Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 1

Memory Synthesis for
General Purpose Computers
by use of Constraint Logic
Programming

Renate Beckmann* and Jurgen Herrmann**
University of Dortmund
Department of Computer Science XlI* and I**
Research Report No. 684

July 1998

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 2

Memory Synthesis for whole [Wulf95]. There is a serious concern that the
speed of memory systems will continue to match the

General PUI’pOSG Computers speed of processors [Wilk95]. Typically, memory
b fC traint Loaqi access slows down the execution speed for processor
y use o onstraint LogIC instructions significantly. Due to the increasing speed
Programmingl of processors, these memory systems have become
more and more complex to supply the required band-
width. Sophisticated techniques such as hierarchical
organization of memory components, complex
Abstract caches, interleaving, pipelining, bus snooping etc.,
which previously have only been available on expen-
In modern computer systems the performance sjye mainframes, have found their application in mass
dominated by the memory performance. Currently oqycts. For multiprocessor systems, the design of

there is neither a systematic design methodolo‘powerfm memory systems is even more complex.
nor a tool for designing memory systems for gel _ _ _
eral purpose computers. We present a fiy 1 he synthesis of memory systems is characterized by

approach to CAD support for this crucial subtaghUmerous influencing factors and design decisions to
of system level design. Dependencies betweP® made. There are many complex dependencies
influencing factors and design decisions aPetween theses factors and decisions that must be
explicitly represented by constraints and constraiconsidered, many one of them being vague, heuristic
logic programming is used to make the desic®" unknown. Therefore, it is hard to get a clear picture
decisions. “of all relations between influencing factors and design
o o _ decisions for memory design. Moreover, memory
The memory design is optimized with respect lyesign is a multidimensional optimization problem,
several objectives by iterating the (re)design cycl ¢ ' there are several objectives to be considered.
Ehve_nt drlveg_snmulatlcl)n IS ﬁsed for evaluation (gesides memory performance (average access time,
the intermediate results. The system Is organizyss ratio, etc.), for instance the cost of the required
as an interactive design assistant. off-chip memory components and the area consump-

]] tion of on-chip caches have to be taken into consider-
1. Motivation ation.

During the recent years, the complexity and capDespite the crucial importance of memory design for
bilities of microelectronic systems has grown sicdeéneral purpose computers, there is no systematic
nificantly. As a consequence, the design of thedesign methodology or theory for this complex task.
systems has also become more complex and tinConsequently, the design of such memory systems is
consuming. Therefore, a powerful tool support igoverned by rules of thumb. These vague heuristics
indispensable for the design of complex micrcreflect the knowledge of “experts” more or less famil-
electronic systems. During the course of timdar with this area. Simulation is used to validate some
design automation tools became available at higtof the design decisions, but the current situation in
and higher levels of abstraction. Layout editors, Processor memory design can be described by the fol-
a large extent, have been replaced by placemlowing statements:

and routing tools. These have been complement. processor memory synthesis for general purpose
by logic synthesis. Logic synthesis, in turn, i processors is currently more an art than a science,

expected to be complemented by high-level sy je_ itis not an engineering discipline.
thesis. As evidenced by recent commerci

announcements, high-level synthesis is current
made commercially available.

Design decisions are mostly based on the men-
tioned rules of thumb and sometimes time-con-

o o suming analyses of their consequences (see
One crucial issue of system level designis mema pe|ow).

synthesis. It is nowadays widely accepted, that t
performance of the memory system for a gener'
purpose computer such as a workstation or F
dominates the performance of the computer as

There are no CAD tools supporting memory syn-
thesis for general purpose computers.

As a result, even major industrial companies are
sometimes surprised by the (lack of) performance of
1. Accepted paper for the cancled EuroDAC 1997 the memory systen‘?s.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 3

In this paper, a first approach to CAD support ¢
memory synthesis for general purpose compute
is presented. With this approach, a systematic pi
cedure of memory synthesis shall be supporte,
The consideration and comparison of sever
design alternatives is enabled.

Our approach features an explicit representation
the dependencies between influencing factors a,
decisions for memory synthesis. The represent
tion is based on constraint logic programming. Tt
implemented prototype creates an initial memol
design that is redesigned and optimized stepwi

Register allocation is performed in compilers
[Aho86] and high-level synthesis tools [McFa90;
Gajs92].

Allocation of multi-port memories in high-level
synthesis

Previously allocated, isolated registers are merged
into multi-port memories [Bala88].

Buffer allocation in high-level synthesis tools

In [Kolk93] a method is presented for minimizing
sizing of communication buffers in an environ-
ment of communicating concurrent processes.

according to the objectives. The analysis of €arq, these specific subtasks of memory synthesis,

intermediate design result is performed by &

methods and algorithms are available. For instance

g\;lent-drl\éen 3mu|gﬂc:jnb DehS|gn decisions can Fthe number of allocated registers can be calculated
Influenced ana revised by the user, 1.e., an INtergym the maximum number of variables referenced

tive design style is supported by the system.

concurrently during a singe control step. On the other

The rest of the paper is organized in the followinhand, there is no CAD tool supporting the memory
way: Section 2 presents current work on memosynthesis problem for general purpose computers,
synthesis. The memory synthesis task and the mdescribed above. Instead, there are several publica-
features of this task, relevant for the organizatictions about the influence of single memory parame-
of our system, are discussed in Section 3. Sectiters on the performance of the memory system as a
4 gives a brief introduction into constraint logiiwhole. Most of the analyses are related to cache
programming. The conception of the new systeparameters. Some examples of these analyses are
for memory synthesis SPEISE is presented in Seisted below:

tion 6. Results of the implemented prototype ar,
topics for further research are documented in Se
tion 7. Section 8 concludes the paper.

