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Using Constraint LOgiC purpose computer such as a workstation or PC domi-
nates the performance of the computer as a whole

Programming in Memory [Wulf95]. There is a serious concern that the speed of
Svnthesis for G | P memory systems will continue to match the speed of
yntnesis 1or General Furpose processors [Wilk95]. Typically, memory access slows
Computers down the execution speed for processor instructions
significantly. Due to the increasing speed of proces-
. ) ., SOrs, these memory systems have become more and
Renate Beckmann* and Jirgen Herrmann™ e complex to supply the required bandwidth.
University of Dortmund i} ., Sophisticated techniques such as hierarchical organi-
Department of Computer Science XII*and I™* 4ti0n of memory components, complex caches,
beckmann@Is12.informatik.uni-dortmund.de interleaving, pipelining, bus snooping etc., which pre-
D-44225 Dortmund viously have only been available on expensive main-
Abstract frames, have found their application in mass products.

For multiprocessor systems, the design of powerful
In modern computer systems the performance memory systems is even more complex.
dominated by the memory performance. Currentl

there is neither a systematic design methodolo
nor a tool for the design of memory systems fc
general purpose computers.We present a fi
approach to CAD support for this crucial subtas
of system level design. Dependencies betwe
influencing factors and design decisions al
explicitly represented by constraints and constrai
logic programming is used to make the desir
decisions.

The synthesis of memory systems is characterized by
numerous influencing factors and design decisions to
be made. There are many complex dependencies
between theses factors and decisions that must be
considered, many one of them being vague, heuristic
or unknown. Therefore, itis hard to get a clear picture
of all relations between influencing factors and design
decisions for memory design. Moreover, memory
design is a multidimensional optimization problem,
o o . i.e., there are several objectives to be considered.
The memory design is optimized with respect igesjdes memory performance (average access time,
several objectives by iterating the (re)design cyclyjss ratio, etc.), for instance the cost of the required
Event driven simulation is used for evaluation Coff-chip memory components and the area consump-

the int_ermedic’_:lte resglts. Th_e system is organizjgn of on-chip caches have to be taken into consider-
as an interactive design assistant. ation.

. . Despite the crucial importance of memory design for
1. Motivation general purpose computers, there is no systematic
During the recent years, the complexity and capdesign methodology or theory for this complex task.
bilities of microelectronic systems has grown sicConsequently, the design of such memory systems is
nificantly. As a consequence, the design of thegoverned by rules of thumb. These vague heuristics
systems has also become more complex and tinreflect the knowledge of “experts” more or less famil-
consuming. Therefore, a powerful tool support iar with this area. Simulation is used to validate some
indispensable for the design of complex micrcof the design decisions, but the current situation in
electronic systems. During the course of timdrocessor memory design can be described by the fol-
design automation tools became available lowing statements:

higher and hlgher levels of abstraction. LayOUt €Ce Processor memory Synthesis for genera| purpose

tors, to a large extent, have been replaced by pla  processors is currently more an art than a science,
ment and routing tools. These have bee je itis notan engineering discipline.

complemented by logic synthesis. Logic synthesi
in turn, is expected to be complemented by hig'
level synthesis. As evidenced by recent comme
cial announcements, high-level synthesis is cL
rently made commercially available.

Design decisions are mostly based on the men-
tioned rules of thumb and sometimes time-con-
suming analyses of their consequences (see
below).

There are no CAD tools supporting memory syn-

One crucial issue of system level design is mema’ .
thesis for general purpose computers.

synthesis. It is nowadays widely accepted, that t

performance of the memory system for a genet . . .
As a result, even major industrial companies are
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sometimes surprised by the (lack of) performant
of the memory systents.

In this paper, a first approach to CAD support «
memory synthesis for general purpose compute
is presented. With this approach, a systematic pi
cedure of memory synthesis shall be supporte,
The consideration and comparison of sever
design alternatives is enabled.

Our approach features an explicit representation
the dependencies between influencing factors a,
decisions for memory synthesis. The represent
tion is based on constraint logic programming. Tt
implemented prototype creates an initial memol
design that is redesigned and optimized stepwi
according to the objectives. The analysis of ea
intermediate design result is performed by &

according to the timing constraints.

Register allocation

Register allocation is performed in compilers
[Aho86] and high-level synthesis tools [McFa9o0;
Gajs92].

Allocation of multi-port memories in high-level
synthesis

Previously allocated, isolated registers are merged
into multi-port memories [Bala88].

Buffer allocation in high-level synthesis tools

In [Kolk93] a method is presented for minimizing
sizing of communication buffers in an environ-
ment of communicating concurrent processes.

