
Design Automation for Embedded Systems, vol. 3, no. 1, Jan 1998, , 1{36 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Retargetable Code Generation based on

Structural Processor Descriptions

RAINER LEUPERS AND PETER MARWEDEL

leupersjmarwedel@ls12.informatik.uni-dortmund.de

University of Dortmund, Department of Computer Science 12, 44221 Dortmund, Germany

Abstract. Design automation for embedded systems comprising both hardware and software
components demands for code generators integrated into electronic CAD systems. These code
generators provide the necessary link between software synthesis tools in HW/SW codesign sys-
tems and embedded processors. General-purpose compilers for standard processors are often
insu�cient, because they do not provide exibility with respect to di�erent target processors and
also su�er from inferior code quality. While recent research on code generation for embedded
processors has primarily focussed on code quality issues, in this contribution we emphasize the
importance of retargetability, and we describe an approach to achieve retargetability. We propose
usage of uniform, external target processor models in code generation, which describe embedded
processors by means of RT-level netlists. Such structural models incorporate more hardware de-
tails than purely behavioral models, thereby permitting a close link to hardware design tools and
fast adaptation to di�erent target processors. The MSSQ compiler, which is part of the MIMOLA
hardware design system, operates on structural models. We describe input formats, central data
structures, and code generation techniques in MSSQ. The compiler has been successfully retar-
geted to a number of real-life processors, which proves feasibility of our approach with respect to
retargetability. We discuss capabilities and limitations of MSSQ, and identify possible areas of
improvement.

Keywords: retargetable compilation, processor modelling, embedded code generation

1. Introduction

Embedded systems are special-purpose computing systems, designed and installed
only once to serve a single, particular application. They interact with larger, some-
times non-electronic environments. Today, embedded systems are found in many
areas of everyday life, such as telecommunication, control in vehicles and aircraft,
home appliances, or medical equipment. The complexity of embedded systems
and stringent time-to-market constraints demand for design automation tools that
provide CAD support right from the system level. Economically reasonable imple-
mentations of embedded systems in general consist of both hardware and software
components, resulting in the problem of hardware-software codesign. Parts of the
system, which are not subject to tight computation-speed constraints are imple-
mented through software running on programmable embedded processors, such as
RISCs, DSPs, and microcontrollers, while other parts require fast, dedicated hard-
ware. It is favorable to implement as much of a system as possible in software, be-
cause software is easier to develop, and usage of o�-the-shelf processors signi�cantly

2 R. LEUPERS AND P. MARWEDEL

reduces design costs. Moreover, software is much more exible than hardware, thus
allowing for accomodation of late speci�cation changes and easier debugging.

The most widespread approach to design automation for combined HW/SW sys-
tems is to iteratively perform HW/SW partitioning, followed by hardware and
software synthesis and co-simulation. This concept is realized in a number of ex-
perimental HW/SW codesign systems like VULCAN [1], CHINOOK [2], COSYMA
[3], and CODES [4]. In those systems, code generation for embedded process-
sors is performed in a very abstract fashion: After HW/SW partitioning, software
synthesis transforms pieces of system functionality, which have been assigned to
software, from an internal representation into program threads. Program threads
are linearized sets of abstract machine-independent operations, which are in turn
translated into high-level language source code, typically C. It is assumed that
processor-speci�c compilers are available for mapping C to machine code for stan-
dard processors, such as R3000, SPARC, and Intel 8086. By using C code as an
intermediate representation, cost estimation during HW/SW partitioning must re-
main rather coarse, possibly leading to the necessity of many HW/SW partitioning
iterations. This disadvantage is partially avoided in systems, which directly gen-
erate machine code instead of high-level language programs, and therefore permit
more detailed cost metrics: PTOLEMY [5] is capable of code generation for some
standard DSPs (Motorola 56001 and 96002) based on macro-expansion. CASTLE
[6] uses a C compiler that maps source code into vertical machine code for VLIW
architectures, but does not handle prede�ned processors with non-horizontal in-
struction formats. Synopsys' commercial DSP synthesis tool COSSAP supports
both C and assembly code generation.

In all of the above systems code generation is restricted to a narrow range of
target processors. However, one of the major requirements on embedded system
design tools is the capability of exploring a large design space in order to �nd an
implementation that meets all design constraints. Design space exploration in-
cludes investigation of di�erent programmable processors that execute the software
components of the embedded system to be implemented. In an ideal embedded
system CAD environment, the processor type is transparent for the user: many
alternatives can be tried out by re-compiling the software onto each di�erent pro-
cessor. The processor which meets the constraints at minimum costs is selected.
Such a degree of exibility or retargetability is however hardly provided by current
HW/SW codesign tools.

