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Abstract

In modern computer systems the performance is
dominated by the memory performance. Currently,
there is neither a systematic design methodology
nor a tool for designing memory systems for gen-
eral purpose computers. We present a first
approach to CAD support for this crucial subtask
of system level design. Dependencies between
influencing factors and design decisions are
explicitly represented by constraints and constraint
logic programming is used to make the design
decisions.

The memory design is optimized with respect to
several objectives by iterating the (re)design cycle.
Event driven simulation is used for evaluation of
the intermediate results. The system is organized
as an interactive design assistant.

1. Motivation
During the recent years, the complexity and capa-
bilities of microelectronic systems has grown sig-
nificantly. As a consequence, the design of these
systems has also become more complex and time-
consuming. Therefore, a powerful tool support is
indispensable for the design of complex micro-
electronic systems. During the course of time,
design automation tools became available at higher
and higher levels of abstraction. Layout editors, to
a large extent, have been replaced by placement
and routing tools. These have been complemented
by logic synthesis. Logic synthesis, in turn, is
expected to be complemented by high-level syn-
thesis. As evidenced by recent commercial
announcements, high-level synthesis is currently
made commercially available.

One crucial issue of system level design is memory
synthesis. It is nowadays widely accepted, that the
performance of the memory system for a general
purpose computer such as a workstation or PC
dominates the performance of the computer as a
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whole [Wulf95]. There is a serious concern that the
speed of memory systems will continue to match the
speed of processors [Wilk95]. Typically, memory
access slows down the execution speed for processor
instructions significantly. Due to the increasing speed
of processors, these memory systems have become
more and more complex to supply the required band-
width. Sophisticated techniques such as hierarchical
organization of memory components, complex
caches, interleaving, pipelining, bus snooping etc.,
which previously have only been available on expen-
sive mainframes, have found their application in mass
products. For multiprocessor systems, the design of
powerful memory systems is even more complex.

The synthesis of memory systems is characterized by
numerous influencing factors and design decisions to
be made. There are many complex dependencies
between theses factors and decisions that must be
considered, many one of them being vague, heuristic
or unknown. Therefore, it is hard to get a clear picture
of all relations between influencing factors and design
decisions for memory design. Moreover, memory
design is a multidimensional optimization problem,
i.e., there are several objectives to be considered.
Besides memory performance (average access time,
miss ratio, etc.), for instance the cost of the required
off-chip memory components and the area consump-
tion of on-chip caches have to be taken into consider-
ation.

Despite the crucial importance of memory design for
general purpose computers, there is no systematic
design methodology or theory for this complex task.
Consequently, the design of such memory systems is
governed by rules of thumb. These vague heuristics
reflect the knowledge of “experts” more or less famil-
iar with this area. Simulation is used to validate some
of the design decisions, but the current situation in
processor memory design can be described by the fol-
lowing statements:

• Processor memory synthesis for general purpose
processors is currently more an art than a science,
i.e., it is not an engineering discipline.

• Design decisions are mostly based on the men-
tioned rules of thumb and sometimes time-con-
suming analyses of their consequences (see
below).

• There are no CAD tools supporting memory syn-
thesis for general purpose computers.

As a result, even major industrial companies are
sometimes surprised by the (lack of) performance of
the memory systems.2
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In this paper, a first approach to CAD support of
memory synthesis for general purpose computers
is presented. With this approach, a systematic pro-
cedure of memory synthesis shall be supported.
The consideration and comparison of several
design alternatives is enabled.

Our approach features an explicit representation of
the dependencies between influencing factors and
decisions for memory synthesis. The representa-
tion is based on constraint logic programming. The
implemented prototype creates an initial memory
design that is redesigned and optimized stepwise
according to the objectives. The analysis of each
intermediate design result is performed by an
event-driven simulation. Design decisions can be
influenced and revised by the user, i.e., an interac-
tive design style is supported by the system.

The rest of the paper is organized in the following
way: Section 2 presents current work on memory
synthesis. The memory synthesis task and the main
features of this task, relevant for the organization
of our system, are discussed in Section 3. Section
4 gives a brief introduction into constraint logic
programming. The conception of the new system
for memory synthesis SPEISE is presented in Sec-
tion 6. Results of the implemented prototype and
topics for further research are documented in Sec-
tion 7. Section 8 concludes the paper.

