
Exploiting Isomorphism for
Speeding-Up Instance-Binding
in an Integrated Scheduling,
Allocation and Assignment
Approach to Architectural
Synthesis

Birger Landwehr�, Peter Marwedel�, Ingolf Markhof�,Rainer D�omer��

�Dept. of Computer Science XII,
University of Dortmund, D-44221 Dortmund, Germany
email: flandwehr,marwedel,markhofg@ls12.informatik.uni-dortmund.de

��Dept. of Information and Computer Science,
University of California, Irvine, CA 92697-3425, USA
email: doemer@ics.uci.edu

Abstract
Register-Transfer (RT-) level netlists are said to be isomorphic if they can be
made identical by relabeling RT-components. RT-netlists can be generated by
architectural synthesis. In order to consider just the essential design decisions,
architectural synthesis should consider only a single representative of sets of
isomorphic netlists. In this paper, we are using netlist isomorphism for the
very �rst time in architectural synthesis. Furthermore, we describe how an
integer-programming (IP-) based synthesis technique can be extended to take
advantage of netlist isomorphism.

Keywords
IP-based architectural synthesis, netlist isomorphism, instance binding, nor-
mal form

1 INTRODUCTION

Early approaches to architectural synthesis used simpli�ed cost functions for
guiding the search for e�cient RT-architectures. In particular, the e�ect of
interconnections between RT-level components has frequently been neglected.
The e�ect of this can be quite dramatic (McFarland 1987).
If interconnections have to be taken into account, RT-components must

cIFIP 1996. Published by Chapman & Hall

2 Exploiting Isomorphism for Speeding-Up Instance-Binding

be uniquely labeled in order to identify the end points of interconnections�.
Labels are elements of discrete sets, e.g. integers. Now, even if we restrict
ourselves to integers, RT-structures can be labeled in a number of ways. Fig.
1 shows two RT-structures with labeled RT-components.

+,−

+,−

9

6

+,−

+,−

15

7

Figure 1 Isomorphic RT-Structures

Assuming that components with equal functionality are actually instances
of the same component library element, these structure are obviously very
\similar". In fact, we may de�ne a function on the left structure such that
its application replaces component labels by the corresponding labels in the
right structure. Structures di�ering only by their labels are called isomorphic.
Isomorphism has been used for graphs, �nite state machines (Kohavi 1987)
etc. It allows us to de�ne the following equivalence relation:
Def. : Let n1 and n2 be two netlists. n1 and n2 are said to be renaming-

equivalent (denoted as n1 � n2) if and only if there exists a bijection f on
n1 such that f(n1) = n2.
In this de�nition, f is supposed to replace only the component labels in the

netlist that is passed as an argument. Relation � is an equivalence relation
and hence de�nes equivalence classes. For architectural synthesis, component
labeling becomes important, if instance binding is considered. Instance bind-
ing is the process of binding operations of a given behavioural description to
hardware components. These components are usually instances of library ele-
ments. Instance-binding is required if any of the following aspects are taken
into account:

1. Interconnect costs: Architectural synthesis systems just generating bind-
ings between operations and component types cannot model the cost of
connecting component instances. Hence, interconnection costs can only be
taken into account if instance binding is performed.

2. Prede�ned instance binding:Manually prede�ned bindings have been shown
to have a positive e�ect on the resulting design quality (Marwedel and
Schenk 1989, Arnstein and Thomas 1994). Such bindings can also be gen-
erated in interactive synthesis environments (Jerraya et al. 1993).

�For the sake of simplicity, we avoid the discussion about labeling component ports in this
paper.