2. Current Work

Until now, only very limited work on CAD for
memory synthesis has been published. Most
these approaches are on a lower level of abstr:
tion than the memory synthesis problem address
in this paper. The available papers either deal wi
ASICs, with a specific, limited class of processol
or are restricted to small subtasks of memory sy
thesis:

* Memory Synthesis for DSP applications
PHIDEO [vMee92] is a silicon compiler for
digital signal processors. During memory syr
thesis, instances of the appropriate memo*
types are allocated and the addressing mecl
nisms are selected. The allocated simple mel

In [Smit82; Henn96; Przy90] the effect of the
selected prefetch strategy, the selected strategy for
updating the main memory, the line size, the num-
ber of sets and several other design decisions on
the miss ratio is considered.

In [Kris96] performance modelling for computer
architecture is described. Analytical models repre-
senting the effects of cache design decisions on the
performance are described in [Agar89; Berg93;
Kris96; Saav95]. These models cannot be used for
memory synthesis, because they deal only with
few design decisions. Models cannot be used to
analytically predict the performance of a designed
memory system. Therefore simulation is necessary
to examine the effect of a design decision on the
performance of the whole memory system.

In [Rau91] the effect of the input buffer size on the
performance of interleaved memories is analyzed.

ory modules are used to delay the digital signeDepending on these analyses some exact resp. heuris-

according to the timing constraints.

tic dependencies between the input data and the dif-

ferent design decisions can be derived. Typically,
heuristic dependencies are formulated as qualitative
2. This observation can be made for cache design of relations. To be used' i,n a memory '_syntheSi_s’ system,
modern SPARC systems such as the SPARC-10. they have to be quantified. Besides, information about
According to our knowledge, cache block sizes and many crucial design decisions is still lacking. More-
the interleaving factor are not well balanced. over, there is no published work for a comprehensive

* Register allocation

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 4

treatment of the numerous influencing factors artion programs (i.e., time and locality of the referenced

design decisions for memory synthesis. memory addresses and working set) is necessary. For
instance, if the application programs consists of many
3. Memory Synthesis loops accessing the same data in each pass, the

_ _ ~amount of different data that is accessed is small. In
In the following we start with a characterization othjs case the working set of the application program is
the memory synthesis task and then analyze tajso small and the locality is high. This may lead to a

task features. small cache. The exact order and time of the memory
references is also effected by the underlying computer
3.1 The Task architecture. Therefore the memory system under

As mentioned above, the CPU performance is cidesign has to be suitable for the given computer archi-
rently improved at a much faster rate than that t_e(;ture. For instance, in RISC_: architgctures with pipe-
memories. To manage the resulting problem, lining, memory accesses to_lnstructlons and data can
sophisticated memory organization must bpe pargllellzed by designing separate cachgs for
designed. A memory system nowadays does rmstruc_tlons and data. Another_ rglevant feature is the
consist of a single component but of a hierarchy cycle time of_the processor. This is an upper bound for
memory components ranging from small, fast arthe access time of a first level cache.

expensive ones, placed near the CPU (i.e., regisThe main objective in memory synthesis is to config-
buffer, first level cache), to large, slower anure a memory system that minimizes the access time
cheaper ones (i.e., second level cache, main meof memory references. But there are some other crite-
ory, secondary memory). Registers are allocatria like chip area and cost that restrict the design space

A of a memory system.
small fast
reg. The memory synthesis task described above can be
buffer summarized as follows:
size cache ﬁr%eess For a given general purpose computer architecture
main memory and a class of application programs a memory system
disc has to be designed and optimized according to given
big y/ secundary memory slow criteria like access time, chip area and cost.
Fig. 1: memory hierarchy 3.2 Problem Features

for example, during high-level data path synthesiThe structure of memory synthesis task is analyzed in
In memory synthesis for general purpose proceorder to derive design decisions for a memory synthe-
sors the main component under design is the cacsis tool.

because it is large enough to hold a moderé, Memory synthesis for general purpose processors
amount of data, more than a register. And furthe is 5 new area of researchAs mentioned above
more an access to a cache is fast enough for p there exists no tool support on thigh level of
cessor access because it is now possible to pli gpstraction Currently memory synthesis is sup-
the cache on the processor chip. ported by tools only for ASICs. For general pur-
To speed up a memory reference, data requestec pose computer systems only analyses exist. These
the CPU, has to be available in a fast memory coi analyses have to be combined to get information
ponent or the requests must be parallelized. required for building a memory synthesis tool. To
either case this requires a good organization of t collect some experience in modelling and synthe-
memory system. Design decisions are e.g., numt sis techniques as fast as possible, it is very helpful
of cache levels, size, associativity, and prefetc to build a pototype Logic programmingds an ade-
strategy of a cache, size and degree of interleavi quate paradigm, because it supports an abstract
of the main memory, etc. level of programming that speeds up the program-

