registers.

3 Related work
Instruction set models for microcoded controllers

have been proposed earlier in the area of micropro-
gramming. Davidson et al. [6] present a detailed model

for microoperations intended to be used for experimen-
tal evaluation of di�erent microcode compaction tech-
niques. The model includes multi-cycle operations but
is restricted to VLIWmachines, i.e. instruction set con-

icts cannot be represented. The same holds for resid-
ual control.

Di�erent approaches to ASIP modelling have also been
introduced in recent work on code generation for em-
bedded processors. The MSSQ compiler [7] has no
explicit instruction set model, but internally uses a
graph model of the target processor. A special proces-
sor description style is required, and residual control
registers are excluded. Possible side e�ects are pre-
vented by generation of partial control word settings
which disable unused storages for each instruction cy-
cle. Alternative versions and inter-instruction con
icts
are handled during a code compaction phase. In Chess
[8] a similar graph model is employed, which is con-
structed from a mixed structural/behavioral processor
description in the nML language. The Chess model
also accounts for inter-instruction con
icts and alter-
native versions, but residual control and side e�ects are
not considered. The CodeSyn system [9] reads C-like
behavioral speci�cations in terms of instruction pat-
terns. However, the instruction patterns and register
classi�cations cannot be generated from a more general
model, and handling of side e�ects and residual control
is not reported.

Completely di�erent approaches to instruction-set
modelling are taken by researchers who focus on very
high code quality requirements such as [10, 11], which
currently only handle restricted instruction formats.

4 The instruction set model
The proposed instruction set model is based on the

notion of register transfers (RTs) and "no-operations"
(NOPs). RTs describe transfer of values from and
to registers, memories, and external processor ports.
NOPs are used for handling of side e�ects as mentioned
in section 2.

4.1 Execution conditions

RTs are executed only under certain execution con-
ditions, which are represented by Boolean functions in
our model. As explained in section 2, control signals
in general may have two origins: the instruction mem-
ory/register and residual control registers. In order to
treat both kinds of control signals in a uniform way, we

de�ne a set of Boolean variables representing all con-
trol signals:

De�nition: Let w be the control word length and
RES = fR1; : : : ; Rkg be the (possibly empty) set of
residual control registers of a given ASIP. Let B(Ri)
denote the bitwidth of register Ri. The execution con-
dition variables are de�ned as the set of Boolean vari-
ables

ECV = fviji = 0 : : :w � 1g [

fvij jRi 2 RES; j = 0 : : :B(Ri)� 1g

Thus, each variable v 2 ECV represents one instruc-
tion bit or one residual control register bit. An exe-
cution condition for an RT or NOP requires a certain
setting of those variables:

De�nition: Let r = jECV j. An execution condition
is a Boolean function F : f0; 1gr ! f0; 1g

Example: Suppose, an RT requires a partial control
word setting (x denotes don't care):

v7v6v5v4v3v2v1v0 = 10xx01x1

and bit no. 3 of residual control register R1 needs to
be zero. Then, its execution condition is

F = v7 � v6 � v3 � v2 � v0 � v13

In case of alternative code versions, the execution con-
ditions in general have the form

F = P1 + : : :+ Pk

where the Pi's are product terms on ECV . During the
code compaction phase of code generation, alternative
versions need to be explicitly computed from the exe-
cution conditions. In order to exclude consideration of
don't care control signals, we de�ne:

De�nition: Let PI(F) = fp1; : : : ; pkg denote the
set of prime implicants for an execution condition F .
The version set for F is the set of Boolean functions
fF1; : : : ; Fkg : f0; 1gr ! f0; 1g, which correspond to
PI(F), i.e. Fi(b) = pi(b) for all bindings b of execution
condition variables.

By computing the version sets all unnecessary restric-
tions are removed, which increases the freedom for code
compaction. Although the number of prime implicants
of a Boolean function may be exponential in the num-
ber of variables, the e�ort for version computation re-
mains reasonable in practice: In case of VLIW instruc-
tion formats with long instruction words, only a few
control signals are not don't care for each RT. In case
of heavily encoded instruction formats, don't care sig-
nals are few, but the instruction word length is small.

