
Processor-Core Based Design and Test

Peter Marwedel

Universit�at Dortmund, Informatik XII

44221 Dortmund, Germany

e-mai`: marwede`@`s12.informatik.uni-dortmund.de

Abstract| This tutorial responds to the rap-

idly increasing use of various cores for implement-

ing systems-on-a-chip. It speci�cally focusses on

processor cores. We will give some examples of

cores, including DSP cores and application-speci�c

instruction-set processors (ASIPs). We will mention

market trends for these components, and we will touch

design procedures, in particular the use compilers.

Finally, we will discuss the problem of testing core-

based designs. Existing solutions include boundary

scan, embedded in-circuit emulation (ICE), the use of

processor resources for stimuli/response compaction

and self-test programs.

I. Introduction

In response to the increasing size of advanced chips and
the continuing need for fast design cycles, a major amount
of new designs is using complex cores (rather than stand-
ard cells and macroblocks) as building blocks. Such cores
include: processor cores, communication cores, bus inter-
face cores, and memory cores. These cores are available
both from vendors and within system companies. Applic-
ations can be found in most segments of the embedded
system market, such as automotive electronics and tele-
communications.
Due to space and time constraints, the current text fo-

cusses on processor cores. Essential advantages of these
processors include their high exibility, short design time
and (in the case of o�-the-shelf processors) full-custom
layout quality. Furthermore, they allow an easy imple-
mentation of optional product features as well as easy
design correction and upgrading. Also, processors are
frequently used in cases where the systems must be ex-
tremely dependable. In such cases, the re-use of the design
of an o�-the-shelf processor greatly simpli�es dependab-
ility analysis.

II. Processor core examples

Core processors include core versions of general purpose
processors (such as core versions of various RISC architec-
tures [17, 1, 35], core versions of digital signal processors
(DSPs) and application-speci�c instruction set processors

(ASIPs). A classi�cation of processors is shown in �g. 1.
This processor cube results from using three main criteria
for classifying processors: availability of domain-speci�c
features, availability of application-speci�c features, and
the form in which the processor is available.

core (CAD cell)

Processor
available as

Package

Domain−specific
features

Application−
specific
features

None 
(General purpose
architecture)

possible
(ASIP)

ASIP

CORE

D
S

P

for DSP

Impossible
(off−the−
shelf proc.)

Fig. 1. Cube of processor types

The meaning of these dimensions and their values is as
follows:

1. Form in which the processor is available

At every point in time, the design and fabrication
processes for a certain processor have been completed
to a certain extent. The two extremes considered
here are represented by completely fabricated, pack-
aged processors and by processors which just exist as
a cell in a CAD system. The latter is called a core
processor. In-house cores are proprietary cores avail-
able just within one company. They usually have
some architectural exibility. Cores can be instan-
tiated from the library to become part of a larger
system-on-a-chip. In addition to cores, systems-on-
a-chip may contain RAMs, ROMs, and special accel-



erators. With these, much of the performance pen-
alty caused by the use of exible processors can be
compensated.

2. Domain-speci�c features

Processors can be designed to be domain-speci�c.
Possible domains are digital signal processing or
control-dominated applications.

DSP processors [22] contain special features for sig-
nal processing: multiply/accumulate instructions,
specialized (\heterogenous") register sets, multiple
ALUs, special DSP addressing modes (for example,
for ring bu�ers), and saturating arithmetic opera-
tions.

3. Application-speci�c features

At any point in time, the internal architecture of a
processor may either be �xed or still allow con�gur-
ations to take place.

The two extremes considered here are: processors
with a completely �xed architecture and ASIPs. Pro-
cessors with a �xed architecture or o�-the-shelf pro-
cessors have usually been designed to have an ex-
tremely e�cient layout. Some of them have passed
veri�cation procedures, allowing them to be em-
ployed in safety-critical applications.

ASIPs are processors with an application-speci�c in-
struction set. Depending upon the application, cer-
tain instructions and hardware features are either im-
plemented or unimplemented. Also, the de�nition
of ASIPs may include generic parameters. By \gen-
eric parameters" we mean compile-time parameters
de�ning, for example, the size of memories and the
bitwidth of functional units. A very nice set of refer-
ences to ASIPs is contained in a recent contribution
by Paulin [39]. A well-known example is the EPICs
architecture [51]. Optimal selection of instructions,
hardware features and values for parameters is a topic
which has recently received interest in the literature
[2, 42, 16]. ASIPs have the potential of requiring less
area or power than o�-the-shelf processors. Hence,
they are popular especially for low-power applica-
tions.

In addition to the three coordinates, there are of course
other criteria for classifying processors.