2. Current Work
Until now, only very limited work on CAD for
memory synthesis has been published. Most of
these approaches are on a lower level of abstrac-
tion than the memory synthesis problem addressed
in this paper. The available papers either deal with
ASICs, with a specific, limited class of processors
or are restricted to small subtasks of memory syn-
thesis:

• Memory Synthesis for DSP applications
PHIDEO [vMee92] is a silicon compiler for
digital signal processors. During memory syn-
thesis, instances of the appropriate memory
types are allocated and the addressing mecha-
nisms are selected. The allocated simple mem-
ory modules are used to delay the digital signals
according to the timing constraints.

• Register allocation

2. This observation can be made for cache design of
modern SPARC systems such as the SPARC-10.
According to our knowledge, cache block sizes and
the interleaving factor are not well balanced.

Register allocation is performed in compilers
[Aho86] and high-level synthesis tools [McFa90;
Gajs92].

• Allocation of multi-port memories in high-level
synthesis
Previously allocated, isolated registers are merged
into multi-port memories [Bala88].

• Buffer allocation in high-level synthesis tools
In [Kolk93] a method is presented for minimizing
sizing of communication buffers in an environ-
ment of communicating concurrent processes.

For these specific subtasks of memory synthesis,
methods and algorithms are available. For instance
the number of allocated registers can be calculated
from the maximum number of variables referenced
concurrently during a singe control step. On the other
hand, there is no CAD tool supporting the memory
synthesis problem for general purpose computers,
described above. Instead, there are several publica-
tions about the influence of single memory parame-
ters on the performance of the memory system as a
whole. Most of the analyses are related to cache
parameters. Some examples of these analyses are
listed below:

• In [Smit82; Henn96; Przy90] the effect of the
selected prefetch strategy, the selected strategy for
updating the main memory, the line size, the num-
ber of sets and several other design decisions on
the miss ratio is considered.

• In [Kris96] performance modelling for computer
architecture is described. Analytical models repre-
senting the effects of cache design decisions on the
performance are described in [Agar89; Berg93;
Kris96; Saav95]. These models cannot be used for
memory synthesis, because they deal only with
few design decisions. Models cannot be used to
analytically predict the performance of a designed
memory system. Therefore simulation is necessary
to examine the effect of a design decision on the
performance of the whole memory system.

• In [Rau91] the effect of the input buffer size on the
performance of interleaved memories is analyzed.

Depending on these analyses some exact resp. heuris-
tic dependencies between the input data and the dif-
ferent design decisions can be derived. Typically,
heuristic dependencies are formulated as qualitative
relations. To be used in a memory synthesis system,
they have to be quantified. Besides, information about
many crucial design decisions is still lacking. More-
over, there is no published work for a comprehensive
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treatment of the numerous influencing factors and
design decisions for memory synthesis.

3. Memory Synthesis
In the following we start with a characterization of
the memory synthesis task and then analyze the
task features.

3.1 The Task
As mentioned above, the CPU performance is cur-
rently improved at a much faster rate than that of
memories. To manage the resulting problem, a
sophisticated memory organization must be
designed. A memory system nowadays does not
consist of a single component but of a hierarchy of
memory components ranging from small, fast and
expensive ones, placed near the CPU (i.e., register,
buffer, first level cache), to large, slower and
cheaper ones (i.e., second level cache, main mem-
ory, secondary memory). Registers are allocated

for example, during high-level data path synthesis.
In memory synthesis for general purpose proces-
sors the main component under design is the cache
because it is large enough to hold a moderate
amount of data, more than a register. And further-
more an access to a cache is fast enough for pro-
cessor access because it is now possible to place
the cache on the processor chip.

To speed up a memory reference, data requested by
the CPU, has to be available in a fast memory com-
ponent or the requests must be parallelized. In
either case this requires a good organization of the
memory system. Design decisions are e.g., number
of cache levels, size, associativity, and prefetch
strategy of a cache, size and degree of interleaving
of the main memory, etc.

Which memory system is a “good” one, depends
on time and order of the different data requests.
These, in turn, depend on two factors: application
programs and underlying computer architecture.
Information about the characteristics of applica-
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Fig. 1: memory hierarchy
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tion programs (i.e., time and locality of the referenced
memory addresses and working set) is necessary. For
instance, if the application programs consists of many
loops accessing the same data in each pass, the
amount of different data that is accessed is small. In
this case the working set of the application program is
also small and the locality is high. This may lead to a
small cache. The exact order and time of the memory
references is also effected by the underlying computer
architecture. Therefore the memory system under
design has to be suitable for the given computer archi-
tecture. For instance, in RISC architectures with pipe-
lining, memory accesses to instructions and data can
be parallelized by designing separate caches for
instructions and data. Another relevant feature is the
cycle time of the processor. This is an upper bound for
the access time of a first level cache.