Which memory system is a “good” one, depenc ming process rapidly.

on time and order of the different data request Memory synthesis is @omplex synthesis tagkee
These, in turn, depend on two factors: applicatic above).

programs and underlying computer architectur, the memory synthesis task consistsashe struc-
Information about the characteristics of applice turing and a lot of dimensioning decisioriEhe

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 5

structuring decisions select the components tions and no objective function, and no compound
the memory configuration. The number of dif method for considering different objectives ade-
ferent structural decisions is small, becaus quately and concurrently) a stepwise optimization
there exist only few principally different mem- is necessary by usingdesign cycles.

ory configurations. The dimensioning decision

determine the features of each memory comp4. Constraint Logic Program_

nent (i.e., size, block size, replacement stre___.

egy). The number of dimensioning decisions ming (CI—P)

limited but large. In this section we describe why we use constraint

« The design decisions are of different typesogic programming for memory synthesis.
structural, numerical, boolean or symbolice _
(for details see Subsection 6.3.). 4.1 Basic Idea

« The numerous existing analyses of singlConstraint logic programming extends logic pro-
design decisions show that memory synthesisgramming by a mechanism for constraints modelling
dominated by @&uge amount of relationshipsand processing [Frue93]. Constraints express rela-
between different design decisions and the fetions between technical parameters of the problem.
tures of the design environment (computeThe idea of CLP is to restrict the search space, as
architecture, application programs, and objemuch as possible, by constraints and to search the
tives). These relations can be expressechny remaining space in a moderate amount of time. The
straints A programming paradigm supportingprocesses of constraint handling and search are inter-
prototype development and constraintg€aes- twined. Each constraint is imposed but the execution
straint logic programmingsee Section 5.). is delayed until the constraint can be evaluated with-

. Up to now most of theelations described out anticipqting any search decisi_ons. When during
above, especially those between the desiqthe §earch|ng phase some teqhnlcal parameters are

restricted the relevant constraints are resumed and

decisions and the objectives, are express >) _
qualitatively For memory synthesis these relg€xecuted. Additionally this search can be done in a
heuristic, problem specific way.

tions must bequantifiedby use ofheuristics
Additionally most of these relations ar®t In memory synthesis the relations between design
monotoneIncreasing the value of some desigdecisions and environment features are expressed as
decision raises the performance only to a ceconstraints. The process of making design decisions,
tain extent. For instance, increasing the caclcalled labelling, is done heuristically.

size decreases the miss ratio. To a certain extpagyricting the search space before and during label-
the average access time is decreased becgjng improves the solution process drastically. In
less data has to be fetched from main memo|,qic programming without constraints the design
But the larger the cache the slower a singygisions are selected in the unrestricted decision
access to the cache and the slower the averign,ce This may cause a lot of wrong decisions and
access time. A synthesis tool must be able jyyjies 5 large amount of backtracking, slowing
model these dependencies. down the solution process. Constraint logic program-

 The memory synthesis task isnaultidimen- ming can avoid most of these wrong decisions and the
sional optimization problerfsee above). resulting backtracking.

» Up to nowno objective functioms known that)
quantifies the relations between the design de4-2 Memory Synthesis as CLP Problem

sion and the objectives in form of a formulain memory synthesis as described above, a memory
The only way to measure the performance system can be represented by a generic model. Each
the memory system under design due to tldesign decision is represented by a parameter with a
underlying computer architecture and the appldomain representing the alternatives of this decision.

cation programs is simulation. Memory referror instance, for each cache (data cache, instruction
ences to the synthesized memory system hécache, or second level cache) there are parameters for
to be simulated. size, block size, associativity, replacement strategy,

« Due to the lack of formal description and the- Write strategy, etc. Restricting the search space is
ory for memory synthesié)o quantitative rela- done by restricting the domains of some parameters.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 6

Decision making corresponds to instantiatinconditions hold:
parameters. . .
Ui X tl Di

The design decisions are of different types: Stru

tural ones determine the components of the me, Z WC(CJ-) - max
ory configuration. For each component there a coc

several dimensioning decisions of boolean, nume J

ic_al or symbolical type. As denoted abov_e, al!dec z w,(0,) Ceval q,) — max
sions are represented by parameters with differe® 2 k

domains. The types of these domains range frc o

numerical (i.e., size), over symbolical (i.e. WithC ={cUC|(q, ... 0 c} O
replacement strategy), to boolean (i.e., on-ch_ and<q, ..., @> = simulation(x;, ..., x,).

integration). These types are also used for tFach parameterjxf a solution is instantiated to a
domains of structural design decisions (i.e., avavalué of D. The weighted sum of constraints consis-

ability of a second level cache is a structural desitent with the solution is maximized. And the weighted

decision represented by a boolean parameter). SUM of objective evaluations is maximized.

for the whole synthesis task it is possible to useA small example shows the power of constraints in
homogeneous search strategy that can be hancthe domain of memory synthesis: For a simplified
well by a constraint system. cache synthesis the cache hierarchy consists of 1 or 2

Architectural features and application features cCache levels where the first level cache may be split
be represented as generic models, too. The arcNto one for instructions and one for data. For each

tectural parameter values are given by the desigic@che 13 design decisions with varying domain sizes
and the application ones can be extracted by ahave to be made. The decision space has a size of 0.5

lyzing memory reference sequences of applicatic’ 10° After imposing 20 of 50 constraints the design
programs (see below). space is restricted to 10After determining 2 of the