III. Market trends

Statistical data concerning the increased used of pro-
cessors for implementing information processing systems
is available through the web pages of EE Times [10] and
papers published by Paulin [38, 41, 40]. According to
Paulin, about 82 % of all designs analysed in a study at
Bell Northern Research (BNR) were essentially based on

processors. In recent papers, a clear trend towards ASIPs
has been identi�ed.

IV. Designing with core processors

Due to the trend towards using cores in general and
processor cores in particular, it is important to analyse
design procedures for systems containing processor cores.

Codesign

From a conceptual point of view, designers start with
an overall behavioural speci�cation. Standard languages
such as C or VHDL are currently very popular for this
step. Recently introduced graphical or semi-graphical
languages [12], aim at faciliating this step. The speci�c-
ation is then partitioned into software parts and hard-
ware parts. Di�erent approaches to this step of hard-
ware/software co-design have been described in an excel-
lent survey by Buchenrieder [7]. Software parts (e.g. a
fraction of the C program) are later compiled onto an en-
visioned processor. Hardware parts are used as input to
a hardware synthesis system. A survey on codesign has
recently been presented by R. Gupta [14].

Cosimulation

In the codesign environment, simulations are needed at
di�erent levels. First of all, the speci�cation has to be
simulatable. This is required in order to check whether
or not the speci�ed algorithm really performs the inten-
ded function. Later, the generated code will be simulated
using an instruction set model of the processor. This sim-
ulation can take the generated hardware parts into ac-
count. Finally, the processor may also be simulated at the
structural level. Achieving high simulation speeds also an
important issue. See, for example, Valderrama [50].

Runtime environment

Embedded systems using board-level integration fre-
quently take advantage of available real-time operating
systems in order to provide an environment suitable for
running programs on processors. For chip-level integra-
tion, storage requirements for current operating systems
do not allow this solution. The knowledge about applica-
tion programs is exploited in an IMEC approach for avoid-
ing those bulky operating systems [8].

Real-time response

Systems-on-a-chip have to guarantee a certain real-time
response to external events. The issue of specifying, ana-
lyzing and checking timing constraints is covered, for ex-
ample, in books by Ku, De Micheli and Gupta [19, 13],
and papers by Boriello [4] and by Li, Malik, Wolfe [30].



Compilers

It has been observed (see e.g. Paulin [38]) that the ma-
jority of processor-based designs is implemented using as-
sembly languages. The reason for this is the poor perform-
ance of current compilers for DSPs. Quantitative com-
parisons between compiler-generated code and assembly
language libraries provided by the processor vendors have
been published by Zivojnovic [52]. Recent research has
aimed at the design of new compiler optimizations taking
the special characteristics of the application area and the
target processors into account.

A number of pointers to such algorithms is contained
in a paper by Liao, Devadas [31]. Improved address as-
signment techniques have recently been published by Liao
[32], Liem [34] and Leupers [27]. Code compaction for an
existing machine has been studied recently by Leupers
[29], Timmer [49], Strik [46], and Nicolau [37]. Register
and memory bank assignment studied, for example, by
Rimey [45], by Bradlee [5], by Hartmann [15], and by
Malik [47].

Currently, compilers for �xed target architectures are
employed. However, they do not provide the exibility
for experimenting with di�erent target processors. They
do not allow trying out di�erent ASIP parameters, and
leaving out or adding certain processor features. Code
generation which supports this process has to be retarget-
able. \Retargeting" in this context means: fast and easy
retargeting, simple enough to be handled by the user. In
order to provide compiler support for ASIPs, a few so-
called retargetable compilers have been designed. There
is a book focussing on retargetable compilers [36]. For
details about such compilers see Paulin [33], Fauth [11],
Leupers [29, 28] and Goossens [21, 43].

V. Testing

Testing of systems-on-a-chip comprising cores is a very
di�cult issue. Many signals which were previously dir-
ectly accessable are now only available within a chip. In
response to the demands of test engineers, boundary scan
is available for most cores. This technique originally was
intended to be used at the board level and now found a
new application.

As a replacement for board-level in-circuit emulation
(ICE), so called embedded ICE is available for some cores.
Such cores allow monitoring selected signals, such as
memory or program counter-related signals. As in the
case of chip-level boundary scan, there seems to be no
agreement between companies, whether or not the ex-
penses for the required additional test hardware can be
tolerated.