The main objective in memory synthesis is to config-
ure a memory system that minimizes the access time
of memory references. But there are some other crite-
ria like chip area and cost that restrict the design space
of a memory system.

The memory synthesis task described above can be
summarized as follows:
For a given general purpose computer architecture
and a class of application programs a memory system
has to be designed and optimized according to given
criteria like access time, chip area and cost.

3.2 Problem Features
The structure of memory synthesis task is analyzed in
order to derive design decisions for a memory synthe-
sis tool.

• Memory synthesis for general purpose processors
is a new area of research. As mentioned above
there exists no tool support on thishigh level of
abstraction. Currently memory synthesis is sup-
ported by tools only for ASICs. For general pur-
pose computer systems only analyses exist. These
analyses have to be combined to get information
required for building a memory synthesis tool. To
collect some experience in modelling and synthe-
sis techniques as fast as possible, it is very helpful
to build a prototype. Logic programming is an ade-
quate paradigm, because it supports an abstract
level of programming that speeds up the program-
ming process rapidly.

• Memory synthesis is acomplex synthesis task (see
above).

• The memory synthesis task consists of some struc-
turing and a lot of dimensioning decisions. The
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structuring decisions select the components of
the memory configuration. The number of dif-
ferent structural decisions is small, because
there exist only few principally different mem-
ory configurations. The dimensioning decisions
determine the features of each memory compo-
nent (i.e., size, block size, replacement strat-
egy). The number of dimensioning decisions is
limited but large.

• The design decisions are of different types:
structural, numerical, boolean or symbolical
(for details see Subsection 6.3.).

• The numerous existing analyses of single
design decisions show that memory synthesis is
dominated by ahuge amount of relationships
between different design decisions and the fea-
tures of the design environment (computer
architecture, application programs, and objec-
tives). These relations can be expressed bycon-
straints. A programming paradigm supporting
prototype development and constraints iscon-
straint logic programming (see Section 5.).

• Up to now most of therelations described
above, especially those between the design
decisions and the objectives, are expressed
qualitatively. For memory synthesis these rela-
tions must bequantifiedby use ofheuristics.
Additionally most of these relations arenot
monotone. Increasing the value of some design
decision raises the performance only to a cer-
tain extent. For instance, increasing the cache
size decreases the miss ratio. To a certain extent
the average access time is decreased because
less data has to be fetched from main memory.
But the larger the cache the slower a single
access to the cache and the slower the average
access time. A synthesis tool must be able to
model these dependencies.

• The memory synthesis task is amultidimen-
sional optimization problem(see above).

• Up to nowno objective function is known that
quantifies the relations between the design deci-
sion and the objectives in form of a formula.
The only way to measure the performance of
the memory system under design due to the
underlying computer architecture and the appli-
cation programs is simulation. Memory refer-
ences to the synthesized memory system have
to be simulated.

• Due to the lack of aformal description and the-
ory for memory synthesis,(no quantitative rela-

tions and no objective function, and no compound
method for considering different objectives ade-
quately and concurrently) a stepwise optimization
is necessary by usingredesign cycles.

4. Constraint Logic Program-
ming (CLP)
In this section we describe why we use constraint
logic programming for memory synthesis.

4.1 Basic Idea
Constraint logic programming extends logic pro-
gramming by a mechanism for constraints modelling
and processing [Frue93]. Constraints express rela-
tions between technical parameters of the problem.
The idea of CLP is to restrict the search space, as
much as possible, by constraints and to search the
remaining space in a moderate amount of time. The
processes of constraint handling and search are inter-
twined. Each constraint is imposed but the execution
is delayed until the constraint can be evaluated with-
out anticipating any search decisions. When during
the searching phase some technical parameters are
restricted the relevant constraints are resumed and
executed. Additionally this search can be done in a
heuristic, problem specific way.

In memory synthesis the relations between design
decisions and environment features are expressed as
constraints. The process of making design decisions,
called labelling, is done heuristically.

Restricting the search space before and during label-
ling, improves the solution process drastically. In
logic programming without constraints the design
decisions are selected in the unrestricted decision
space. This may cause a lot of wrong decisions and
implies a large amount of backtracking, slowing
down the solution process. Constraint logic program-
ming can avoid most of these wrong decisions and the
resulting backtracking.

4.2 Memory Synthesis as CLP Problem
In memory synthesis as described above, a memory
system can be represented by a generic model. Each
design decision is represented by a parameter with a
domain representing the alternatives of this decision.
For instance, for each cache (data cache, instruction
cache, or second level cache) there are parameters for
size, block size, associativity, replacement strategy,
write strategy, etc. Restricting the search space is
done by restricting the domains of some parameters.
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Decision making corresponds to instantiating
parameters.