For these specific subtasks of memory synthesis,
methods and algorithms are available. For instance

.e\]ifm'dméen ‘Z'mubt'%nb D(;Slgn decisions can Ethe number of allocated registers can be calculated
Influenced and revised by the User, I.e., an INteré o m the maximum number of variables referenced

tive design style is supported by the system.

concurrently during a singe control step. On the other

The rest of the paper is organized in the followinhand, there is no CAD tool supporting the memory
way: Section 2 presents current work on memosynthesis problem for general purpose computers,
synthesis. The memory synthesis task and the mdescribed above. Instead, there are several publica-
features of this task, relevant for the organizatictions about the influence of single memory parame-
of our system, are discussed in Section 3. Sectiters on the performance of the memory system as a
4 gives a brief introduction into constraint logicwhole. Most of the analyses are related to cache
programming. The conception of the new systeparameters. Some examples of these analyses are
for memory synthesis SPEISE is presented in Selisted below:

tion 6. Results of the implemented prototype ar,
topics for further research are documented in Se
tion 7. Section 8 concludes the paper.

2. Current Work

Until now, only very limited work on CAD for *
memory synthesis has been published. Most
these approaches are on a lower level of abstr:
tion than the memory synthesis problem address
in this paper. The available papers either deal wi
ASICs, with a specific, limited class of processol
or are restricted to small subtasks of memory sy
thesis:

* Memory Synthesis for DSP applications
PHIDEO [vMee92] is a silicon compiler for
digital signal processors. During memory syr
thesis, instances of the appropriate memo*
types are allocated and the addressing mecl
nisms are selected. The allocated simple mel

In [Smit82; Henn96; Przy90] the effect of the
selected prefetch strategy, the selected strategy for
updating the main memory, the line size, the num-
ber of sets and several other design decisions on
the miss ratio is considered.

In [Kris96] performance modelling for computer
architecture is described. Analytical models repre-
senting the effects of cache design decisions on the
performance are described in [Agar89; Berg93;
Kris96; Saav95]. These models cannot be used for
memory synthesis, because they deal only with
few design decisions. Models cannot be used to
analytically predict the performance of a designed
memory system. Therefore simulation is necessary
to examine the effect of a design decision on the
performance of the whole memory system.

In [Rau91] the effect of the input buffer size on the
performance of interleaved memories is analyzed.

ory modules are used to delay the digital signeDepending on these analyses some exact resp. heuris-

tic dependencies between the input data and the dif-

1. This observation can be made for cache design of ferent design decisions can be derived. Typically,

modern SPARC systems such as the SPARC-10.

heuristic dependencies are formulated as qualitative

Accordingtoourknowledge, cacheblocksizesandthe (g|ations. To be used in a memory synthesis system,

interleaving factor are not well balanced.
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they have to be quantified. Besides, informaticon time and order of the different data requests.
about many crucial design decisions is still lackThese, in turn, depend on two factors: application
ing. Moreover, there is no published work for programs and underlying computer architecture.
comprehensive treatment of the numerous inflinformation about the characteristics of application
encing factors and design decisions for memoprograms (i.e., time and locality of the referenced

synthesis. memory addresses and working set) is necessary. For
instance, if the application programs consists of many
3. Memory Synthesis loops accessing the same data in each pass, the

_ _ ~amount of different data that is accessed is small. In
In the following we start with a characterization othjs case the working set of the application program is
the memory synthesis task and then analyze t31so small and the locality is high. This may lead to a

task features. small cache. The exact order and time of the memory
references is also effected by the underlying computer
3.1 The Task architecture. Therefore the memory system under

As mentioned above, the CPU performance is cidesign has to be suitable for the given computer archi-
rently improved at a much faster rate than that tecture. For instance, in RISC architectures with pipe-
memories. To manage the resulting problem lining, memory accesses to instructions and data can

sophisticated memory organization must poe parallelized by designing separate caches for
designed. A memory system nowadays does rinstructions and data. Another relevant feature is the

consist of a single component but of a hierarchy cycle time ofthe processor. This is an upper bound for
memory components ranging from small, fast arth€ access time of a first level cache.

expensive ones, placed near the CPU (i.e., regisThe main objective in memory synthesis is to config-
buffer, first level cache), to large, slower anure a memory system that minimizes the access time
cheaper ones (i.e., second level cache, main meof memory references. But there are some other crite-
ory, secondary memory). Registers are allocatria like chip area and cost that restrict the design space