In the case of processor cores, the existence of data
path resources can be exploited for testing. For example,
Rajski [44] and Kunzmann [20] propose techniques for
test pattern generation and compaction using data path

resources. Alternatively, self-test programs can be ex-
ecuted on processor cores. Functional test program gen-
eration was �rst proposed by Thatte and Abraham [48]
and later re�ned [6]. Knowledge about the structure was
exploited by Lee and Patel [23, 25, 24, 26] and Kr�uger [18].
A new approach using the constraint logic programming
language ECLIPSE [9] has been implemented by Bieker
[3].

VI. Conclusion

Currently, there is a signi�cant shift in how complex
systems are designed. The use of cores, and -in particular-
the use of processor cores, is an essential characteristic of
this shift. This shift demands for new CAD techniques.
It is no longer feasible to restrict the designer's scope to
hardware design. For example, compiler- and operating
system-related issues have to be taken into account. This
text aims at motivating research into this direction.

References

[1] Advanced RISC Machines Ltd. ARM. web pages.
http://www.arm.com/, 1995.

[2] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi.
An ASIP instruction set optimization algorithm with func-
tional module sharing constraint. Int. Conf. on Computer-
Aided Design (ICCAD), pages 526{532, 1993.

[3] U. Bieker and P. Marwedel. Retargetable self-test program
generation using constraint logic programming. 32nd Design
Automation Conference, 1995.

[4] G. Boriello. Software scheduling in the co-synthesis of reactive
real-time systems. Proceedings of the 31th Design Automation
Conference, pages 1{4, 1994.

[5] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating
register allocation and instruction scheduling for RISCs. Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 122{131, 1991.

[6] D. Brahme and J. A. Abraham. Functional testing of micro-
processors. IEEE Trans. on Computers, pages 475{485, 1984.

[7] K. Buchenrieder. Hardware/Software Co-Design. ITT Press
Hartenstein, ISBN 3-929814-07-4, 1995.

[8] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software
synthesis for real-time information processing systems. in: P.
Marwedel, G. Goossens (ed.): Code Generation for Embedded
Processors, Kluwer, 1995.

[9] European Computer Research Center ECRC. ECLIPSE
3.4 user manual, ECRC common logic programming system.
ECRC GmbH, Munich, 1994.

[10] EE Times. web pages. http://techweb.cmp.com/techweb/eet-
/embedded/embedded.html, 1995.

[11] A. Fauth and A. Knoll. Automated generationof DSP program
development tools using a machine description formalism. Int.
Conf. on Audio, Speech and Signal Processing, 1993.

[12] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Speci�cation
and design of embedded systems. Prentice Hall, 1994.

[13] R. Gupta. Co-synthesis of Hardware and Software for Embed-
ded Systems. Kluwer Academic Publishers, 1995.

[14] R. Gupta. Hardware software co-design of embedded systems.
Tutorial at the VLSI Design Conference, Bangalore, 1996.



[15] Hartmann. Combined scheduling and data routing for pro-
grammable ASIC systems. EDAC, pages 486{490, 1992.

[16] I.-J. Huang and A. Despain. Generating instruction sets and
microarchitectures from applications. Int. Conf. on CAD (IC-
CAD), pages 391{396, 1994.

[17] Intel Corp. web pages. http://www.intel.com/product/tech-
briefs/index.html, 1996.

[18] G. Kr�uger. A tool for hierarchical test generation. IEEE Trans.
on CAD, Vol. 10, pages 519{524, 1991.

[19] D. Ku and G. De Micheli. High Level Synthesis Under Timing
and Synchroniszation Constraints. Kluwer Academic Publish-
ers, 1992.

[20] A. Kunzmann. Test pattern generation hardware motivated by
pseudo-exhaustive test techniques. EURO-DAC, pages 240{
245, 1994.

[21] D. Lanneer, J. Van Praet, A. Kii, K. Schoofs, W. Geurts,
F. Thoen, and G. Goossens. CHESS: retargetable code gen-
eration for embedded DSP processors. in: P. Marwedel, G.
Goossens (ed.): Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995.

[22] E. Lee. Programmable DSP architectures, parts i and ii. IEEE
ASSP Magazine, Oct. 1988 & Jan. 1989, 1988.

[23] J. Lee and J.H. Patel. An architectural level test generator for
data path faults and control faults. Proc. of the Intern. Test
Conference, pages 729{738, 1991.

[24] J. Lee and J.H. Patel. Hierarchical test generation under in-
tensive global functional constraints. Proc. 29th Design Auto-
mation Conf., pages 261{266, 1992.

[25] J. Lee and J.H. Patel. An instruction sequence assembling
methodology for testing microprocessors. Proc. of the Intern.
Test Conference, pages 49{58, 1992.

[26] J. Lee and J.H. Patel. Architectural level test generationfor mi-
croprocessors. IEEE Trans. on Computer-Aided Design, pages
1288{1300, 1994.