The design decisions are of different types: Struc-
tural ones determine the components of the mem-
ory configuration. For each component there are
several dimensioning decisions of boolean, numer-
ical or symbolical type. As denoted above, all deci-
sions are represented by parameters with different
domains. The types of these domains range from
numerical (i.e., size), over symbolical (i.e.,
replacement strategy), to boolean (i.e., on-chip
integration). These types are also used for the
domains of structural design decisions (i.e., avail-
ability of a second level cache is a structural design
decision represented by a boolean parameter). So
for the whole synthesis task it is possible to use a
homogeneous search strategy that can be handled
well by a constraint system.

Architectural features and application features can
be represented as generic models, too. The archi-
tectural parameter values are given by the designer
and the application ones can be extracted by ana-
lyzing memory reference sequences of application
programs (see below).

Memory synthesis, described here, differs from the
standard CLP problem in two ways: Firstly the set
of constraints, extracted from the analyses
described in literature, may be inconsistent. For
this reason each constraint is extended by a weight
expressing the importance of that constraint. If an
inconsistency occurs, constraints with small
weights are relaxed successively. The sum of the
weights of the remaining consistent constraints
should be maximized. Secondly the objectives
cannot be calculated by a formula. They have to be
calculated by simulation of given memory refer-
ence sequences on the synthesized memory config-
uration.

Definition. Let V be a set of variables {v1,...,vn}
representing architectural, application, and mem-
ory parameters, each vi with a domain Di of possi-
ble values. Let C be a set of constraints {c1,...,cm}
expressing the relations between variables in V: cj
⊆ D1 × ...× Dn. A weight function wc(cj) gives the
weight of each constraint denoting the importance.
Let O be a set of objectives {o1,...,or} calculated by
simulation of traces on the memory configuration
and wo(ok) a weight function expressing the user
given priorities to each of the objectives ok. A
function eval(ok) evaluates the quality of the
design with respect to the objective ok. (x1,...,xn) is
an optimal solution of the problem if the following

conditions hold:

•

•

•

with C’ = {c ∈ C| (x1, ..., xn) ∈ c} ⊆
and <o1, ..., or> = simulation(x1, ..., xn).

Each parameter xj of a solution is instantiated to a
value of Dj. The weighted sum of constraints consis-
tent with the solution is maximized. And the weighted
sum of objective evaluations is maximized.

A small example shows the power of constraints in
the domain of memory synthesis: For a simplified
cache synthesis the cache hierarchy consists of 1 or 2
cache levels where the first level cache may be split
into one for instructions and one for data. For each
cache 13 design decisions with varying domain sizes
have to be made. The decision space has a size of 0.5
* 1020. After imposing 20 of 50 constraints the design
space is restricted to 107. After determining 2 of the
design decisions (size and block size of each cache)
the remaining 30 constraints restrict the search space
to 430 design possibilities, which are examined heu-
ristically (Fig. 2).

Tab. 1 gives a concrete example that again illustrates
the power of search space restriction.
The domains of six parameters are shown before and
after restriction by the given constraints. The search
space size (multiplication of the parameter domain
sizes) is reduced from about 6*106 to 18.

4.3 Alternative Optimization Strategies
The system SPEISE as a whole configures and opti-
mizes a memory system according to several objec-
tives. As has been pointed out in the previous
subsection this task is performed by a heuristic search

i∀ xi Di∈

wc cj( )
cj C′∈

∑ max→

wo ok( ) eval ok( )⋅
k 1=

r

∑ max→

design space: 0.5*1020

partially restricted design space: 107

totally restricted design space: 430

Fig. 2: design space restriction
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strategy that utilizes domain specific search con-
trol knowledge for parameter labeling and rede-
sign.

There are several well-known alternative optimiza-
tion strategies.Evolution strategies [Schw81] con-
sider several candidates in parallel. New
candidates are created by syntactic, domain-inde-
pendent mutations of existing ones. An evaluation
function selects the most promising candidates to
be considered further on. This method works well,
if a large set of candidates can be created and eval-
uated with limited computational effort. As the
evaluation of memory configuration involves time-
consuming simulation runs, this condition does not
hold for memory synthesis.