A of a memory system.
small fast
reg. The memory synthesis task described above can be
buffer summarized as follows:
size cache 'filr%eess For a given general purpose computer architecture
main memory and a class of application programs a memory system
disc has to be designed and optimized according to given
big y/ secundary memory slow criteria like access time, chip area and cost.
Fig. 1: memory hierarchy 3.2 Problem Features

for example, during high-level data path synthesiThe structure of memory synthesis task is analyzed in
In memory synthesis for general purpose proceorder to derive design decisions for a memory synthe-
sors the main component under design is the casis tool.

because it is large enough to hold a moderé, Memory synthesis for general purpose processors
amount of data, more than a register. And furthe is 3 new area of researchAs mentioned above
more an access to a cache is fast enough for p  ihere exists no tool support on thigh level of
cessor access because it is now possible to pli  gpstraction Currently memory synthesis is sup-
the cache on the processor chip. ported by tools only for ASICs. For general pur-
To speed up a memory reference, data requestec  pose computer systems only analyses exist. These
the CPU, has to be available in a fast memory cor  analyses have to be combined to get information
ponent or the requests must be parallelized. required for building a memory synthesis tool. To
either case this requires a good organization of t collect some experience in modelling and synthe-
memory system. Design decisions are e.g., numt  sis techniques as fast as possible, it is very helpful
of cache levels, size, associativity, and prefetc to build a pototype Logic programmings an ade-
strategy of a cache, size and degree of interleavi quate paradigm, because it supports an abstract
of the main memory, etc. level of programming that speeds up the program-

Which memory system is a “good” one, depenc ming process rapidly.
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* Memory synthesis is aomplex synthesis task ences to the synthesized memory system have to
(see above). be simulated.

* The memory synthesis task consists oime <« Due to the lack of éormal description and theory
structuring and a lot of dimensioning decisions for memory synthesigno quantitative relations
The structuring decisions select the componer and no objective function, and no compound
of the memory configuration. The number ¢ method for considering different objectives ade-
different structural decisions is small, becaus quately and concurrently) a stepwise optimization
there exist only few principally different mem- is necessary by usirrgdesign cycles.
ory configurations. The dimensioning decision
determine the features of each memory comp4. Constraint Logic Program_
nent (i.e., size, block size, replacement stre__.
egy). The number of dimensioning decisions ming (CI—P)

limited but large. In this section we describe why we use constraint

« The design decisions are of different typesogic programming for memory synthesis.
structural, numerical, boolean or symbolice _
(for details see Subsection 6.3.). 4.1 Basic Idea

« The numerous existing analyses of singlConstraint logic programming extends logic pro-
design decisions show that memory synthesisgramming by a mechanism for constraints modelling
dominated by @&uge amount of relationshipsand processing [Frue93]. Constraints express rela-
between different design decisions and the fetions between technical parameters of the problem.
tures of the design environment (computeThe idea of CLP is to restrict the search space, as
architecture, application programs, and objemuch as possible, by constraints and to search the
tives). These relations can be expressecbiny remaining space in a moderate amount of time. The
straints A programming paradigm supportingprocesses of constraint handling and search are inter-
prototype development and constraint€es- twined. Each constraint is imposed but the execution
straint logic programmingsee Section 5.). is delayed until the constraint can be evaluated with-

¢ out anticipating any search decisions. When during

the searching phase some technical parameters are
restricted the relevant constraints are resumed and

executed. Additionally this search can be done in a

heuristic, problem specific way.

« Up to now most of theaelations describe
above, especially those between the desi
decisions and the objectives, are express
qualitatively For memory synthesis these rela
tions must bequantifiedby use ofheuristics
Additionally most of these relations ar®t In memory synthesis the relations between design
monotonelncreasing the value of some desigdecisions and environment features are expressed as
decision raises the performance only to a ceconstraints. The process of making design decisions,

tain extent. For instance, increasing the caclcalled labelling, is done heuristically.

size decreases the miss ratio. To a certain extgegyricting the search space before and during label-
the average access time is decreased becgjng improves the solution process drastically. In
less data has to be fetched from main memo|,qic programming without constraints the design
But the larger the cache the slower a singygisions are selected in the unrestricted decision
access to the cache and the slower the averign,e This may cause a lot of wrong decisions and
access time. A synthesis tool must be able jyyjies a large amount of backtracking, slowing
model these dependencies. down the solution process. Constraint logic program-

* The memory synthesis task isnaultidimen- ming can avoid most of these wrong decisions and the
sional optimization problerfsee above). resulting backtracking.