. _ . design decisions (size and block size of each cache)
Memory synthesis, described here, differs from thy,e remaining 30 constraints restrict the search space

standard CLP problem in two ways: Firstly the St 430 gesign possibilities, which are examined heu-
of constraints, extracted from the analyseristica"y (Fig. 2).

described in literature, may be inconsistent. F
this reason each constraint is extended by a weir
expressing the importance of that constraint. If ¢
inconsistency occurs, constraints with sma
weights are relaxed successively. The sum of t
weights of the remaining consistent constrain
should be maximized. Secondly the objective
cannot be calculated by a formula. They have to e=> design space: 0.5*%8
calculated by simulation of given memory refer — partially restricted design space:’10
ence sequences on the synthesized memory con | «smw totally restricted design space: 430
uration.

Definition. Let V be a set of variables {v..,v,} Fig. 2: design space restriction
representing architectural, application, and mer.
ory parameters, eachwith a domain pPof possi-
ble values. Let C be a set of constraints.{GG}
expressing the relations between variables in V
[D, x...x D,,. A weight function w(c;) gives the
weight of each constraint denoting the importanc
Let O be a set of objectives{o..,q} calculated by
simulation of traces on the memory configuratioy 3 Aternative Optimization Strategies

and wy(o,) a weight function expressing the use

given priorities to each of the objectiveg. & The system SPEISE as a whole configures and opti-
function eval(Q) evaluates the quality of themizes a memory system according to several objec-
design with respect to the objective (x4,...,%,) is tives. As has been pointed out in the previous
an optimal solution of the problem if the followingsubsection this task is performed by a heuristic search

Tab. 1 gives a concrete example that again illustrates
the power of search space restriction.

_The domains of six parameters are shown before and
"after restriction by the given constraints. The search
space size (multiplication of the parameter domain

sizes) is reduced from about 6211 18.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 7

parameter before after
working set small small
locality big big
size (KB) 8..256 |8,16,32
line size (B) 4 .. 256 16, 32
associativity 1..32,full| 2,4,8
replacement | no, rnd, Iru Iru
search space 6.236.70 18

constraints

I[F working set is small THEN size 32
IF locality is big THEN line size 16
line size< size

IF locality is big THEN associativitg8
power_of 2(size)

power_of 2(size)

power_of 2(associativity)

IF line size >= 16 THEN associativity p1
IF associativity = 1

THEN replacement = no
ELSE IF associativitE 8
THEN replacement = LRU

Tab. 1: concrete example of search space
restriction, parameter domains before and
after restriction by constraints
strategy that utilizes domain specific search co
trol knowledge for parameter labeling and rede
sign.

There are several well-known alternative optimize
tion strategiesEvolution strategiefSchw81] con-
sider several candidates in parallel. Ne
candidates are created by syntactic, domain-inc
pendent mutations of existing ones. An evaluatic
function selects the most promising candidates
be considered further on. This method works we
if a large set of candidates can be created and e\
uated with limited computational effort. As the
evaluation of memory configuration involves time
consuming simulation runs, this condition does n
hold for memory synthesis.

Integer linear programmingNeum?75] also pro-

vides an optimization strategy. In contrary to CL|
it is limited to numeric parameter types. Th
method requires a target function that can be us
to determine an (optimal) solution in a single ste|
In memory synthesis, an optimal solution cann
be determined in a single step, as an approprii
compound target function is lacking. Instead, sin

linear programming is not suitable for memory syn-
thesis.

CYCLOPYNavi91] also uses constraints to represent
conditions and dependencies in the considered
domain. The system uses a modified A* search algo-
rithm to determine a set of pareto optimal solutions.
Like the other approaches mentioned above,
CYCLOPS does not provide a redesign mechanism
that modifies a candidate in a specific way, according
to the results of an analysis. This feature is indispens-
able for memory synthesis.

5. The SPEISE System

SPEISE designs a memory system for a given general
purpose computer architecture and a class of pro-
grams representing the typical applications on this
computer architecture. The memory system is opti-
mized according to several given objectives. Fig. 3
shows the components of SPEISE:

sequence of
memory references architecture

features
trace analysis objectives
application

features

vy

restriction by
constraints

¢

arameter | |redesign
abelling planning

technology | | deficiencies
mapping analysis

]

Simut evaluation
latior ok

¢

memory system

Fig. 3: components of the SPEISE
In the following, we will first describe the cooperation

ulation runs are required to evaluate the quality of SPEISE’'s components. Afterwards particular
a candidate to be modified later. Therefore integaspects will be pointed out in detail.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 8

5.1 The Design Cycle the miss rate of a cache is to high, an increase in size

The input data for SPEISE are memory referen®’ associativity is proposed).

sequences of application programs, architecturRedesign planning’ examines the list of possible

features and objective weights denoting thechanges proposed by the deficiencies analysis. As
importance for optimization. these revisions may be contradictory, a consistent

subset of them is selected. This process is guided by
heuristic rules. The changes are expressed in form of
constraints.