Integer linear programming [Neum75] also pro-
vides an optimization strategy. In contrary to CLP
it is limited to numeric parameter types. The
method requires a target function that can be used
to determine an (optimal) solution in a single step.
In memory synthesis, an optimal solution cannot
be determined in a single step, as an appropriate
compound target function is lacking. Instead, sim-
ulation runs are required to evaluate the quality of
a candidate to be modified later. Therefore integer

parameter before after
working set
locality

small
big

small
big

size (KB)
line size (B)
associativity
replacement

8 .. 256
4 .. 256

1 .. 32, full
no, rnd, lru

8, 16, 32
16, 32
2, 4, 8

lru
search space 6.236.703 18

constraints
IF working set is small THEN size≤ 32
IF locality is big THEN line size≥ 16
line size≤ size
IF locality is big THEN associativity ≤8
power_of_2(size)
power_of_2(size)
power_of_2(associativity)
IF line size >= 16 THEN associativity >1
IF associativity = 1
THEN replacement = no
ELSE IF associativity≤ 8
THEN replacement = LRU

Tab. 1: concrete example of search space
 restriction, parameter domains before and
 after restriction by constraints

linear programming is not suitable for memory syn-
thesis.

CYCLOPS [Navi91] also uses constraints to represent
conditions and dependencies in the considered
domain. The system uses a modified A* search algo-
rithm to determine a set of pareto optimal solutions.
Like the other approaches mentioned above,
CYCLOPS does not provide a redesign mechanism
that modifies a candidate in a specific way, according
to the results of an analysis. This feature is indispens-
able for memory synthesis.

5. The SPEISE System
SPEISE designs a memory system for a given general
purpose computer architecture and a class of pro-
grams representing the typical applications on this
computer architecture. The memory system is opti-
mized according to several given objectives. Fig. 3
shows the components of SPEISE:

In the following, we will first describe the cooperation
of SPEISE’s components. Afterwards particular
aspects will be pointed out in detail.

sequence of

trace analysis
application

architecture

restriction by

evaluation

technology deficiencies

redesignparameter

objectives

ok

memory system

Fig. 3: components of the SPEISE
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5.1 The Design Cycle
The input data for SPEISE are memory reference
sequences of application programs, architectural
features and objective weights denoting their
importance for optimization.

Before starting the design cycle, memory reference
sequences of application programs are analyzed to
examine their typical features (‘trace analysis’).

Constraints sets expressing the relations between
input data and design decisions are selected as a
result of an analysis of the input data (i.e., con-
straints set for single/multi-processor systems).

At the beginning of each design cycle, the selected
constraints are imposed to restrict the search space
(‘restriction by constraints’).

After this step, decision making starts (‘parameter
labelling’). The order of making decisions is deter-
mined by a domain specific rating of each deci-
sion. The rating reflects the impact of these design
decisions on the performance. For instance, the
most important design decisions for a cache are
size, block size and associativity. The decision pro-
cess takes advantage of the restrictions to the
search space caused by the design constraints.
Decisions are made with respect to the objectives.
For instance, if the objective cost is to be mini-
mized, the size of a cache is set to the minimum in
the remaining domain.

Components of the designed memory system are
mapped to existing on-chip and off-chip memory
modules described in the technology database
(‘technology mapping’).

An event-driven trace simulation is used to imitate
the accesses of the application programs to the
memory system (‘simulation’). During this simu-
lation values for performance criteria like average
access time and different miss rates for caches are
calculated.

Using the simulation results, the ‘evaluation’ com-
ponent evaluates the synthesized memory configu-
ration. If the quality of the designed memory
system meets a calculated threshold value for each
of the objectives, the memory system is accepted
and presented to the user. Otherwise redesign has
to be performed. This is the typical case for the first
design cycle.

If the design is not accepted, the ‘deficiencies anal-
ysis’ examines which of the threshold values are
missed. For each of the missed values possible
revisions of design decisions are determined(i.e., if

the miss rate of a cache is to high, an increase in size
or associativity is proposed).

‘Redesign planning’ examines the list of possible
changes proposed by the deficiencies analysis. As
these revisions may be contradictory, a consistent
subset of them is selected. This process is guided by
heuristic rules. The changes are expressed in form of
constraints.

To avoid recreations of previous designs, the ‘defi-
ciencies analysis’ and the ‘redesign planning’ take
redesign actions of previous design cycles and their
consequences on the performance into account.

At the beginning of the next design cycle the con-
straints created by the ‘redesign planning’ are
imposed. The cycle is continued with imposing the
constraints in the ‘restriction by constraints’ step.

Redesign stops if the ‘evaluation’ component or the
designer (user of the tool) accept the designed mem-
ory system.