* Up to nowno obijective functiofs known that )
quantifies the relations between the design de4-2 Memory Synthesis as CLP Problem

sion and the objectives in form of a formulain memory synthesis as described above, a memory
The only way to measure the performance system can be represented by a generic model. Each
the memory system under design due to tldesign decision is represented by a parameter with a
underlying computer architecture and the appldomain representing the alternatives of this decision.

cation programs is simulation. Memory referFor instance, for each cache (data cache, instruction
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cache, or second level cache) there are paramegiven priorities to each of the objectivgs & func-
for size, block size, associativity, replacemertion eval(q) evaluates the quality of the design with
strategy, write strategy, etc. Restricting the searrespect to the objectivg.o(xy,...,%,) iS an optimal
space is done by restricting the domains of sorsolution of the problem if the following conditions
parameters. Decision making corresponds hold:

instantiating parameters. . a . OD.

The design decisions are of different types: Stru : !

tural ones determine the components of the me, > WCECJ-E ~ max
ory configuration. For each component there a .

several dimensioning decisions of boolean, nume ]

ical or symbolical type. As denoted above, all dec
sions are represented by parameters with differe’
domains. The types of these domains range frc _
numerical (i.e., size), over symbolical (.e. WithC' ={cDOC|(q, ... %) 0c} D

replacement strategy), to boolean (i.e., on-ch_ and<a, ..., @> = simulation(y, ..., ).
integration). These types are also used for tEach parameter;xf a solution is instantiated to a

domains of structural design decisions (i.e., avavalue of D. The weighted sum of constraints consis-
ability of a second level cache is a structural desit€nt with the solution is maximized. And the weighted
decision represented by a boolean parameter), SUm of objective evaluations is maximized.

for the whole synthesis task it is possible to useA small example shows the power of constraints in
homogeneous search strategy that can be hancthe domain of memory synthesis: For a simplified
well by a constraint system. cache synthesis the cache hierarchy consists of 1 or 2

Architectural features and application features c:cache levels where the first level cache may be split
be represented as generic models, too. The ardNto one for instructions and one for data. For each

tectural parameter values are given by the desiglcaChe 13 design decisions_ v_vith varying doma_in sizes
and the application ones can be extracted by ahave to be made. The decision space has a size of 0.5

lyzing memory reference sequences of applicatic’ 10° After imposing 20 of 50 constraints the design
programs (see below). space is re_st_rlcted t_o foafter deterr_nlmng 2 of the

i , i design decisions (size and block size of each cache)
Memory synthesis, described here, differs from thy,e remaining 30 constraints restrict the search space

standard CLP problem in two ways: Firstly the Sy, 430 gesign possibilities, which are examined heu-
of constraints, extracted from the analyseristically (Fig. 2).

described in literature, may be inconsistent. F
this reason each constraint is extended by a weir
expressing the importance of that constraint. If ¢
inconsistency occurs, constraints with sma
weights are relaxed successively. The sum of t
weights of the remaining consistent constrain
should be maximized. Secondly the objective
cannot be calculated by a formula. They haveto | @=m=> design space: 0.5*8
calculated by simulation of given memory refer —— partially restricted design space:’10
ence sequences on the synthesized memory con | s totally restricted design space: 430
uration.

Definition. Let V be a set of variables {yv..,\,} Fig. 2: design space restriction
representing architectural, application, and mer
ory parameters, eachwith a domain Pof possi-
ble values. Let C be a set of constraintg.{cG,}
expressing the relations between variables in V
[ D; X ...x D,,. A weight function w(c;) gives the
weight of each constraint denoting the importanc
Let O be a set of objectives{o..,q} calculated by
simulation of traces on the memory configuratio
and wy(o,) a weight function expressing the use

Orpvalla O
kzlwogokm[&evaqu(D max

Tab. 1 gives a concrete example that again illustrates
the power of search space restriction.

" The domains of six parameters are shown before and
"after restriction by the given constraints. The search

space size (multiplication of the parameter domain

sizes) is reduced from about 6°11® 18.
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to determine an (optimal) solution in a single step. In

parameter before Sfter memory synthesig, an optimal solution cqnnot be
Working set <mall small determined in a S|_nglg step, as an appropriate com-
locality big big pound target function is lacking. Instead, simulation
: runs are required to evaluate the quality of a candidate
siz€ (.KB) 8..256 38,16, 32 to be modified later. Therefore integer linear pro-
grs]iosclizaeti\(/ﬁi/ 14 .éZZSf?JII ;6’433 gramming is not suitable for memory synthesis.
replacement | no, rnd, Iru ’Iru’ CYCLOP3Navi91] also uses constraints to represent
search space 6.236.70 18 conditions and dependencies in the considered
domain. The system uses a modified A* search algo-
constraints rithm to determine a set of pareto optimal solutions.
[F working set is small THEN siz8 32 Like the other approaches mentioned above,
IF locality is big THEN line siz& 16 CYCLOPS does not provide a redesign mechanism
line size< size that modifies a candidate in a specific way, according
IF Tocality is big THEN associativitgs to the results of an analysis. This feature is indispens-

power_of 2(size) able for memory synthesis.