Before starting the design cycle, memory referen
sequences of application programs are analyzec

examine their typical features (‘trace analysis’).
To avoid recreations of previous designs, the ‘defi-

ciencies analysis’ and the ‘redesign planning’ take
redesign actions of previous design cycles and their
consequences on the performance into account.

Constraints sets expressing the relations betwe
input data and design decisions are selected a
result of an analysis of the input data (i.e., coi

straints set for single/multi-processor systems).

At the beginning of each design cycle, the select'At the beginning of the ne‘xt desllgn cycle '.[he’ con-
straints created by the ‘redesign planning’ are

constr_aints are impose_d to restrict the search SIOiimposed The cycle is continued with imposing the
(‘restriction by constraints’). :

constraints in the ‘restriction by constraints’ step.

After this step, decision making starts (‘paramet'Redesi n stops if the ‘evaluation’ component or the
labelling’). The order of making decisions is detel 9 b b

mined by a domain specific rating of each OlecdeS|gner (user of the tool) accept the designed mem-

sion. The rating reflects the impact of these desi®” SYSte™:

decisions on the performance. For instance, tFig. 4 shows the algorithm for SPEISE’s heuristic

most important design decisions for a cache ssearch strategy from an imperative point of view. The
size, block size and associativity. The decision prcooperation of the implicit control strategy available

cess takes advantage of the restrictions to tby use of declarative programming and the explicit
search space caused by the design constraicontrol actions performed by the components of
Decisions are made with respect to the objectiveSPEISE is described. The outer WHILE loop guides
For instance, if the objective cost is to be minthe redesign cycle by use of a new non chronological

mized, the size of a cache is set to the minimumbacktracking strategy: restrict the search space by
the remaining domain. imposing constraints, label the parameters, simulate

.and evaluate the resulting memory configuration, and

Components of the designed memory system ¢ . 7
-) . relax constraints or plan redesign if necessary. In the
mapped to existing on-chip and off-chip memor,

: . inner WHILE loop the memory parameters are
rpodules descrlbeq |’n the technology d‘fitabalabeled one after the other (‘parameter labelling’).
(‘technology mapping’).

This step is completely guided by the chronological
An event-driven trace simulation is used to imitathacktracking mechanism of declarative program-
the accesses of the application programs to tming. The relaxation of constraints is guided by a sep-
memory system (‘simulation’). During this simu-arate control strategy.

lation values for performance criteria like averag

access time and different miss rates for caches 5 2 Selected Aspects

calculated. _ _ _
The following selected aspects are pointed out in

Using the simulation results, the ‘evaluation’ comgyetail:
ponent evaluates the synthesized memory confic
ration. If the quality of the designed memon’
system meets a calculated threshold value for e¢
of the objectives, the memory system is accept
and presented to the user. Otherwise redesign |
to be performed. This is the typical case for the fir
design cycle.

Provision of Memory Reference Sequences

It is difficult to get adequate memory reference
sequences. If a memory system for an existing
computer architecture is improved, an existing
compiler can be used to generate memory refer-
ence sequences from application programs.

o o If the given computer architecture is new but simi-
If the design is not accepted, the ‘deficiencies ani |5r to another one (i.e., to a predecessor model) in
ysis’ examines which of the threshold values @ teyms of address generation, memory reference
missed. For each of the missed values possil gequences of the predecessor can be used.
revisions of design decisions are determined(i.e.. aAn address sequence can also be made indepen-

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 9

search strategy(Application Features, Architectural Features, Objectives)

BEGIN

Constraintse,m, := <set of maximal constraints, permanently available>;

Constraintggesign'= <empty>;

<initialize Mem_Config with set of unlabeled memory parameters>;

WHILE (<Mem_Config not acceptable>)
DO
<impose Constrainfsyesigr
<impose Constraing,;

WHILE (<there are unlabeled parameters in Mem_Config>
AND <restricted search space not completely searched>)

DO
<select next parametey @ be labeled>;
<label R and resume corresponding constraints>;
IF (<there is no value for;onsistent to Constraintsyand Constraintggesigr)
THEN
<chronological backtracking to labelling of the previous parametet, P
<select a different value for_pP>;
Fl
oD
IF (<no consistent labelling for all parameters in Mem_Config found>)
THEN
<relax Constrainsm;
ELSE

<simulate and evaluate Mem_Config>;
IF (<Mem_Config not acceptable>)

THEN

<plan redesign operations>;
Constraintggesign:= <domain restrictions according to redesign operation

Fl
FI

Mem_Config := <set of unlabeled memory parameters>;

oD
END

>

1"2)

Fig. 4: algorithm of SPEISE’s heuristic search strategy

dent of poor compilation [McNi88]. .
Another possibility is the generation of memor
reference sequences. This can be done, if 1
features (locality of reference, size of working
set, etc.) of the application programs are know
[Hyat93; McNi88]. In [Hoba89] some features
of symbolic programs are described. SPEIS
offers ageneratorthat creates memory refer-
ence sequences according to given features.
Notice, that the features, relevant for memot
synthesis, like locality of reference and workin
set, depend rather on the application progra
than on the computer architecture and compile
Therefore it is feasible to take referenc,
sequences of similar systems or to genere
them.