RTs assign values to destinations under certain exe-
cution conditions, while NOPs disable sequential com-
ponents during one instruction cycle. Let SEQ denote
the set of sequential processor components (registers
and memories), and POUT the set of processor output
ports.

De�nition: A register transfer is a triple RT =
(d; v; V S), where d 2 SEQ [POUT is the destination,

v is a value, and V S is a version set.
A no-operation is a pair NOP = (d; V S), where d 2
SEQ is the destination and V S is a version set.

As in most other approaches, we use expression trees
for representation of values. For code selection using
expression trees, there exist e�cient algorithms based
on dynamic programming [12]. Therefore, representa-
tion of values in RTs is not further discussed in this
paper.

Like RTs, NOPs are only active under a certain ex-
ecution condition. NOPs have to be activated during
code generation, whenever live values need to be pre-
served for consumption in a later machine cycle. Most
approaches to instruction-set modelling for ASIPs do
not consider NOPs explicitly, but assume that NOPs
are implicit in the encodings of available RTs. How-
ever, in case of VLIW instruction formats, each pro-
cessor component has separate control lines, and the
compiler must generate code that explicitly sets these
control lines in order to prevent undesired side e�ects.
Obviously, there is a relation between RTs and NOPs:

Remark: For a destination d 2 SEQ, let Rd =
fRT1; : : : ; RTng be the set of RTs which write to d,
and S = fF1; : : : ; Fkg the union of the version sets of
Rd. Then, the NOP for d has the execution condition

F =
_

i2f1;:::;kg

Fi

This relation permits explicit computation of NOPs,
once the set of all RTs is known. The instruction set
model for a given ASIP comprises the union of all RTs
and NOPs. During code generation, binary code for
instructions can be emitted by deriving those control
bit settings, for which an execution condition is true.
Since all versions of execution conditions are kept in
the model, it permits postponing parts of the code se-
lection phase to the code compaction phase, in which
an appropriate version can be selected.

5 Example
This section demonstrates the capabilities of the

above instruction set model using a real-life processor
from the DSP domain: The instruction format of Texas
Instruments' TMS320C25 DSP [13] incorporates all of
the peculiarities mentioned in section 2, and therefore
may serve as a "worst-case" example. The TMS320C25
has a heavily encoded 16-bit instruction word and com-
prises several residual control registers such as PM for
certain product modes, or OVM for activation of satu-
rating arithmetic. We use some of its total of 133 in-
structions for exemplifying how the di�erent aspects
of the instruction set are captured in the model (table
1). Instead of noting versions as Boolean functions F ,
we use the bitstrings for the corresponding instruction
word and residual control register settings, i.e. those
settings for which F becomes true. 2 Due to the
concept of versions, resource and instruction set

2
x denotes don't care, c denotes an arbitrarybut �xed setting,

e.g. for immediate constants. PR, TR, B0, PM, ACCU, AR, ARP denote
TMS320C25 registers and register �les.

No. RT/NOP version(s)

(1) PR := TR * sign ext(imm.const.) 101ccccccccccccc

(2) PR := B0[AR[ARP]] * B0[AR[ARP]] 001110011ccccccc

(3) PM := imm.const. 11001110000010cc

(4) PR := TR * B0[AR[ARP]] 110011111ccccccc, 001110001ccccccc, 001110111ccccccc
(5) ACCU := ACCU - PR 00111011xxxxxxxx

(6) NOP ACCU xx11x000xxxxxxxx

(7) ACCU := ACCU + (PR SHR 6) 00111001xxxxxxxx ^ PM = 11

Table 1: Some operations and versions in the TMS320C25 DSP instruction set model

con
icts cannot be distinguished in our model. Both
are re
ected by incompatibility of versions. RTs no.
(1) and (2) of table 1 write to the same destination PR

and therefore have a resource con
ict. RTs (2) and (3)
are resource-compatible, but have an instruction set
con
ict due to contradicting partial instruction word
settings.