Introduction 3

Due to the above reasons and due to the recent advances in architectural
synthesis, we believe that instance binding models will be studied in more
detail in the future. We will show how execution times can be shortened for
these.
In particular, we will study instance binding based on an integer program-

ming (IP) model. IP-based models exhibit a number of interesting features,
including (a) the existence of a formal basis for such models, (b) the ability
of integrating the three main subtasks of behavioural synthesis and a number
of extensions, and (c) the fact that the model of architectural synthesis is -
to a certain extent - decoupled from the algorithm implementing it. IP-based
synthesis has in many cases been considered to be computationally expens-
ive. However, we have found that IP-based synthesis is a very good building
block generating extremely e�cient solutions in acceptable computation time.
NP-completeness of integer programming is not a problem in our synthesis
system OSCAR (see (Landwehr et al. 1994)) based on integer programming.
Runtimes remain in an acceptable range due to 1.) using all speed-up tech-
niques of the IP model that are possible, 2.) considering only speci�cation
segments of a certain size and using the result for one segment as a starting
point for the next segment, and 3.) allowing the user to switch to a relaxed
linear programming model.
Due to items 2 and 3, optimality can be lost. However, the advantages of

an easy integration of advanced features such as built-in chaining (Marwedel
et al. 1996) are kept, regardless of which optimization mode is used.
One key speed-up technique is the contribution described in this paper. In

order to illustrate how we have been able to reduce running times, consider
the following typical approach to instance binding based on decision variables
xi;j;k. The variables are de�ned as follows:

xi;j;k =

�
1; if op. j is started on component instance k at c-step i
0; otherwise (1)

A problem which is common to several integrated scheduling and assign-
ment approaches (Landwehr et al. 1994, Hafer and Parker 1983) is the fact
that the number of instances of a certain component type is usually unknown
before scheduling. Hence, for each component type m, a certain number of
\potentially required" instance indices fkm;1; km;2; :::km;umg must be used in
the IP-model. In this context, um denotes an upper bound on the number of
instances ofm. Upper bounds um may be known for a variety of reasons. They
may have been de�ned by the user, computed from the DFG, or computed
from the costs of previously generated faster solutions.
Now suppose that operation j = 5 represents an addition. For the sake

of simplicity let us assume that an ASAP/ALAP analysis has revealed that
i = 2 will be the only feasible control step for j = 5. Also, let us assume that
an upper bound of 3 has been computed for the number of adders and that
instance names 6,7 and 9 have been reserved for these adders. Then, either
x2;5;6; x2;5;7 or x2;5;9 have to be 1 for the �nal design (see �g. 2).
Let us now assume that our upper bound for the number of adders was

4 Exploiting Isomorphism for Speeding-Up Instance-Binding

+j=5
+ + +

k=6 k=7 k=9

?
?

?

Figure 2 Possible bindings for j = 5

not tight, and that only two adders are actually required. Then, common
instance-binding models will allow three types of solutions: a) solutions in
which adders 6 and 7 are present, b) solutions in which adders 6 and 9 are
present, and c) solutions in which adders 7 and 9 are present.
Obviously, it would be su�cient to consider only one type of solutions,

because all the others will be equivalent in the sense de�ned above.
Note that, in this case, we can reduce the complexity by a factor of three

by exploiting isomorphism. Larger savings can be obtained if there are more
operations or component types. For example, a large number of potentially
required instance names has to be reserved if there are adders with di�erent
speeds. With these savings, we can avoid one reason due to which the solution
space a �rst sight seems to explode exponentially.
The reduction of complexity is not only possible for the model proposed by

Gebotys. Actually, according to our knowledge, none of the publications on
instance binding mentions techniques for taking advantage of isomorphism.
The remainder of this paper is organized as follows: Section 2 describes

related work. Section 3 introduces the notation for our mathematical synthesis
model. In section 4, we explain how isomorphism can be exploited in our
model. Section 5 lists some practical results. The paper ends with a conclusion.

2 RELATED WORK

One of the early approaches to architectural synthesis is the IP-model of Hafer
(Hafer and Parker 1983). The model does not use any kind of normal form for
labeling components and hence implicitly analyses multiple solutions which
are isomorphic.
Component labeling is also used in an approach based on simulated anneal-

ing (Devadas and Newton 1989). In that approach, operations are rebound
to various control steps and RT-components. Again, the model does not use
any kind of normal form for labeling components and isomorphic solutions
are analysed.
Just like in the case of Hafer's IP model, Gebotys' approach to interconnect

minimization (Gebotys and Elmasry 1991) using integer programming does
not take advantage of isomorphism.
Also, no information about normal forms for component labeling is available

for an interconnect minimization method based on a 3D-representation of the
binding model (Stok 1990).
Note that these systems have placed the very much needed emphasis on

interconnect minimization. The proposed technique aims at providing speed-
ups for exactly these types of systems.