Fig. 4 shows the algorithm for SPEISE’s heuristic
search strategy from an imperative point of view. The
cooperation of the implicit control strategy available
by use of declarative programming and the explicit
control actions performed by the components of
SPEISE is described. The outer WHILE loop guides
the redesign cycle by use of a new non chronological
backtracking strategy: restrict the search space by
imposing constraints, label the parameters, simulate
and evaluate the resulting memory configuration, and
relax constraints or plan redesign if necessary. In the
inner WHILE loop the memory parameters are
labeled one after the other (‘parameter labelling’).
This step is completely guided by the chronological
backtracking mechanism of declarative program-
ming. The relaxation of constraints is guided by a sep-
arate control strategy.

5.2 Selected Aspects
The following selected aspects are pointed out in
detail:

• Provision of Memory Reference Sequences
It is difficult to get adequate memory reference
sequences. If a memory system for an existing
computer architecture is improved, an existing
compiler can be used to generate memory refer-
ence sequences from application programs.
If the given computer architecture is new but simi-
lar to another one (i.e., to a predecessor model) in
terms of address generation, memory reference
sequences of the predecessor can be used.
An address sequence can also be made indepen-
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Fig. 4: algorithm of SPEISE’s heuristic search strategy

search strategy(Application Features, Architectural Features, Objectives)
BEGIN

Constraintsperm := <set of maximal constraints, permanently available>;
Constraintsredesign := <empty>;
<initialize Mem_Config with set of unlabeled memory parameters>;
WHILE (<Mem_Config not acceptable>)
DO

<impose Constraintsredesign>;
<impose Constraintsperm>;
WHILE (<there are unlabeled parameters in Mem_Config>

AND <restricted search space not completely searched>)
DO

<select next parameter Pi to be labeled>;
<label Pi and resume corresponding constraints>;
IF (<there is no value for Pi consistent to Constraintsperm and Constraintsredesign>)
THEN

<chronological backtracking to labelling of the previous parameter Pi-1>;
<select a different value for Pi-1 >;

FI
OD
IF (<no consistent labelling for all parameters in Mem_Config found>)
THEN

<relax Constraintsperm>;
ELSE

<simulate and evaluate Mem_Config>;
IF (<Mem_Config not acceptable>)
THEN

<plan redesign operations>;
Constraintsredesign := <domain restrictions according to redesign operations>;

FI
FI
Mem_Config := <set of unlabeled memory parameters>;

OD
END

dent of poor compilation [McNi88].
Another possibility is the generation of memory
reference sequences. This can be done, if the
features (locality of reference, size of working
set, etc.) of the application programs are known
[Hyat93; McNi88]. In [Hoba89] some features
of symbolic programs are described. SPEISE
offers agenerator that creates memory refer-
ence sequences according to given features.
Notice, that the features, relevant for memory
synthesis, like locality of reference and working
set, depend rather on the application program
than on the computer architecture and compiler.
Therefore it is feasible to take reference
sequences of similar systems or to generate
them.

• Inconsistencies in the Set of Constraints Restrict-
ing the Search Space
The set of constraints in the restriction component
has been derived from an intensive analysis of the
relevant literature [Arar89, Henn96, Przy90,
Smit92, etc.]. Each constraint is marked by a
weight denoting its importance. As described
above the set of constraints may be inconsistent
because it is derived from different analyses and
quantified heuristically. If imposing of several con-
straints results in an inconsistency, the less impor-
tant ones are relaxed, to get a consistently
restricted search space.

• Technology Adaptation
As mentioned above, the memory system under
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design is mapped to existing memory modules.
For this purpose a technology database is used,
that contains technology dependent information
about memory modules. For on-chip modules
formulas calculating the area and access times
are given, depending on the component size.
For off-chip modules size, access time, and cost
are given. It is easy to adapt SPEISE to new IC
technologies because only the information in
the technology database has to be changed or
extended.

• Combination of Objectives
In SPEISE it is possible to optimize the memory
system according to more than one objective.
The importance of each objective can be
expressed by a weight. SPEISE optimizes the
memory system according to these user sup-
plied weights. Based on these weights a thresh-
old for each objective is calculated. If all
thresholds are met, thresholds for the most
important objectives are tightened successively
as much as possible.

• Alternatives in Redesign Planning
SPEISE can select between two modes of rede-
sign planning. In stepwise mode redesign plan-
ning selects exactly one parameter to change. In
multistep mode several changes of parameters
are performed in one redesign cycle.

5.3 Organization of the System as an
Intelligent Synthesis Assistant
The system SPEISE does not aim at a complete
automation of the memory synthesis process. This
would not be adequate for this complex high-level
synthesis task without standardized synthesis
methodology. Instead, SPEISE is organized as an
intelligent synthesis assistant that supports an
interactive design style. By use of the assistant, the
designer can create, evaluate and compare several
design alternatives quickly.