power_of 2(size)

power_of 2(associativity) 5. The SPEISE System

IF line size >= 16 THEN associativity p1

SPEISE designs a memory system for a given general

IF associativity = 1 purpose computer architecture and a class of pro-
THEN replacement = no grams representing the typical applications on this
ELSE IF associativity 8 computer architecture. The memory system is opti-
THEN replacement = LRU mized according to several given objectives. Fig. 3

Tab. 1: concrete example of search space  Shows the components of SPEISE:

r?striction_, parameter domains before and | the following, we will first describ the cooperation
after restriction by constraints of SPEISE’s components. Afterwards particular as-

_ o _ pects will be pointed out in detail.
4.3 Alternative Optimization Strategies

The system SPEISE as a whole configures a2-1 The Design Cycle

optimizes a memory system according to seveThe input data for SPEISE are memory reference
objectives. As has been pointed out in the previosequences of application programs, architectural fea-

subsection this task is performed by a heuristtyres and objective weights denoting their im-por-
search strategy that utilizes domain specific seattance for optimization.

control knowledge for parameter labeling an

redesign. Before starting the design cycle, memory reference

_ ~ sequences of application programs are analyzed to
There are several well-known alternative optimexamine their typica| features (‘trace ana|ysis’)_

zation strategiesEvolution strategiegSchwai] Constraints sets expressing the relations between
consider several candidates in parallel. New can.. P 9

dates are created by syntactic, domain-indepe'npUt data ar_1d deS|gn deC|S|ons_are selecteq as aresult
) L ._of an analysis of the input data (i.e., constraints set for
dent mutations of existing ones. An evaluatio

function selects the most promising candidates single/ multf-pr_ocessor systemtc,).

be considered further on. This method works weAt the beginning of each design cycle, the selected
if a large set of candidates can be created and e\constraints are imposed to restrict the search space
uated with limited computational effort. As the(‘restriction by constraints’).

evaluation of memory configuration involvesafter this step, decision making starts (‘parameter
time-consuming simulation runs, this conditiolahelling’). The order of making decisions is deter-

does not hold for memory synthesis. mined by a domain specific rating of each decision.
Integer linear programmingNeum?75] also pro- The rating reflects the impact of these design deci-
vides an optimization strategy. In contrary to CLISions on the performance. For instance, the most
it is limited to numeric parameter types. Thimportant design decisions for a cache are size, block
method requires a target function that can be ussize and associativity. The decision process takes
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sequence of design cycle.

memory references gg?ultrzc;ture If the design is not accepted, the ‘deficiencies analy-
sis’ examines which of the threshold values are

trace analysis objectives missed. For each of the missed values possible revi-
sions of design decisions are determined(i.e., if the

?epzﬁlllﬁggon miss rate of a cache is to high, an increase in size or
associativity is proposed).
‘Redesign planning’ examines the list of possible
¢ { changes proposed by the deficiencies analysis. As
restriction by these revisions may be contradictory, a consistent
constraints subset of them is selected. This process is guided by
heuristic rules. The changes are expressed in form of
¢ constraints.
arameter redesign To avoid recreations of previous designs, the ‘defi-
abelling planning ciencies analysis’ and the ‘redesign planning’ take

redesign actions of previous design cycles and their
consequences on the performance into account.

ﬁﬁgggﬂggy gﬁglcﬁir;mes At the beginning of the next design cycle the con-
straints created by the ‘redesign planning’ are
‘—Q imposed. The cycle is continued with imposing the
- - constraints in the ‘restriction by constraints’ step.
simur evaluatio
lation] ok Redesign stops if the ‘evaluation’ component or the
designer (user of the tool) accept the designed mem-
ory system.
¢ Fig. 4 shows the algorithm for SPEISE’s heuristic
memory system search strategy from an imperative point of view. The

cooperation of the implicit control strategy available

by use of declarative programming and the explicit
control actions performed by the components of
SPEISE is described. The outer WHILE loop guides
the redesign cycle by use of a new non chronological

Fig. 3: components of the SPEISE
advantage of the restrictions to the search spe
caused by the design constraints. Decisions ¢
made with respect to the objectives. For instanc
if the objective cost is to be minimized, the size ( ; . .

i o , . _._backtracking strategy: restrict the search space by
a cache is set to the minimum in the remainir. . : .
q : imposing constraints, label the parameters, simulate
omain. . . )
_ and evaluate the resulting memory configuration, and
Components of the designed memory system éelax constraints or plan redesign if necessary. In the
mapped to existing on-chip and off-chip memorinner WHILE loop the memory parameters are
modules described in the technology databajabeled one after the other (‘parameter labelling’).