RT no. (4) has three alternative versionswhich arise
from macro-instructions of the TMS320C25. Version 3
of RT (4) has a side e�ect on register ACCU: RT (5)
will also be executed. When RT (4) is generated dur-
ing code generation, selection of its appropriate version
depends on the current context: When RT (5) hap-
pens to be also generated, version 3 will execute both
RTs in parallel. In contrast, when ACCU contains a
live value that must not be destroyed, version 2 should
be selected, which also executes NOP (6) for destina-
tion ACCU. In this way, version selection during code
generation may enhance the code quality by increasing
the parallelism. The Record compiler uses an Inte-
ger Programming model for exploitation of alternative
versions and prevention of undesired side e�ects during
code compaction [5].

RT no. (7) exempli�es residual control. Execution
of that RT requires the 2-bit product mode register PM
to have the binary value 11. In order to select RT (7),
code must be generated which loads PM in an ealier
machine cycle. For instance, RT (3) may serve this
purpose.

Although the total number of TMS320C25 opera-
tions becomes relatively large in our model (approx.
2500 compared to 133), it is constructed within only
30 CPU seconds on a SPARC-20, using the technique
described in [4].

6 Conclusion
A new instruction set model for ASIPs with a pro-

grammablemicrocoded controller architecture was pre-
sented. Compared to previous approaches, the model
is capable of capturing a broad range of instruction
formats and peculiarities in the instruction set, such as
side e�ects and residual control. This makes it suitable
for usage in a retargetable code generator, which must
handle varying processor architectures and instruction
formats. By making alternative code versions for reg-
ister transfers and no-operations explicit, a means of
phase coupling between code selection and code com-

paction is provided, permitting to achieve higher code
quality. Furthermore, the model can be automatically
generated from a HDL processor description.

References
[1] M. Strik, J. van Meerbergen: E�cient Code Generation for In-

House DSP Cores, European Design & Test Conference (ED &
TC), 1995, pp. 244 { 249

[2] P. Marwedel, G. Goossens (eds.): Code generation for embed-

ded processors, Kluwer Academic Publishers, June 1995

[3] A. Ki
i, G. Goossens, H. De Man: A Uni�ed Scheduling Model

for High-Level Synthesis and Code Generation, European De-
sign & Test Conference (ED & TC), 1995, pp. 234 { 238

[4] R. Leupers, P. Marwedel: A BDD-based frontend for retar-

getable compilers, European Design & Test Conference (ED &
TC), 1995, pp. 239 { 243

[5] R. Leupers, P. Marwedel: Time-constrained Code Compaction
for DSPs, 8th International Symposium on System Synthesis
(ISSS), 1995

[6] S. Davidson, D. Landskov, B. D. Shriver, P. W. Mallet: Some
experiments in local microcode compaction for horizontal ma-

chines, IEEE Trans. on Computers, vol. 30, No. 7, 1981, pp. 460
{ 477

[7] L. Nowak: Graph Based Retargetable Microcode Compilation

in the MIMOLA Design System, 20th Annual Microprogram-
ming Workshop (MICRO-20), 1987, pp. 126 { 132

[8] J. van Praet, G. Goossens, D. Lanneer, H. De Man: Instruction
Set De�nition and Instruction Selection for ASIPs, 7th Int.
Symp. on High-Level Synthesis, 1994, pp. 11 { 16

[9] C. Liem, T. May, P.G. Paulin: Instruction Set Matching and

Selection for DSP and ASIP Code Generation, European De-
sign & Test Conference (ED & TC), 1994, pp. 31 { 37

[10] T. Wilson, G. Grewal, D. K. Banerji: An integrated approach

to retargetable code generation, 7th Int. Symp. on High-Level
Synthesis, 1994, pp. 70 { 75

[11] A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, J. A. G.
Jess: Con
ict Modelling and Instruction Scheduling in Code

Generation for In-House DSP Cores, 32nd Design Automation
Conference (DAC), 1995, pp. 593 { 598

[12] A. Aho, M. Ganapathi: Code Generation using Tree Match-

ing and Dynamic Programming, ACM Trans. on Programming
Languages and Systems, vo. 11, no. 4, 1989, pp. 491 { 516

[13] TMS320C2x User's Guide, Rev. B, Texas Instruments, 1990

