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Abstract— This tutorial responds to the rapidly increasing use
of cores in general and of processor cores in particular for im-
plementing systems-on-a-chip. In the first part of this text, we
will provide a brief introduction to various cores. Applications
can be found in most segments of the embedded systems market.
These applications demand for extreme efficiency, and in particu-
lar for efficient processorarchitectures and for efficient embedded
software.

In the second part of this text, we will show that current com-
pilers do not provide the required efficiency and we will give an
overview over new compiler optimization techniques,which aim at
making assembly language programming for embedded software
obsolete. These new techniques take advantageof the special char-
acteristics of embedded software and embedded architectures.

Due to efficiency considerations,processorarchitectures optim-
ized for application domains or even for particular applications
are of interest. This results in a large number of architectures
and instruction sets, leading to the requirement for retargeting
compilers to those numerous architectures. In the final section of
the tutorial, we will present techniques for retargeting compilers
to new architectures easily. We will show, how compilers can be
generated from descriptions of processors. One of the approaches
closes the gap which so far existed between electronic CAD and
compiler generation .

1 Introduction

Embedded systems are systems that are tightly integrated (embedded)
into a physical environment. They have to react to changes in their
inputs. Various state-based specification methods have been proposed
to specify such reactive systems. Embedded systems can be found, for
example, in automotive electronics and telecommunications. In many
cases, embedded systems do not come with a terminal and keyboard.
In fact, the user frequently doesn’t even realize that some information
processing is taking place as a result of his input to a steering wheel
or a pedal.

According to market analysts, the market of embedded systems is
growing faster than the market for information technology in gen-
eral. Many segments of the embedded systems market are consumer
markets, with very short product lifetimes and short market windows.
Hence, time-to-market is a deciding factor.

Cutting down the time to the market for products that become more
and more complex is only feasible through re-use. This led to the re-
use of larger and larger building blocks, with cores being the currently
largest building blocks.

Another characteristic of the embedded systems market is the need
for generating very efficient products, especially for portable equip-
ment. For example, power consumption of portable equipment must

be extremely low.
In order to incorporate late design changes, flexibility of the target

technology is a must. This led to the use of processors in embed-
ded systems. This, in turn, led to the use of embedded software.
Unfortunately, current compiler techniques are not really adequate
for applications and architectures of embedded systems. Hence, as-
sembly language programming is still very common. This causeshigh
development costs, an increased time to market and a low product de-
pendability. Worst of all, it makes retargeting to new, more efficient
processors almost impossible.

For embedded systems, there are less strict requirements for in-
struction set compatability between different target processors. Being
able to retarget applications to the most efficient processor would be
a competetive advantage.

The structure of this text is as follows: Section 2 describes cores in
general and processor cores in particular. Current trends in compiler
technology for embedded systems are the topic of section 3. Section
4 is exclusively focussing on retargetability. Finally, the last section
contains conclusions. This way, each of the terms refered to in the
title is covered in a section or a subsection.

2 Cores

2.1 General Cores
There has recently been a huge amount of interest in cores. Is there any
way of defining this term? It is hard to give an exact definition, but
cores can generally be described as pre-designed, pre-characterized
building blocks that are larger than macroblocks (the largest blocks
used so far). Available cores include: processorcores, communication
cores (e.g. Ethernet cores) and controller cores (e.g. VGA controllers).
Comprehensive lists of commercial cores are available on the web [11].

One can distinguish between soft cores and hard cores. Soft
cores are essentially synthesizable, technology-independent models,
whereas hard cores are layout models that come with data sheets. Both
types of cores have their advantages.

The main reason that makes cores so popular is the need for re-
use. Future chips, which are expected to contain more than a hundret
million transistors, can only be designed in acceptable time frames if
complex components are re-used.

Re-use of complex components has a number of advantages:

� It cuts down design time to the required level.

� Reuse of cores also improves the efficiency of the design, since
cores are usually highly optimized. This applies especially in
the case of hard cores.

� Testing is simplified because test engineers know the components
they have to test from previous designs.