Synthesis Model 5

The current paper demonstrates the key concept by using integer program-
ming as an example. However, the same concept can also be used with other
approaches for searching solution spaces.

3 SYNTHESIS MODEL

3.1 General De�nitions of Terms

Synthesis de�nes a mapping from behavioural descriptions to structural de-
scriptions. This has frequently been described by arrows in the so-called Y-
chart (Gajski and Kuhn 1983) describing the di�erent domains in electronic
design (see �g. 3).

structure

behaviourlayout
J

K

G

M

instance type

type

optype
operation

component

executable on

m
_executable on

Figure 3 Naming conventions

We assume that the behaviour of the system under design is de�ned by a
dataow-graph (DFG). The nodes of this graph denote operations such as ad-
ditions and multiplications. More precisely, these nodes contain instances of
operation types, such as \+" or *". Let the nodes of the dataow graph
be uniquely labeled with integers from the corresponding index set J =
f1::jmaxg. We will use j as a variable to denote such integers. Furthermore, let
used operation types be characterized by an index set G. Let function optype
denote the operation type of DFG-nodes (see �g. 3).
Furthermore, we assume that the structure is described by a netlist contain-

ing component instances k 2 K = f1::kmaxg. Each instance is inherited from
a corresponding library component type. Let variables m 2M denote library
component types. Function type denotes the type of a certain instance:

type : K !M

The functionality of component typem is described by relationm executable
on:
8m 2 M; g 2 G : g m executable on m () component type m is able to

perform operation g (this information is available from the library).
From this relation, we derive the corresponding relation executable on among

instances:
Def.: j 2 J executable on k 2 K () optype(j) m executable on type(k).

6 Exploiting Isomorphism for Speeding-Up Instance-Binding

Note that executable on and m executable on are relations, not functions.
There may be several matching component types for each operation type and
vice versa. This means: our model supports a general library, including multi-
functional units, mixed-speed operators, pipelining etc.
Most synthesis tools do not only generate structure. They also generate a

binding between operations and control steps in which they are started.
The synthesis task can now be modelled as the problem of binding each

operation j to a starting control step i and an executing resource k. In the
following, we will show how the complexity of this problem can be reduced by
exploiting isomorphism. For the sake of simplicity, we will use a normal form
for labeling component instances.

4 EXPLOITING ISOMORPHISM

As a �rst step, we require that the set of instance indices fkm;1; km;2; :::km;umg
forms a contigous range of integers. This means that, without loss of optimal-
ity, we restrict ourselves to functions type which are step functions. Moreover,
we restrict ourselves to increasing step functions: We de�ne `m and rm for
each m 2M as

`1 = 1 (2)

r1 = u1 (3)

8m > 1 : `m = (rm�1 + 1) (4)

8m > 1 : rm = (`m + um) (5)

Then, type can be de�ned as type (k) = m () `m � k � rm
The next step for exploiting isomorphism is to restrict ourselves, without

loss of optimality, to solutions in which integer label `m + n is used only if
there are n or more instances of type m. This means \lower indices are
used �rst". This can be expressed easily, if the presence or non-presence of
a component with a certain index is explicitly modelled. For example, in our
synthesis system OSCAR (see (Landwehr et al. 1994)), presence of instance
k is modelled by a variable bk:

bk =

�
1; if instance k is present in a solution
0; otherwise

(6)

A straightforward approach for using \lower indices �rst" could consist in
increasing the costs of components by a very small amount. One could de�ne,
for example, the cost of the nth component of type m as:

cost (instance `m + n) = cost(type m) + n � �
Where: 8m;n : n � � < cost(type m)
In contrast, we propose another method for \using lower indices �rst". In

(Marwedel et al. 1995) we show that the run-time of our approach is signi-

Results 7

�cantly smaller than the straightforward approach. In our approach, we use
additional constraints.
With additional constraints, it is quite easy to use \lower indices �rst". We

just have to add the following constraints�:

8m 8k 2 [`m::(rm � 1)] : bk � bk+1 (7)

Limitations: The current approach to using a kind of normal form for
labeling components assures that, for each set of isomorphic netlists, only a
single representative is considered. The concept of renaming-equivalent netl-
ists can be extended into a more general concept of equivalence. For example,
our approach does not catch e�ects of \equivalent" wiring.