This problem is intensi�ed, if embedded systems are realized as single-chip sys-
tems. The advent of deep submicron VLSI technology created a trend towards
design of complete systems on a single chip, resulting in higher speed and depend-
ability at lower silicon area and power consumption [7, 8]. Several vendors (e.g.
Texas Instruments, LSI Logic, Advanced RISC Machines) o�er standard proces-
sors in form of cores, i.e. layout macrocells which can be instantiated by a design
engineer from a component library. However, a particular application might not
require the full amount of capabilities of a standard processor. Using standard pro-
cessor cores thus leads to a possible waste of silicon area and power consumption for

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 3

single-chip systems. As a consequence, system houses are starting to use exible,
customizable programmable architectures. For these, the term ASIP (application-
speci�c instruction-set processor) has been created. Industrial system design using
ASIPs is reported for instance in [9]. For ASIPs, only the coarse architecture is
�xed in advance, so that a designer actually can trade silicon area against com-
putation speed. The ASIP is tailored towards a speci�c application by repeatedly
mapping program sources onto di�erent detailed architectures. This process can be
considered as HW/SW codesign at the processor level. Removing or adding hard-
ware components from/to an ASIP has immediate consequences on the execution
speed of software. Obviously, such a scenario for customization of ASIPs demands
for retargetable compilers.

Besides retargetability, also code quality is of major concern, in particular for
embedded systems involving signal processing under real-time constraints. For
those systems, DSPs are the preferred type of embedded processors. Standard
DSPs are available with software development tools such as assemblers, debuggers,
simulators, and C compilers. The code quality of current compilers for DSPs is,
however, rather poor. The overhead of compiler-generated code compared to hand-
crafted code sometimes reaches several hundred percent [10], which is unacceptable
in most cases. Essentially, this is due to the fact, that DSPs show highly specialized
architectures and instruction sets, which demand for dedicated code generation
techniques. For instance, exploitation of potential instruction-level parallelism is
a must for DSPs, but is often not provided by current compilers. While code
generation for standard DSPs su�ers from insu�cient code quality of compilers, the
situation for ASIPs is even more unsatisfactory: Since ASIPs are in-house designs,
only used for a small number of applications before becoming obsolete, there is
hardly any high-level language compiler support for ASIPs. Insu�cient quality
and availability of compilers lead to the fact that even nowadays DSPs are mostly
programmed in assembly languages, which implies all the well-known disadvantages
of low-level programming. As time-to-market is now the most important issue
for VLSI system houses, taking the step towards high-level programming seems
mandatory.

In summary, design automation for embedded systems demands for code generators
as a part of ECAD systems. Such code generators bridge the gap between software
synthesis tools in HW/SW codesign and machine programs running on embedded
processors. Two major areas need to be tackled in order to provide more powerful
code generators than currently available:

Retargetability: General-purpose compilers are processor-speci�c. If di�erent
target processors are to be investigated during embedded system design, then
a number of di�erent (potentially costly) compilers must be employed. Also
interfacing problems may arise, if the compiler is part of a larger design en-
vironment. A single retargetable compiler, capable of mapping algorithms to
di�erent target processors, alleviates these problems. Furthermore, usage of
processor-speci�c compilers restricts the range of possible target processors to

4 R. LEUPERS AND P. MARWEDEL

standard components. However, due to the trend towards single-chip systems,
ASIPs are expected to gain more and more importance in the near future. Usage
of ASIPs demands for very exible compilers and a close link between compilers
and hardware design tools.

Code quality: In embedded systems operating under hard real-time constraints,
insu�cient quality of compiler-generated code may demand for higher clock
rates than actually necessary. In turn, this increases power consumption, which
is particularly a problem in portable devices. In case of single-chip systems,
where program code is stored in on-chip ROM, any overhead in code qual-
ity immediately contributes to silicon area requirements. Therefore, high code
quality is much more important for embedded systems than for general-purpose
computers. This justi�es usage of computation-time intensive algorithms, aim-
ing at code optimization beyond the scope of traditional compilers, for which
high compilation speed is a primary goal. However, high-quality code genera-
tion is aggrevated by the fact, that, in contrast to general-purpose processing,
embedded processors often have a highly irregular architectures and a moderate
degree of instruction-level parallelism.

Retargetability is inversely related to code quality. The more a compiler is tai-
lored towards a certain target processor, the higher is the code quality and vice
versa. In the MSSQ compiler, which is subject of this paper, the degree of retar-
getability is �xed. MSSQ generates code for a de�ned class of target processors,
and within this class aims at code optimization, mainly by exploiting potential par-
allelism. We show how retargetability can be realized by means of target processor
models speci�ed as RT-level netlists in a hardware description language. The main
advantages of this approach compared to related work are the following:

1. Usage of a hardware description language for target processor modelling pro-
vides a natural link to ECAD environments. In contrast to all other approaches,
which often use particular and tool-speci�c description formalisms, a single and
uniform model is su�cient for the complete design process, i.e. hardware de-
sign, code generation, and simulation. All aspects needed for code generation
are automatically derived from that model.