2.2 Processor cores

The class of processor cores represents an intersection between cores
and processors. From their parent classes, they inherit a number of
important characteristics. Due to the derivation from cores, processor
cores provide re-use. Due to the derivation from processors, they
provide flexibility. By changing the executed program, the overall
behaviour can be very flexibly adapted to the design task at hand.
This way, two otherwise conflicting goals can be met at the same
time: core processors provide re-use and flexibility. It is this unique
combination of features that makes core processors so popular.

Core processors include core versions of general purpose pro-
cessors, such as core versions of various RISC architectures [16, 1, 28]

Examples:

1. The MiniRISC family of processors, which is instruction set
compatible with the MIPS instruction set [28].

As a member of this family, the CW 4001 requires just 4 mm2

of silicon if manufactured in 0.5 � technology and consumes 40
mW if running at 25 MHz

2. The ARM processor from Advanced Risc Machines Ltd.

This processor is well-known for its low power requirement.

In addition to the standard processors, there are core versions of
application domain-specific digital signal processors (DSPs). There
are even application-specific instruction set processors (ASIPs).

A classification of processors is shown in fig. 1. This processor
cube results from using three main criteria for classifying processors:
availability of domain-specific features, availability of application-
specific features, and the form in which the processor is available.
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Figure 1: Cube of processor types

The meaning of these dimensions and their values is as follows:

1. Form in which the processor is available

At every point in time, the design and fabrication processes for
a certain processor have been completed to a certain extent. The
two extremes considered here are represented by completely
fabricated, packaged processors and by processors which just
exist as a cell in a CAD system. The latter is called a core
processor. In addition to cores, systems-on-a-chip may contain
RAMs, ROMs, and special accelerators. With these, much of
the performance penalty caused by the use of flexible processors
can be compensated.

2. Domain-specific features

Processors can be designed to be domain-specific. Possible
domains are digital signal processing or control-dominated ap-
plications.

DSP processors [20] contain special features for signal pro-
cessing: multiply/accumulate instructions, specialized (“hetero-
genous”) register sets, multiple ALUs, special DSP addressing
modes (for example, for ring buffers), and saturating arithmetic
operations.

3. Application-specific features

At any point in time, the internal architecture of a processor may
either be fixed or still allow configurations to take place.

The two extremes considered here are: processors with a com-
pletely fixed architecture and ASIPs. Processors with a fixed
architecture or off-the-shelf processors have usually been de-
signed to have an extremely efficient layout.

ASIPs are processorswith an application-specific instruction set.
Depending upon the application, certain instructions and hard-
ware features are either implemented or unimplemented. Also,
the definition of ASIPs may include generic parameters. By
“generic parameters” we mean compile-time parameters defin-
ing, for example, the size of memories and the bitwidth of func-
tional units. A very nice set of references to ASIPs is contained
in a recent contribution by Paulin [32]. A well-known example
is the EPICs architecture [41]. Optimal selection of instructions,
hardware features and values for parameters is a topic which has
recently received interest in the literature [3, 34, 15]. ASIPs have
the potential of requiring less area or power than off-the-shelf
processors. Hence, they are popular especially for low-power
applications.

The special class of ASIPs optimized for DSP is also called
application specific signal processors (ASSP). These processors
correspond to one of the edges of the processor cube.

In addition to the three coordinates, there are of course other criteria
for classifying processors.

Currently, there is a huge amount of activity on designing processor
hardware. However, designers frequently restrict their scope to op-
timizing the efficiency of processor hardware. The loss of efficiency
due to the deficiencies in the current compiler technology usually does
not lead to significant activities on compiler optimizations.

3 Compilers

3.1 Performance of Current Compilers

Problems with using current compiler technology for embedded pro-
cessors have been mentioned by quite a number of industrial designers.
Detailed numerical data has been published by a group of reseachers
working at the University of Aachen. Researchers at Aachen have
compared the size and the speed of assembly language library routines
with the size and the speed of compiled code. According the results
of this DSPStone benchmark project [42], overhead of compiled code
(in terms of code size and clock cycles) typically ranges between 2
and 8. This means that typically up to 7/8th of all processor cycles
are waisted if compilers are used. This translates into a huge loss
of performance and electrical power and is clearly not acceptable for
embedded systems. Optimizations for low-power design should not
be constrained to the hardware level. From an overall point of view, a



highly optimizing compiler is one of the most important contributions
to low power design.