(‘technology mapping’). This step is completely guided by the chronological
An event-driven trace simulation is used to imitatPacktracking mechanism of declarative program-
the accesses of the application programs to tming. The relaxation of constraints is guided by a sep-
memory system (‘simulation’). During this simu-arate control strategy.

lation values for performance criteria like averag

access time and different miss rates for caches 5.2 Selected Aspects

calculated. The following selected aspects are pointed out in
Using the simulation results, the ‘evaluation’ comdetail:
ponent evaluates the synthesized memory confi¢, provision of Memory Reference Sequences

ration. If the quality of the designed memon ¢ is gifficult to get adequate memory reference
system meets a calculated threshold value for e¢ sequences. If a memory system for an existing

of the objectives, the memory system is accept  computer architecture is improved, an existing

and presented to the user. Otherwise redesign | compiler can be used to generate memory refer-
to be performed. This is the typical case for the fir
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search strategy(Application Features, Architectural Features, Objectives)

BEGIN

Constraintse,m, := <set of maximal constraints, permanently available>;

Constraintggesign'= <empty>;

<initialize Mem_Config with set of unlabeled memory parameters>;

WHILE (<Mem_Config not acceptable>)
DO
<impose Constrainfsyesigr
<impose Constraing,;

WHILE (<there are unlabeled parameters in Mem_Config>
AND <restricted search space not completely searched>)

DO
<select next parametey @ be labeled>;
<label R and resume corresponding constraints>;
IF (<there is no value for;onsistent to Constraintsyand Constraintggesigr)
THEN
<chronological backtracking to labelling of the previous parametet, P
<select a different value for_pP>;
Fl
oD
IF (<no consistent labelling for all parameters in Mem_Config found>)
THEN
<relax Constrainsm;
ELSE

<simulate and evaluate Mem_Config>;
IF (<Mem_Config not acceptable>)

THEN

<plan redesign operations>;
Constraintggesign:= <domain restrictions according to redesign operation

Fl
FI

Mem_Config := <set of unlabeled memory parameters>;

oD
END

>

1"2)

Fig. 4: algorithm of SPEISE’s heuristic search strategy

ence sequences from application programs.
If the given computer architecture is new bt
similar to another one (i.e., to a predecess
model) in terms of address generation, memo
reference sequences of the predecessor car
used.

An address sequence can also be made indeg,
dent of poor compilation [McNi88].

Another possibility is the generation of memor
reference sequences. This can be done, if t
features (locality of reference, size of working
set, etc.) of the application programs are know
[Hyat93; McNi88]. In [Hoba89] some features
of symbolic programs are described. SPEIS
offers ageneratorthat creates memory refer-
ence sequences according to given features.

Notice, that the features, relevant for memory syn-
thesis, like locality of reference and working set,
depend rather on the application program than on
the computer architecture and compiler. Therefore
it is feasible to take reference sequences of similar
systems or to generate them.

Inconsistencies in the Set of Constraints Restrict-
ing the Search Spac

The set of constraints in the restriction component
has been derived from an intensive analysis of the
relevant literature [Arar89, Henn96, Przy90,
Smit92, etc.]. Each constraint is marked by a
weight denoting its importance. As described
above the set of constraints may be inconsistent
because it is derived from different analyses and
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guantified heuristically. If imposing of severaically by the assistant. In this interactive mode,
constraints results in an inconsistency, the |eSPEISE can be used as an intelligent “editor” that
important ones are relaxed, to get a consistenenables a flexible selection resp. modification of
restricted search space. design decisions and responds by showing the side
effects of these actions. Based on these results the
duser can accept the intermediate memory configura-
tion or perform further design changes.