Inconsistencies in the Set of Constraints Restrict-
ing the Search Spac

The set of constraints in the restriction component
has been derived from an intensive analysis of the
relevant literature [Arar89, Henn96, Przy90,
Smit92, etc.]. Each constraint is marked by a
weight denoting its importance. As described
above the set of constraints may be inconsistent
because it is derived from different analyses and
guantified heuristically. If imposing of several con-
straints results in an inconsistency, the less impor-
tant ones are relaxed, to get a consistently
restricted search space.

Technology Adaptation
As mentioned above, the memory system under

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 10

design is mapped to existing memory module5.4 Implementation

EgtT(I)Sntglijrrlgct):ghi:)?ghnzsggn%agsﬂiisr;ﬁaﬁ-rhe main part of SPEISE (framed by a bold painted
gy dep rectangle in Fig. 3) is implemented in ECLIiPSe, a

about memory modules. For on-chip mOdl.JleCLP language from the ECRC [ECLI95], on a SUN
formulas calculating the area and access tim ; . . ;)
. ; ._workstation. The first prototype is restricted to single
are given, depending on the component siz .
: . . processor systems and focuses on synthesizing the
For off-chip modules size, access time, and cc .))
: . cache and TLB hierarchy. As mentioned above, this is
are given. It is easy to adapt SPEISE to new | . :
. : . the main task of memory synthesis for general pur-
technologies because only the information i . : .
pose processors. Main memory design decisions,
the technology database has to be changed'. . .
given by the designer, are taken into account. The
extended. : N RPN
handling of compound objectives is simplified in the
+ Combination of Objectives implemented prototype. The memory system is opti-
In SPEISE itis possible to optimize the memormized primarily according to the most important
system according to more than one objectivobjective. Nevertheless the other objectives have an

The importance of each objective can bimpact on some design decisions leading to the final
expressed by a weight. SPEISE optimizes timemory configuration.

memory system according to these user su
plied weights. Based on these weights a thres
old for each objective is calculated. If all
thresholds are met, thresholds for the mo

important objectives are tightened successiveThe prototype of SPEISE has been implemented by
as much as possible. graduated students in an 1-year project [SPEI95].

The components ‘trace analysis’ (including the mem-
ory reference sequence generator) and ‘simulation’
are implemented in C++.

» Alternatives in Redesign Planning
SPEISE can select between two modes of rec6- ReSU|tS

sign planning. In stepwise mode redesign plagpg|SE has been used to design cache and TLB hier-

ning selects exactly one parameter to change.archies for several computer architectures. In most

multistep modg several cha}ngeS of parameteages few redesign cycles (5 to 10) were sulfficient to

are performed in one redesign cycle. (re)design a configuration that meets the performance
thresholds.

|5'3 ﬁ.)rgaméatlor? Of tg\e S.yStem asan Due to the lack of space, only the key features of the
ntelligent Synthesis Assistant design process and the results are described in follow-
The system SPEISE does not aim at a compldng example.

automation of the memory synthesis process. Tt

would not be adequate for this complex high-levi6.1 Example

synthesis task without standardized synthes
methodology. Instead, SPEISE is organized as
intelligent synthesis assistant that supports
interactive design style. By use of the assistant, t
designer can create, evaluate and compare sev:
design alternatives quickly.

The example shows the design of a cache hierarchy
for a computer architecture similar to a SUN SPARC-
station (Tab. 2) with a main memory given in Tab. 3.
Tab. 4 shows the features of a class of application pro-
grams running on this computer architecture.

They have been extracted by the ‘trace analyzer’ sep-

The user can make decisions and limit the seargrately for instruction, data, and mixed references.
space in that way. Decisions performed by the sy

tem can be changed easily. The consequences
these changes on other aspects of the mem
architecture under design are propagated autom
ically by the assistant. In this interactive mode
SPEISE can be used as an intelligent “editor” th
enables a flexible selection resp. modification ¢
design decisions and responds by showing the s

Tab. 5 shows the cache configuration designed by
SPEISE after the first synthesis cycle. An accepted
end configuration was reached after seven design
cycles. The differences between the final and the first
configuration are shown by the values in parentheses.
For each redesign cycle SPEISE performs a simula-
tion of a trace according to the application parame-
. ters, an evaluation of the simulation results, a
effects of these actions. Based on these results | .’ ~ .) .
: . . deficiencies analysis to find a set of cache parameters
user can accept the intermediate memory confic) e . .
. . as candidates for modification, and redesign planning
ration or perform further design changes.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 11

clock frequency (MHz 33 changes in the redesign plan
pipeline stages 4 (and implied changes)

data bus size (bit) 64 1. [[increase the associativity of the
address bus size (bit) 32 instruction cache from 8 to 16
2. ||increase the associativity of the
Tab.2: architectural features data cache from 2 to 4