Due to the current lack of highly optimizing compilers, a major
amount of applications is implemented in assembly languages. The
exact percentage varies from company to company and from applica-
tion to application. Paulin has computed this percentage for a closed
set of applications [33]. He found that a major percentage of DSP
applications and of controller applications is written in assembly lan-
guages.

Implementing complex systems using assembly languages has all
the well-known disadvantages, for example a long time to the market,
a low product quality and the inability of retargeting the application
to new processors.

3.2 Requirements for Compilers for Embedded
Processors

In order to make high-level programming for embedded systems a
reality, adequate compilers have to be designed. These compilers
have to meet the following requirements for the generated embedded
code:

1. Demand for compact code

In many applications (e.g. on heterogenous chips), not much
silicon area is available to store the code. For those applications,
the code must be extremely compact.

2. Demand for extremely fast code

Related to the first requirement is the requirement to generate
extremely fast code. Efficiency losses during code generation
could result in the requirement to use faster processors in order to
keep hard real-time deadlines. Such faster processors are more
expensive and consume more power.

The need for generating extremely fast code should have
priority over the desire for short compilation times. In fact,
compilation times which are somewhat larger than standard com-
pilation times are acceptable in this environment. Hence, com-
piler algorithms, which so far have been rejected due to their
complexity, should be reconsidered.

3. Need for high dependability

Embedded processors directly interact with their environment
and therefore must be extremely dependable. The requirement
for absence of design faults should lead to the use of high-
level languages and should exclude the still wide-spread use of
assembly languages in this area.

4. Constraints for real-time response

Embedded software has to guarantee a certain real-time response
to external events. The issue of specifying, analyzing and check-
ing timing constraints is covered, for example, in books by Ku,
De Micheli and Gupta [18, 13], and papers by Boriello [8] and
by Li, Malik, Wolfe [25]. Current compilers have no notion
of time-constraints. Hence, generated assembly code has to be
checked for consistency with those constraints. In many cases,
error-prone, time-consuming simulations are used for this. We
believe that it would be better to design smarter compilers. Such
compilers should be able to calculate the speed of the code they
produce.

5. Support for DSP algorithms
Many of the embedded systems are used for digital signal pro-
cessing. Development platforms should have special support

for this application domain. For example, it should be pos-
sible to specify algorithms in high-level languages which sup-
port delayed signals, fixed point arithmetic, saturating arithmetic
operators, and a definable precision of numbers.

6. Support for DSP architectures

Many of the embedded processors are DSP processors. Hence,
their features should be supported by development platforms.

3.3 New Optimization Techniques

Recent research has aimed at the design of new compiler optimizations
taking the special characteristics of the application area and the target
processors into account.

Standard techniques for assigningvalues to registers (calledregister
assigment) assume homogenous register sets (all registers are equal).
Embedded processors usually come with heterogenous register sets
(not all register have the same functionality). For heterogenous re-
gisters, the overall performance is improved by taking advantage of
features associated with some registers (e.g. incrementing certain re-
gisters in parallel). Wess [40], Araujo [4], Rimey [36], Bradlee [9] and
Hartmann [14] have designed register assignment techniques which
take heterogenous register sets into account.

Many of the popular DSPs include so-called parallel instructions.
For example, the Motorola MC 56000 allows parallel move opera-
tions (operations which can be performed in parallel to arithmetic
operations). Not taking advantage of this parallelism means loosing a
factor of two in the performance. Techniques for exploiting this type
of parallelism have been used in the context of microprogramming.
Due to recent improvements in combinatorial optimization techniques,
optimal algorithms have become feasible [24]. Other compaction al-
gorithms have been described by Timmer [39], Strik [37], and Nicolau
[31].

Many DSPs have multiple operation modes (in the context of micro-
programming, this concept was called residualcontrol). For example,
DSPs may be in saturating arithmetic mode or in wrap-around arith-
metic mode. Switching from one mode to the other requires executing
mode changing instructions. The issue for compilers is to minimize
the number of mode-changing instructions. Liao [26] has designed an
algorithm for this purpose.