» Technology Adaptation
As mentioned above, the memory system un
design is mapped to existing memory module
For this purpose a technology database is us: _
that contains technology dependent informatic2-4 Implementation

about memory modules. For on-chip moduleThe main part of SPEISE (framed by a bold painted
formulas calculating the area and access timrectangle in Fig. 3) is implemented in ECLiPSe, a
are given, depending on the component sizCLP language from the ECRC [ECLI95], on a SUN
For off-chip modules size, access time, and ccworkstation. The first prototype is restricted to single
are given. It is easy to adapt SPEISE to new Iprocessor systems and focuses on synthesizing the
technologies because only the information icache and TLB hierarchy. As mentioned above, this is
the technology database has to be changedthe main task of memory synthesis for general pur-
extended. pose processors. Main memory design decisions,
« Combination of Objectives given by the designer, are taken into account. The

In SPEISE it is possible to optimize the memorhandling of compound objectives is simplified in the
system according to more than one objectivimplemented prototype. The memory system is opti-
The importance of each objective can bmized primarily according to the most important
expressed by a weight. SPEISE optimizes tiobjective. Nevertheless the other objectives have an
memory system according to these user suimpact on some dgsign decisions leading to the final
plied weights. Based on these weights a thresmemory configuration.

old for each objective is calculated. If allThe components ‘trace analysis’ (including the mem-

thresholds are met, thresholds for the moory reference sequence generator) and ‘simulation’
important objectives are tightened successiveare implemented in C++.

as much as possible. The prototype of SPEISE has been implemented by

* Alternatives in Redesign Planning graduated students in an 1-year project [SPEI95].
SPEISE can select between two modes of rec

si_gn planning. In stepwise mode redesign pla6_ Results
ning selects exactly one parameter to change.
multistep mode several changes of parameteSPEISE has been used to design cache and TLB hier-
are performed in one redesign cycle. archies for several computer architectures. In most
cases few redesign cycles (5 to 10) were sufficient to
5.3 Organization of the System as an (re)design a configuration that meets the performance
Intelligent Synthesis Assistant thresholds.

The system SPEISE does not aim at a compIeD“e to the lack of space, only the key features of the
automation of the memory synthesis process. Tidesign process and the results are described in follow-

would not be adequate for this complex high-levi"d €xample.
synthesis task without standardized synthes
methodology. Instead, SPEISE is organized as 6-1 Example

intelligent synthesis assistant that supports The example shows the design of a cache hierarchy
interactive design style. By use of the assistant, tfor a computer architecture similar to a SUN SPARC-
designer can create, evaluate and compare sevstation (Tab. 2) with a main memory given in Tab. 3.
design alternatives quickly. Tab. 4 shows the features of a class of application pro-
The user can make decisions and limit the seaigrams running on this computer architecture.

space in that way. Decisions performed by the syThey have been extracted by the ‘trace analyzer’ sep-
tem can be changed easily. The consequencesafate|y for instruction, data, and mixed references.
these changes on other aspects of the memTab. 5 shows the cache configuration designed by
architecture under design are propagated automSpPEISE after the first synthesis cycle. An accepted
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changes for each redesign cycle.

clock frequency (MHz 33

pipeline stages 4 changes in the redesign plan
data bus size (bit) 64 (and implied changes)
address bus size (bit) 32 1. [|increase the associativity of the

instruction cache from 8 to 16
2. ||increase the associativity of the
data cache from 2 to 4

Tab.2: architectural features

size (MByte) 32 3. ||increase the associativity of the
page size (KByte) 8 data cache from 4 to 8
organization segmentatipn 4. || decrease the block size of the

instruction cache from 16 to 8

5. ||increase associativity of instruction cache
from 16 to full (block size of the instruc-
tion cache increases from 8 to 16)

(o]

interleaving degreg

Tab. 3: main memory features

mixed instr data 6. ||increase the associativity of the
spacial locality big big small data cache from 8 to 16 _
working set small small medidm Tab. 6: Changes for each redesign cycle
frequency of ref smallsmall  small
number of read§ big hig medilim For instance, during the first redesign cycle (design
variance smallsmall small cycle 2) the associativity of the instruction cache has
been changed from 8 to 16.
Tab. 4: application program features Tab. 7 shows some of the performance parameters

measured by the simulator after each design cycle:

end configuration was reached after seven desigyerage access time and average values for hit time
cycles. The differences between the final and tiynq miss ratio of the first level caches.

first configuration are shown by the values i

parentheses. design || av. accegdit timd miss ratid
cycle ngtime (nseg) (nsec (%)
1.1 1.Dq2. cache T 3053 194D 3046
cache cache 2 3052 1940 3046
a_dressmg virtual virtual re@l 3 3539 2000 18.07
size (KB) 16 3¢ ©oIP 4 3460 2075 2256
block size (b 16 G4 128 5 3461 2076 22.96
associativity || 8 (full)| 2(16) 2 6 3473 2296 55 86
replace._strai Inu lru Inu = 3593 2300 240
pr(_afetchlng tagged tagged tagged Tab 7: performance parameters after each
write strat. - copy b. copy b. :
design cycle