5 RESULTS

Using our OSCAR system as an example, we have analysed the actual speed-
up. In order to speed up synthesis, we used a cost function considering only the
cost of functional units. Constraints included: precedence constraints, func-
tional unit constaints, assignment constraints and the renaming constraints
(see (Landwehr et al. 1994) for details).
For the elliptical wave �lter benchmark and another example for comput-

ing determinants, the speed-ups were measured on a Sun SPARCstation-20
running at 60 MHz.
We considered three di�erent IP-solvers:

� lp solve, version 2.0.1:
Program lp solve from the University of Eindhoven (Berkelaar 1992) is
able to solve mixed integer/linear programs. We have modi�ed the original
version 2.0 such that variables bk are considered �rst.

� Beta-release of osl solve, release 2:
The next solver which we considered, is based on the commercial OPTIM-
IZATION SUBROUTINE LIBRARY (osl) �. For this solver, we did not
specify any sequence for considering variables.

� lp solve, version 1.0:
This is an earlier version of lp solve. This version has not been modi�ed
to consider certain variables �rst. Since the original version 2.0 of lp solve
does not perform any better than version 1.0 if our examples are used as
input, the slower execution speed of version 1.0 is essentially caused by the
fact that it is does not necessarily consider variables bk �rst.

Figures 4 and 5 represent the speed-up obtained for our two examples and

�The �rst p b-variables for component m can be set to 1 and the number of additional
constraints can be reduced if p is the known lower bound (Ohm et al. 1995) on the number
instances of type m (this was not exploited in the following).
�Copyright: IBM

8 Exploiting Isomorphism for Speeding-Up Instance-Binding

the case of using constraints (7). The speed-up dimension had to be parti-
tioned in order to provide a reasonable visualization of the high speed-up
values.

Figure 4 Summary of speed-ups for elliptical wave �lter

Figure 5 Summary of speed-ups for computing 3 by 3 determinantes

Note that the results have been obtained with relatively small libraries and
that the speed-up is expected to increase with the size of the library.

Conclusion 9

6 CONCLUSION

In this paper, we have presented a technique for exploiting netlist isomorphism
in architectural synthesis. With this technique, only one representative for
each class of equivalent solutions is generated. The technique presented can be
combined with a variety of synthesis models in order to reduce the run-time of
architectural synthesis. Hence, the range of applications of IP-based synthesis
is extended despite the fact that synthesis will still be NP-hard. Experimental
results have shown that, for the examples we considered, additional constraints
result in a larger runtime reduction than cost function modi�cations. In the
OSCAR system, the technique made synthesis of larger examples feasible.
We believe that the concept of netlist equivalence reaches well beyond the

current approach. In particular, it is rather straightforward to apply the ap-
proach proposed in this paper to non-IP based synthesis systems. Also, the
current technique has applications in mapping computations to processors in
a multi-processor system. By restricting design systems to consider only the
essential decisions, (decisions which may actually a�ect the result), a lot of
computation time can be saved. This might be the right way to go in order
to improve phase-coupling in di�erent design systems.
Finally, we would like to mention one recommendation for modeling. Our

results clearly indicate that design constraints (such as constraints for labeling
components) should be modeled as constraints and not as additional terms in
the cost function. The latter of the two approaches results in increased run-
times. It looks like this seemingly obvious observation is frequently ignored.