A few DSPs support multiple memory banks. Whenever the ar-
guments of a binary operation are available in two different memory
banks, the operation executes faster. Assigning variables to memory
banks such that as many operations as possible will find their operands
in different banks is an optimization that can be more easily performed
by a compiler than by an assembly language programmer. Sudarsanam
has published an algorithm [38] implementing this optimization.

Several DSPs include special address generation units. With these,
incrementing an address register does not require an extra instruction
or cycle. As a result, it is desirable to assign variables to memory such
that as many variable accesses as possible refer to adjacent memory
locations. Bartley [6], Liao [26] and Leupers [21] have described
algorithms for this optimization.

All these optimizations can be implemented in target-specific as
well as in retargetable compilers.



4 Retargetable Compilers

4.1 What is Retargetablility?
A design automation tool (e.g. a compiler) is said to be retargetable
if it can be applied to a range of different targets, in particular to a
range of different target processors. This means that the target model
cannot be an implicit part of the tool’s algorithm, but must be explicit.

There are different levels of retargetability. The lowest level is
portability, which means that the tool can be easily modified to handle
a new target. The highest level is target independence, which means
that the target model is completely explicit and no assumption is made
in the tool’s algorithm.

4.2 Why Retargetability?
Retargetable compilers are more difficult to write than target-specific
compilers. Why do we go through the effort of designing retargetable
compilers? There are several reasons for this:

� Core processors are mostly used for embedded systems and for
these systems efficiency is extremely important. Hence, pro-
cessor architectures may vary from application to application.
This is possible, since there is no need for code compatability,
because there are no “user programs”.

Most current compilers are target-specific. We believe that retar-
getability will be required, at least for a (possibly limited) range
of ASIP target architectures. ASIPs frequently come with gen-
eric parameters, such as the bitwidth of the data path, the number
of registers, and the set of hardware-supported operations. The
user should at least be able to retarget a compiler to every set of
parameter values. A larger range of target architectures would be
desirable to support experimentation with different hardware op-
tions, especially for partitioning in hardware/software codesign.

� For embedded processors, there may be only a small amount
of applications per processor architecture. Hence, designing
compilers quickly and economically is important.

� Understanding the basic mechanism that is required for retarget-
ing a compiler also helps designing compilers for fixed architec-
tures.

� We have seen several cases in which the attempt of generalizing
a target-specific compiler into a retargetable compiler failed. If
retargetability it required, it has to be considered from the very
beginning. It cannot be added later on.

4.3 A Detailed Example: RECORD
In order to understand the essential mechanisms in a retargetable
compiler, we will use the RECORD compiler [22] as an example.

4.3.1 Overview

Fig. 2 provides an overview over the RECORD compiler (actually:
compiler generator).

RECORD compilers compile programs written in the DSP-specific
programming language DFL [30] into binary code. RECORD com-
pilers are generated from a description of the target processor.

As a special characteristic of RECORD, this description of the target
may be at different levels of abstraction: it may range from an RT-level
netlist to an instruction set description. RT-level netlist decriptions are
acceptedbecausesome ASIPs may be defined at that level and because
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Figure 2: Global view of RECORD

this simplifies the analysis of architectural tradeoffs. Furthermore, it
provides a bridge between ECAD (netlist) and compiler (instruction
set) domains.

4.3.2 Instruction Set Extraction

The goal of instruction set extraction (ISE) [23] is to generate an
instruction set description from an RT-level netlist. For each memory
or register input, ISE traverses the netlist from that input to memory
or register outputs (opposite to the direction of the data-flow). For
each traversal, it collects the transformations that are applied to the
data (e.g. add operations) and also the control requirements (e.g. set
ALU input to ’0’ to perform an add). Control requirements have to
be met by proper conditions for instructions bits, which can be found
by justification. The net effect of ISE is to generate, for each register
or memory, a list of assignable expressions and the corresponding
instruction bit settings.
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As a special case, the netlist used as input to ISE is allowed to
contain only a single RT-component having the instruction set as its
behaviour. In this case, ISE essentially just generates a normalized
description of the processor behaviour, making the processor descrip-
tion more or less independent of syntactical and other variances of the
description style.