Tab.5: memory configuration after the 1. cycle The performance thresholds to be met are calculated
and the end configuration in parenthesis by SPEISE according to the input parameters (see

above) and the objectives (here access time). For
For each redesign Cyc|e SPEISE performs a Sir‘rinstance, the hit time threshold has to be below the

lation of a trace according to the applicatioclock time (here a clock frequency of 33 Hz implies a
parameters, an evaluation of the simulation resulclock time of 30 nsec).

a deficiencies analysis to find a set of cache paraagter the first design cycle both thresholds for hit time
eters as candidates for mOdification, and redeSiand average access time are met, but the miss ratio’
planning to select parameters to change andwhich should be less than 5%, is much to high. To
determine the extent of the changes. reduce the miss ratio, the ‘deficiencies analysis’ pro-

Then the next design cycle is started to accommPOSes to increase the associativity or the size of one of
date the other cache parameters. Tab. 6 gives the caches. The ‘redesign planner’ decides to increase
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the associativity of the instruction cache to a valttistep is used. If it does not lead to success, the system
greater than 8. In the next ‘restriction by corswitches to stepwise mode.

straints’ and ‘parameter labelling’ step the value

set to 16. This is done due to some further analy6.3 Future Work

of the simulation results (detailed miss ratios fc
each cache like capacity or conflict miss ratic
etc.). The improvements are minimal. Therefore |
the next redesign cycle the associativity of the de* One aspect is thienprovement of the constraints
cache is increased. Based on the evaluation of the performed system
runs, additional constraints are formulated.

Currently, the implemented prototype is enhanced
and extended in different ways:

After the seventh design cycle the miss ratio final
meets the corresponding threshold. The avera® A hierarchical organizationof the constraint set
access time and hit time have been increased will enable an improved constraint relaxation strat-
still meet their thresholds. So the cache configur  €9y.

tion is presented to the designer and if he/sl. Tg enable an adequate treatment of trade-offs, cur-

accepts the design the system stops. Otherwise  rently a more elaboratetiandling of multiple
she can propose changes to one or several des gpjectivess developed.

parameters and the system starts the next redes,

cycle The most important current work is related to the

S o range of applicability for the system. SPEISE is
In this simple example it is adequate to sele extended tanemory architectures for multiproces-

changes only for associativity and block size of tr  5or systemancluding main memory synthesis.
first level data and instruction cache because t

miss ratio is decreased successively witho i
increasing the time parameters to an unaccepta7' Conclusion
value. In other examples SPEISE selects a greeWe have presented a first approach to CAD support

variety of redesign operations. for memory synthesis for general purpose processors.
The implemented prototype aims at “closing a gap” in
6.2 Multi-step mode the current tool support for general purpose comput-

ers. It provides a systematic synthesis methodology
and demonstrates that tool support can be achieved
for this complex task. The system SPEISE does not
aim at complete automation of memory synthesis.

Instead, it is organized as an intelligent synthesis

assistant system that supports an interactive design
style. By use of the assistant, the designer can create,
evaluate and compare several design alternatives
quickly.

The described example was designed in the st
wise mode: For each redesign cycle exactly ol
parameter has been changed (and the others w
readjusted). In this way the effect of this redesic
step can be observed and it can be decided if t
step leads into the right direction. This is importar
for further redesign cycles. In multistep mod
SPEISE often terminates successfully in fewe
redesign cycles than in stepwise mode. In muli
step mode SPEISE synthesizes a memory confi(T he synthesis of memory systems for general purpose
ration for the described example that meets neacomputers is a multidimensional optimization prob-
all thresholds after the second design cycle. Butlem. Objectives like memory performance and cost
is difficult to decide which of the changes werhave to be considered. Besides that, the task is char-
successful because their effects can nullify eaacterized by numerous influencing factors and design
other. This is in particular the case in the domain decisions to be made. Memory synthesis can be for-
memory synthesis, because the dependencma”ZGd as a “parameter selection problem”
between the design parameters and performar[Navi91]. Constraint logic programming is an ade-
parameters as a whole are not quantified (squate programming paradigm for this application.
above) and the synthesis process is guided by hLogic programming enables the quick development
ristics and evaluated by simulation. In the stepwi0f a compact prototype and does not require the
mode one parameter after the other can be chandetailed formulation of program control, a character-
and the known qualitative dependencies betweistic requirement of most other programming styles.
parameters (as described in literature) can be udByY use of constraints an adequate, explicit representa-
to do this. As a consequence, both modes cantion of the exact resp. heuristic dependencies between

combined: For the first three redesign cycles munfluencing factors and design decisions can be for-
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