The user can make decisions and limit the search
space in that way. Decisions performed by the sys-
tem can be changed easily. The consequences of
these changes on other aspects of the memory
architecture under design are propagated automat-
ically by the assistant. In this interactive mode,
SPEISE can be used as an intelligent “editor” that
enables a flexible selection resp. modification of
design decisions and responds by showing the side
effects of these actions. Based on these results the
user can accept the intermediate memory configu-
ration or perform further design changes.

5.4 Implementation
The main part of SPEISE (framed by a bold painted
rectangle in Fig. 3) is implemented in ECLiPSe, a
CLP language from the ECRC [ECLI95], on a SUN
workstation. The first prototype is restricted to single
processor systems and focuses on synthesizing the
cache and TLB hierarchy. As mentioned above, this is
the main task of memory synthesis for general pur-
pose processors. Main memory design decisions,
given by the designer, are taken into account. The
handling of compound objectives is simplified in the
implemented prototype. The memory system is opti-
mized primarily according to the most important
objective. Nevertheless the other objectives have an
impact on some design decisions leading to the final
memory configuration.

The components ‘trace analysis’ (including the mem-
ory reference sequence generator) and ‘simulation’
are implemented in C++.

The prototype of SPEISE has been implemented by
graduated students in an 1-year project [SPEI95].

6. Results
SPEISE has been used to design cache and TLB hier-
archies for several computer architectures. In most
cases few redesign cycles (5 to 10) were sufficient to
(re)design a configuration that meets the performance
thresholds.

Due to the lack of space, only the key features of the
design process and the results are described in follow-
ing example.

6.1 Example
The example shows the design of a cache hierarchy
for a computer architecture similar to a SUN SPARC-
station (Tab. 2) with a main memory given in Tab. 3.
Tab. 4 shows the features of a class of application pro-
grams running on this computer architecture.
They have been extracted by the ‘trace analyzer’ sep-
arately for instruction, data, and mixed references.

Tab. 5 shows the cache configuration designed by
SPEISE after the first synthesis cycle. An accepted
end configuration was reached after seven design
cycles. The differences between the final and the first
configuration are shown by the values in parentheses.
For each redesign cycle SPEISE performs a simula-
tion of a trace according to the application parame-
ters, an evaluation of the simulation results, a
deficiencies analysis to find a set of cache parameters
as candidates for modification, and redesign planning
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to select parameters to change and to determine the
extent of the changes.

Then the next design cycle is started to accommo-
date the other cache parameters. Tab. 6 gives the
changes for each redesign cycle.
For instance, during the first redesign cycle (design
cycle 2) the associativity of the instruction cache
has been changed from 8 to 16.

Tab. 7 shows some of the performance parameters
measured by the simulator after each design cycle:
average access time and average values for hit time
and miss ratio of the first level caches.

The performance thresholds to be met are calcu-

Tab. 4: application program features

mixed instr. data
spacial locality big big small
working set small small medium
frequency of ref. small small small
number of reads big big medium
variance small small small
...

Tab. 3: main memory features

size (MByte) 32
page size (KByte) 8
organization segmentation
interleaving degree 8
...

Tab.2: architectural features

clock frequency (MHz) 33
pipeline stages 4
data bus size (bit) 64
address bus size (bit) 32
...

Tab.5: memory configuration after the 1. cycle
and the end configuration in parenthesis

1. I-
cache

1. D-
cache

2. cache ...

adressing virtual virtual real
size (KB) 16 32 512
block size (b) 16 64 128
associativity 8 (full) 2(16) 2
replace. strat. lru lru lru
prefetching tagged tagged tagged
write strat. - copy b. copy b.
...

lated by SPEISE according to the input parameters
(see above) and the objectives (here access time). For
instance, the hit time threshold has to be below the
clock time (here a clock frequency of 33 Hz implies a
clock time of 30 nsec).

After the first design cycle both thresholds for hit time
and average access time are met, but the miss ratio,
which should be less than 5%, is much to high. To
reduce the miss ratio, the ‘deficiencies analysis’ pro-
poses to increase the associativity or the size of one of
the caches. The ‘redesign planner’ decides to increase
the associativity of the instruction cache to a value
greater than 8. In the next ‘restriction by constraints’
and ‘parameter labelling’ step the value is set to 16.
This is done due to some further analysis of the simu-
lation results (detailed miss ratios for each cache like
capacity or conflict miss ratio, etc.). The improve-
ments are minimal. Therefore in the next redesign
cycle the associativity of the data cache is increased.