[27] R. Leupers. Algorithms for address assigment in DSP code
generation. ICCAD, 1996.

[28] R. Leupers and P. Marwedel. A BDD-based frontend for retar-
getable compilers. European Design & Test Conference, 1995.

[29] R. Leupers and P. Marwedel. Time-constrained code compac-
tion for DSPs. Int. Symp. on System Synthesis (ISSS), 1995.

[30] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of
embedded software with instructioncache modeling. Int. Conf.
on Computer-Aided Design (ICCAD), pages 380{387, 1995.

[31] S. Liao, S. Devadas, K. Keutzer, and S. Tijang. Code optim-
ization techniques for embedded DSP microprocessors. 32nd
Design Automation Conference, pages 599{604, 1995.

[32] S. Liao, S. Devadas, K. Keutzer, S. Tijang, and A. Wang. Stor-
age assignment to decrease code size. Programming Language
Design and Implementation (PLDI), 1995.

[33] C. Liem and P. Paulin. FlexWare { A exible �rmware develop-
ment environment. Proc. European Design & Test Conference
(EDAC-ETC-EUROASIC), pages 31{37, 1994.

[34] C. Liem, P. Paulin, and A. Jerraya. Address calculation for
retargetable compilation and exploration of instruction set ar-
chitectures. to appear: 33rd Design Automation Conference,
1996.

[35] LSI Logic Inc. web pages. http://www.lsil.com/products/-
unit5 5.html, 1996.

[36] P. Marwedel. Introduction. in: P. Marwedel, G. Goossens
(ed.): Code Generation for Embedded Processors, Kluwer,
1995.

[37] S. Novack, A. Nicolau, and N. Dutt. A uni�ed code gener-
ation approach using mutation scheduling. in: P. Marwedel,
G. Goossens (ed.): Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995.

[38] P. Paulin. DSP design tool requirements for the nineties: An
industrial perspective. High-Level Synthesis Workshop, Dana
Point, Cal., 1992.

[39] P. Paulin, M. Cornero, C. Liem, F. Na abal, C. Donawa,
S. Sutarwala, and C. Valderrama. Trends in embedded sys-
tems technology: An industrial perspective. in: M.G. Sami, G.
De Micheli: Hardware/Software Codesign, Kluwer Academic
Publishers, 1996.

[40] P. Paulin and C. Liem. Embedded systems: Trends and tools.
Tutorial at the European Design & Test Conference, 1996.

[41] P. Paulin, C. Liem, T. May, and S. Sutarwala. DSP design tool
requirements for embedded systems: A telecommunications in-
dustrial perspective. Journal of VLSI Signal Processing, pages
23{47, 1995.

[42] J. V. Praet, G. Goossens, D. Lanneer, and H. De Man. Instruc-
tion set de�nition and instruction selection for ASIPs. 7.th Int.
Symposium on High-Level Synthesis, pages 11{16, 1994.

[43] J. V. Praet, D. Lanneer, G. Goossens, W. Geurts, and H. De
Man. A graph based processor model for retargetable code
generation. European Design & Test Conference, 1996.

[44] J. Rajski and J. Tyszer. Multiplicative window generators of
pseudo-random test vectors. European Design & Test Confer-
ence (ED&TC), 1996.

[45] Rimey and Hil�nger. Lazy data routing and greedy scheduling
for application-speci�c processors. 21st Annual Workshop on
Microprogramming (MICRO-21), pages 111{115, 1988.

[46] M. Strik, J. van Meerbergen, A. Timmer, and J. Jess. E�cient
code generation for in-house DSP cores. European Design &
Test Conference, pages 244{249, 1995.

[47] A. Sudarsanam and S. Malik. Memory bank and register al-
location in software synthesis for ASIPs. Intern. Conf. on
Computer-Aided Design (ICCAD), pages 388{392, 1995.

[48] S.M. Thatte and J.A. Abraham. Test generation for micropro-
cessors. IEEE Trans. on Computers, pages 429{441, 1980.

[49] E. Timmer. Conict modelling and instruction scheduling in
code generation for in-house DSP cores. 32th Design Automa-
tion Conference, 1995.

[50] C.A. Valderrama and et al. A uni�ed model for co-
simulation and co-synthesis of mixed hardware/software sys-
tems. European Design & Test Conference, 1995.

[51] R. Woudsma. EPICS, a exible approach to embedded DSP
cores. Int. Conf. on Signal Processing and Applications and
Technology, 1994.

[52] V. Zivojnovic and et al. DSPstone: A DSP-oriented bench-
marking methodology. Proc. of the Intern. Conf. on Signal
Processing and Technology, 1994.