4.3.3 Generation of the Pattern Matcher

The essential operation of any compiler consists of finding appropri-
ate instruction set patterns for implementing or covering the pattern
representing the program. Fig. 5 shows how a data flow graph repres-
enting a program can be covering by instruction patterns. Note that
we have just represented the operations and not the registers.



It is well known that the generation of optimum graph covers is
an NP-complete problem. Most approaches are therefore based on
heuristic decompositions of graphs into trees or take advantage of
special architectural situations in which an optimum decomposition
can be found.
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Early approaches for covering trees were also based on heuristics
(like Cattell’s maximum munching method [10]). More recently, Aho
et al. proposed an dynamic programming algorithm for generating an
optimum cover [2]. This approach,however, mainly aims at code gen-
eration for homogenous register architectures. Heterogenous register
architectures can be handled with tree parsing [5]. The iburg tool
set allows generating pattern matchers for any given target instruction
set automatically.

This is also the tool used in RECORD for selecting instructions. In
order to generate optimized code, RECORD uses algebraic rules for
transforming the original data flow tree into equivalent ones and calls
the iburg-matcher with each tree. The tree requiring the smallest
number of covering patterns is then selected. This approach is feasible
due to the high speed ofiburg-based matchers. Theiburg-matcher
produces a sequence of instruction patterns.

4.3.4 Optimizations

This sequence can still be optimized, because the iburg model does
not reflect parallel operations or optimized accesses to memory. Such
optimizations (in effect, all optimizations mentioned in section 3) can
be implemented in this phase.

4.3.5 Results

Table 1 shows a comparison between code produced by RECORD
and code produced by a target-specific compiler for the ti C25, using
algorithms from the DSPStone benchmark as examples.

Program TI C Comp. RECORD
real update 60 60
complex multiply 84 79
complex update 148 86
N real updates 180 100
N complex updates 182 118
fir 700 200
iir biquad one section 130 145
iir biquad N sections 300 258
dot product 120 120
convolution 500 600

Table 1: Size of compiled programs in relation to assembly
code (%)

In six out of ten cases, RECORD outperforms the target-specific
compiler, even though it does not contain any standard optimization
technique (such as constant folding). This shows that retargetable
compilers can compete with todays target-specific compilers. On the
other hand, extremely target-specific optimizations will always require
a target-specific compiler.

4.4 Key Approaches To Retargetability

A recent book provides a comprehensive survey of the major projects
aiming at (retargetable) compilers for embedded processors [29].

In their project, Paulin et. al have initialy focussed on the FlexWare
approach to compiler generation [27]. More recently, they are using a
rule-based approach for code generation.

Goossenset. al have designed the CHESS compiler [19, 35], which
uses the special language nML [12] for instruction set description.

Wess is using Trellis diagrams for modelling target architectures
[40].

4.5 Generation of Self-Test Programs with Re-
targetable Compilers

Testing of processor cores can be performed by running self-test pro-
grams on the processor to be tested. Automatic generation of self-test
programs is possible with a special retargetable compiler that is able
to propagate values just like ATPG tools. The first approach to this
[17] has recently been refined by Bieker [7].

5 Conclusion

Currently, there is a significant shift in how embedded systems are
designed. The use of cores, and -in particular- the use of processor
cores, for chip-level (rather than board-level ) integration leads to the
requirement of generating efficient embedded software. Due to the
lack of adequate compiler optimization algorithms, new research on
compilers is required. The research can take advantage of the spe-
cial characteristics of embedded software. Some recently published
algorithms show that progress in this area is indeed feasible.

Due to the need for domain-specific or even application-specific
efficient architectures, a large number of processor core architectures
with different instruction sets is predicted to exist during the next
years. In order to allow high-level language programming of these
architectures, retargetable compilers have been proposed. Recently
published algorithms and results indicated that these can in fact be



designed and their performance competes favourably with currently
available commercial target-specific compilers.
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