3. ||increase the associativity of the

size (MByte) 32 data cache from 4 to 8
page size (KByte) 8 4. || decrease the block size of the
organization segmentatipn instruction cache from 16 to 8
interleaving degree 8 5. ||increase associativity of instruction cache
from 16 to full (block size of the instruc-
Tab. 3: main memory features tion cache increases from 8 to 16)
6. ||increase the associativity of the
mixed instf dath data cache from 8 to 16
spacial locality big big small Tab. 6: Changes for each redesign cycle
working set small small mediym
frequency of ref smegll Sm‘_ill small design || av. accesdit timg miss rati@
number of reads big big mediim cycle ndtime (nsed) (nsec (%)
variance smallsmall small T 3053 1940 30 46
2 30.52 19.4p 30.46
Tab. 4: application program features 3 3539 20.00 18.07
4 34.60 20.7p 22.56
= 5 34.61 20.7p 22.56
Cal&']'e Cléca;f' cachy 6 3472 2226 22.86
adressing virtual virtual real ! 35.93 23.01 4.60
size (KB) 16 3P 51p Tab 7: performance parameters after each
block size (b 16 64 128 design cycle
associativity || 8 (full)| 2(16) 2 lated by SPEISE according to the input parameters
replace. straf IMu Ifu Ifu (see above) and the objectives (here access time). For
prefetching taggdd tagded tagged instange, the hit time threshold has to be peloyv the
Write strat. copy b. copyb. clock t!me (here a clock frequency of 33 Hz implies a
clock time of 30 nsec).

Tab.5: memory configuration after the 1. cycle After the first design cycle both thresholds for hit time
and the end configuration in parenthesis and average access time are met, but the miss ratio,
which should be less than 5%, is much to high. To
reduce the miss ratio, the ‘deficiencies analysis’ pro-
poses to increase the associativity or the size of one of
Then the next design cycle is started to accommthe caches. The ‘redesign planner’ decides to increase
date the other cache parameters. Tab. 6 gives the associativity of the instruction cache to a value
changes for each redesign cycle. greater than 8. In the next ‘restriction by constraints’
For instance, during the first redesign cycle (desiand ‘parameter labelling’ step the value is set to 16.
cycle 2) the associativity of the instruction cachThis is done due to some further analysis of the simu-
has been changed from 8 to 16. lation results (detailed miss ratios for each cache like

Tab. 7 shows some of the performance parametcapacity or conflict miss ratio, etc.). The improve-
measured by the simulator after each design Cycments are minimal. Therefore in the next redESIgn
average access time and average values for hit ticycle the associativity of the data cache is increased.

and miss ratio of the first level caches. After the seventh design cycle the miss ratio finally
The performance thresholds to be met are caldmeets the corresponding threshold. The average

to select parameters to change and to determine
extent of the changes.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 12

access time and hit time have been increased ¢« A hierarchical organizationof the constraint set
still meet their thresholds. So the cache configur will enable an improved constraint relaxation strat-
tion is presented to the designer and if he/sl egy.

accepts the design the system stops. Otherwise ,
she can propose changes to one or several des
parameters and the system starts the next redes
cycle.

To enable an adequate treatment of trade-offs, cur-
rently a more elaboratedandling of multiple
objectivess developed.

» The most important current work is related to the
range of applicability for the system. SPEISE is
extended tanemory architectures for multiproces-
sor systemscluding main memory synthesis.

In this simple example it is adequate to sele
changes only for associativity and block size of tt
first level data and instruction cache because t
miss ratio is decreased successively witho
increasing the time parameters to an unaccepta

value. In other examples SPEISE selects a gree7' Conclusion

variety of redesign operations. We have presented a first approach to CAD support
_ for memory synthesis for general purpose processors.
6.2 Multi-step mode The implemented prototype aims at “closing a gap” in

the current tool support for general purpose comput-
ers. It provides a systematic synthesis methodology

parameter has been changed (and the others wand demonstrates that tool support can be achieved
readjusted). In this way the effect of this redesic©" this complex task. The system SPEISE does not
step can be observed and it can be decided if t&iM at complete automation of memory synthesis.
step leads into the right direction. This is importal"Sté@d, it is organized as an intelligent synthesis
for further redesign cycles. In multistep mog@ssistant system that supports an interactive design

SPEISE often terminates successfully in feW(ster. By use of the assistant, the designer can cre_ate,
redesign cycles than in stepwise mode. In mul€valuate and compare several design alternatives

The described example was designed in the st
wise mode: For each redesign cycle exactly ol

step mode SPEISE synthesizes a memory confidUickly:

ration for the described example that meets neaThe synthesis of memory systems for general purpose
all thresholds after the second design cycle. Butcomputers is a multidimensional optimization prob-
is difficult to decide which of the changes werlem. Objectives like memory performance and cost
successful because their effects can nullify eahave to be considered. Besides that, the task is char-
other. This is in particular the case in the domain acterized by numerous influencing factors and design
memory synthesis, because the dependencdecisions to be made. Memory synthesis can be for-
between the design parameters and performarmalized as a “parameter selection problem”
parameters as a whole are not quantified (s[Navi91]. Constraint logic programming is an ade-
above) and the synthesis process is guided by hquate programming paradigm for this application.
ristics and evaluated by simulation. In the stepwidLogic programming enables the quick development
mode one parameter after the other can be chanof a compact prototype and does not require the
and the known qualitative dependencies betwedetailed formulation of program control, a character-
parameters (as described in literature) can be usdstic requirement of most other programming styles.
to do this. As a consequence, both modes canBy use of constraints an adequate, explicit representa-
combined: For the first three redesign cycles mttion of the exact resp. heuristic dependencies between
tistep is used. If it does not lead to success, the sinfluencing factors and design decisions can be for-

tem switches to stepwise mode. mulated. Constraint weights express the confidence in
heuristic dependencies and guide the relaxation of an

6.3 Future Work overconstrained design state.

Currently, the implemented prototype is enhanceMemory synthesis for general purpose computers

and extended in different ways: must depend on the context and the purpose of the

computer architecture. The organization of the system
SPEISE reflects this crucial requirement. Characteris-
tic features of the computer architecture can be pro-
vided by the user as input information for the

synthesis task. Besides that, information about the

* One aspect is thémprovement of the con-
straints Based on the evaluation of the per
formed system runs, additional constraints a
formulated.