After the seventh design cycle the miss ratio finally
meets the corresponding threshold. The average

Tab. 6: Changes for each redesign cycle

changes in the redesign plan
(and implied changes)

1. increase the associativity of the
instruction cache from 8 to 16

2. increase the associativity of the
data cache from 2 to 4

3. increase the associativity of the
data cache from 4 to 8

4. decrease the block size of the
instruction cache from 16 to 8

5. increase associativity of instruction cache
from 16 to full (block size of the instruc-
tion cache increases from 8 to 16)

6. increase the associativity of the
data cache from 8 to 16

Tab 7: performance parameters after each
design cycle

design
cycle no

av. access
time (nsec)

hit time
(nsec)

miss ratio
(%)

1 30.53 19.40 30.46
2 30.52 19.40 30.46
3 35.39 20.00 18.07
4 34.60 20.75 22.56
5 34.61 20.76 22.56
6 34.72 22.26 22.56
7 35.93 23.01 4.60
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access time and hit time have been increased but
still meet their thresholds. So the cache configura-
tion is presented to the designer and if he/she
accepts the design the system stops. Otherwise he/
she can propose changes to one or several design
parameters and the system starts the next redesign
cycle.

In this simple example it is adequate to select
changes only for associativity and block size of the
first level data and instruction cache because the
miss ratio is decreased successively without
increasing the time parameters to an unacceptable
value. In other examples SPEISE selects a greater
variety of redesign operations.

6.2 Multi-step mode
The described example was designed in the step-
wise mode: For each redesign cycle exactly one
parameter has been changed (and the others were
readjusted). In this way the effect of this redesign
step can be observed and it can be decided if this
step leads into the right direction. This is important
for further redesign cycles. In multistep mode
SPEISE often terminates successfully in fewer
redesign cycles than in stepwise mode. In multi-
step mode SPEISE synthesizes a memory configu-
ration for the described example that meets nearly
all thresholds after the second design cycle. But it
is difficult to decide which of the changes were
successful because their effects can nullify each
other. This is in particular the case in the domain of
memory synthesis, because the dependencies
between the design parameters and performance
parameters as a whole are not quantified (see
above) and the synthesis process is guided by heu-
ristics and evaluated by simulation. In the stepwise
mode one parameter after the other can be changed
and the known qualitative dependencies between
parameters (as described in literature) can be used
to do this. As a consequence, both modes can be
combined: For the first three redesign cycles mul-
tistep is used. If it does not lead to success, the sys-
tem switches to stepwise mode.

6.3 Future Work
Currently, the implemented prototype is enhanced
and extended in different ways:

• One aspect is the improvement of the con-
straints. Based on the evaluation of the per-
formed system runs, additional constraints are
formulated.

• A hierarchical organization of the constraint set
will enable an improved constraint relaxation strat-
egy.

• To enable an adequate treatment of trade-offs, cur-
rently a more elaboratedhandling of multiple
objectives is developed.

• The most important current work is related to the
range of applicability for the system. SPEISE is
extended tomemory architectures for multiproces-
sor systems including main memory synthesis.

7. Conclusion
We have presented a first approach to CAD support
for memory synthesis for general purpose processors.
The implemented prototype aims at “closing a gap” in
the current tool support for general purpose comput-
ers. It provides a systematic synthesis methodology
and demonstrates that tool support can be achieved
for this complex task. The system SPEISE does not
aim at complete automation of memory synthesis.
Instead, it is organized as an intelligent synthesis
assistant system that supports an interactive design
style. By use of the assistant, the designer can create,
evaluate and compare several design alternatives
quickly.

The synthesis of memory systems for general purpose
computers is a multidimensional optimization prob-
lem. Objectives like memory performance and cost
have to be considered. Besides that, the task is char-
acterized by numerous influencing factors and design
decisions to be made. Memory synthesis can be for-
malized as a “parameter selection problem”
[Navi91]. Constraint logic programming is an ade-
quate programming paradigm for this application.
Logic programming enables the quick development
of a compact prototype and does not require the
detailed formulation of program control, a character-
istic requirement of most other programming styles.
By use of constraints an adequate, explicit representa-
tion of the exact resp. heuristic dependencies between
influencing factors and design decisions can be for-
mulated. Constraint weights express the confidence in
heuristic dependencies and guide the relaxation of an
overconstrained design state.

Memory synthesis for general purpose computers
must depend on the context and the purpose of the
computer architecture. The organization of the system
SPEISE reflects this crucial requirement. Characteris-
tic features of the computer architecture can be pro-
vided by the user as input information for the
synthesis task. Besides that, information about the
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class of application programs for the computer to
be designed is considered. In this way, the design
can be tailored to a narrow resp. broad class of
application programs.
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