REFERENCES

Arnstein, L. F. and Thomas, D. (1994) The Attributed Behavior Abstraction
and Synthesis Tools, 31th Design Automation Conference, 557-561

Berkelaar, M.R.C.M. (1992) UNIXTM Manual Page of LP SOLVE, Eindhoven
University of Technology, Design Automation Section

Devadas, S. and Newton, R. A. (1989) Algorithms for Allocation in Data-Path
Synthesis, IEEE Trans. on CAD, vol. 8, 768-781

Gajski, D. D. and Kuhn, R. H. (1983) New VLSI Tools, IEEE Computer,
11-14

Gebotys, C. H. and Elmasry, M. I. (1991) Simultaneous Scheduling and Al-
location for Cost Constrained Optimal Architectural Synthesis, 28th
Design Automation Conference, 2-7

Hafer L. and Parker A. C. (1983) A Formal Method for the Speci�cation,
Analysis and Design of Register-Transfer Level Digital Logic, IEEE
Trans. on Computer-Aided Design, Vol. 2, 4-18

Jerraya, A. A. and Park, I. and O'Brien, K. (1993) AMICAL: an Interactive
High Level Synthesis Environment, Proceedings EDAC, 58-62

Kohavi, Z. (1987) Switching and Finite Automata Theory, Tata McGraw-Hill
Publishing Company, New Delhi, 9th reprint

Landwehr, B. and Marwedel, P. and D�omer, R. (1994), OSCAR: Optimum
Simultaneous Scheduling, Allocation and Resource Binding Based on
Integer Programming, Euro-DAC'94

10 Exploiting Isomorphism for Speeding-Up Instance-Binding

Marwedel, P. and Schenk, W. (1989) Improving the Performance of High-Level
Synthesis, Microprogramming and Microprocessing, Vol.27, 381-388

Marwedel, P and Bashford S. and D�omer R. and Landwehr B. and Markhof
I. (1995) A Technique for Avoiding Isomorphic Netlists in Architec-
tural Synthesis, Report #95-28, Dept. of Information and Computer
Science, University of California at Irvine

Marwedel, P. Landwehr, B. and D�omer, R. (1996) Built-in chaining: Introdu-
cing Complex Components into Architectural Synthesis, Report 611,
Computer Science Dpt., University of Dortmund

McFarland, M. C. (1987) Reevaluating the Design Space for Register Transfer
Level Synthesis, IEEE Int. Conf.on Computer-Aided Design(ICCAD),
262-265

Ohm, S. Y. and Kurdahi, F. J. and Dutt, N. and Xu, M. (1995) A Compre-
hensive Estimation Technique for High-Level Synthesis Int. Symp. on
System Synthesis (ISSS)

Stok, L. (1990) A Generalized Interconnect Model For Data Path Synthesis,
Proc. CompEuro 90, Tel Aviv, 461-465

7 BIOGRAPHY

Birger Landwehr studied computer science and theoretical medicine at the
university of Dortmund (Germany) and the Ruhruniversit�at Bochum, respect-
ively. In 1991 he received his diploma degree in computer science from the
university of Dortmund. Since 1991 he is employed as assistant at the re-
search group "Methodology for computer-aided design of integrated circuits".
His current research activities are concerned with high-level synthesis and
intelligent component library mapping.

Peter Marwedel (M'79) received his Ph.D. in Physics from the University of
Kiel (Germany) in 1974. Since 1989 he is a professor at the Computer Science
Department of the University of Dortmund (Germany). His current research
areas include hardware/software codesign, high-level test generation, high-
level synthesis and code generation for embedded processors. Dr. Marwedel is
a member of the IEEE Computer society, the ACM, and the Gesellschaft f�ur
Informatik (GI).

Ingolf Markhof studied computer science at the university of Dortmund in
Germany. In 1990 he received his diploma degree in computer science. Since
1990 he is employed as assistant at the research group "Methodology for
computer-aided design of integrated circuits". His current research activities
are concerned with performance driven design for FPGA's.

Rainer D�omer studied Information and Computer Science at the University
of Dortmund,Germany. He specialized in Computer Architecture and received
his diploma in 1995. Since January 1996 he is working in a cooperative project
between University of Dortmund and University of California, Irvine, in the
�eld of Computer Systems Design.