Memory Synthesis for General Purpose Computers by use of Constraint Logic Programming 13

class of application programs for the computer [Hyat93] C. Hyatt. A High Performance Object-
be designed is considered. In this way, the desi Oriented Memory. In Computer Architecture
can be tailored to a narrow resp. broad class News, 1993.

application programs. [Kolk93] T. Kolks, B. Lin, H. De Man. Sizing and
Acknowledgments Verification of Communication Buffers for Com-
municating Processes. In IEEE/ACM International

We are grateful to P. Marwedel and U. Bieker fC ~gfarence on Computer-Aided Design, 1993.

their corrections and improvements of this pape _ i
Further thanks goes to |. Bebic, H. Drumann, ([Kris96] C. M. Krishna. Performance Modeling
Hesse, R. Jager, B. Jeussmann, |. Kaleja, for Computer Architecture. IEEE Computer Soci-

Kramer, M. Oelbracht, Th. Schulte, F. Wiechers €ty Press, 1996
and M. Wojciechowski for fecund discussions an[McFa90] M. C. McFarland, A. C. Parker, R. Cam-

for implementing the SPEISE system. posano. The High-Level Synthesis of Digital Sys-
_ tems. In Proceedings of the IEEE, February 1990.
8. Literature [McNi88] G.D. McNiven, E.S. Davidson. Analysis

[Agar89] A. Agarwal, M. Horowitz, J. Hen- of Memory Referencing Behavior for Design of
nessy. An Analytic;al Cache Model. ACM Local Memories. Computer Architecture News,

Transactions on Computer Systems, May 198 May 1988.
[Aho86] A.V. Aho, R. Sethi, J.D. Ullmann. [Navi9l] D. Navinchandra. Exploration and Inno-

Compilers: Principles, Techniques and Tool: vation in Design - Towards a Computational

Reading, Ma: Addison-Wesley, 1986. Model, Springer 1991.
[Bala88] M. Balakrishnan, A.K. Majumdar [Neum75] K. Neumann. Operations Research Ver-

D.K. Baneriji, et al. Multiple Storage Adaptive ahren I - Il (German), Carl Hanser, 1975.
Multi-Trees. IEEE Transactions on Compute[Przy90] St. A. Przybylski. Cache and Memory
Aided Design of Integrated Circuits and Sys Hierarchy Design: A Performance Directed
tems, March 1988. Approach. Morgan Kaufmann 1990.

[Berg93] J.vanden Berg, D. Towsley. PropertieRau91] B.R. Rau. Pseudo-Randomly Interleaved
of the Miss Ratio for a 2-Level Storage Mode Memory. Annual International Symposium on
with LRU or FIFO Replacement Strategy ani Computer Architecture, pages 74-83, 1991.

Independent Re_ferences. IEEE Transactions [Saav95] Measuring Cache and TLB Performance
Computers, April 1993. and Their Effect on Benchmark Runtimes. IEEE
[ECLI95] ECLIPSE 3.5. ECRC Common Logic Transactions on Computers, October 1995.

Programming System - User Manual -. ECR{gchy81] H.-P. Schwefel. Numerical Optimization
GmbH Munich Germany, December 1995. of Computer Models. Chichester: Wiley, 1981.
[Frue93] Th. Fruhwirth, A. Herold, V. KUchen-[SPE|95]
hoff, et al. Constraint Logic Programming - A" icnt ger projektgruppe SPEISE. Internal Report.

Informal Introduction. Technical Report

. University of Dortmund, 1995. (in German)
ECRC-93-5. ECRC Munich Germany, Febru]))
ary 1993. [Smit82] A.J. Smith. Cache Memories. ACM Com-

uting Surveys, September 1982.
[Gajs92] D.D. Gajski, N.D. Dutt, A. Wu, St. o9 yS, Sep
Lin. High-Level Synthesis: Introduction to[Wilk95] M. V. Wilkes. The Memory Wall and the
Chip and System Design, Kluwer Academi CMOS End-Point. Computer Architecture News,

Publishers, 1992. September 1995.

[Henn96] J. L. Hennessy, D. A. Patterson. Con[Wulf95] = W.A. Wulf, S. A. Mokee. Hitting the

puter Architecture: A Quantitative Approach Memory Wall: Implications of the Obvious. Com-
2nd Ed. Morgan Kaufman, 1996. puter Architecture News, March 1995.

[Hoba89] W.C. Hobart Jr., H.G. Cragon. LocallvMee92] J. van Meerbergen, P. Lippens, et al. Ar-
ity Characteristics of Symbolic Programs. Ir chitectural Strategies for High-Throughput Appli-
IEEE International Conference on Compute cations. Journal of VLSI Signal Processing, 1992.

Design, pages 508 — 511, 1989.

R. Beckmann, J. Herrmann (ed.).Endber-