2. While many publications on retargetable code generation do not clearly state
the range of processors that can be handled, MSSQ operates on a well-de�ned
class of target processors. Within this class, code can be generated for any
target processor.

3. Obviously, the concept of RT-level netlists results in very detailed target pro-
cessor models, which also capture primitive hardware components like wires,
busses, and multiplexers. Although such detailed models sometimes demand
for a higher description e�ort compared to pure instruction-set models, they are
the most natural representation from a hardware designer's point of view. Com-
pilers capable of using netlists instead of instruction-set models avoid any risks

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 5

in the communication between hardware designers and compiler writers. More-
over, RT-level models permit fast adaptation of local changes in the processor
architecture, which might have global impact on an equivalent instruction-set
model. This is especially important for designs based on ASIPs.

The organization of this paper is as follows: In section 2, we give a short overview
of the MIMOLA hardware design system, of which the MSSQ compiler is a central
component. Furthermore, we outline the functionality of MSSQ and describe the
class of processors that can be handled with this compiler. Section 3 discusses
previous work in the areas of compiler construction and microprogramming, as well
as more recent work concerning embedded code generation. A detailed description
of the input format of MSSQ is given in section 4. Section 5 presents the two
main internal data structures in MSSQ: the connection operation graph and I-
trees. Code generation techniques based on these data structures are described in
section 6. Section 7 provides experimental results for several embedded processors,
and the paper ends with concluding remarks.

2. System overview

The MIMOLA Design System (MDS) is a high-level hardware design environment,
providing design automation between algorithmic and register-transfer level for
digital programmable processors. The user interface of the MDS is the MIMOLA
hardware description language. Besides the necessary frontends and utilities, four
tools constitute the core of the MDS (�g. 1), which operate on the common inter-
mediate representation TREEMOLA.

MSSH: MSSH performs high-level synthesis, i.e. it generates RTL structures from
behavioral descriptions at the algorithmic level. MSSH exploits realistic, user-
de�nable component libraries Furthermore, also partially prede�ned structures
are taken into account. Details on MSSH techniques are also to be found in
[11, 12].

MSSQ: In contrast to MSSH, MSSQ maps algorithms to completely prede�ned
RTL structures by generating microcode. Many design decisions for MSSQ are
based on its predecessor MSSV [13], which was, however, often too slow to be
applied to real-life problems.

MSST: MSST aims at exploiting self-test capabilities of programmable processors.
User-de�ned high-level self-test programs are compiled to machine code for
prede�ned RTL structures [14]. A more recent self-test program compiler, which
is based on experiences with MSST, is described in [15].

MSSB/U: MSSB is a simulator for algorithmic-level descriptions, which uses
compiled-code simulation. Its counterpart MSSU is an event-driven RTL struc-
ture simulator.

6 R. LEUPERS AND P. MARWEDEL

intermediate
representation

TREEMOLA

language frontend
MIMOLA

MSSF

TREEMOLA to
MIMOLA translator

schematics
generator

high-level synthesis
MSSH

retargetable code
MSSQ

generation

self-test program
generation

MSST

structural simulation

MSSB, MSSU
behavioral and

Figure 1. The MIMOLA Design System

MSSQ binary machine code
processor-specific

of target processor
netlist model

(controller + datapath)

imperative HLL

transformation rules
linkage information

source program

MIMOLA language

Figure 2. Functionality of the MSSQ compiler

As exempli�ed in [16], this combination of tools permits high-level design of digital
programmable processors under realistic conditions. Typically, this involves several
design iterations guided by user interaction.
Fig. 2 shows the functionality of the MSSQ compiler. MSSQ reads an exter-

nal netlist model of the target processor. This netlist model comprises both the

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 7

controller and the datapath. The source algorithm is speci�ed as an imperative,
high-level language program. Both netlist and program are described in the MI-
MOLA language. Additionally, the user can optionally specify information con-
cerning linkage of hardware and software. MSSQ emits processor-speci�c, binary
machine code, which implements the source algorithm on the speci�ed target pro-
cessor. This code listing can be interpreted as the program ROM speci�cation for
an embedded processor. The class of processors handled by MSSQ is de�ned by
the following characteristics:

Microprogrammable controller: MSSQ assumes a microprogrammable control-
ler architecture, in which all control lines originate from a dedicated instruc-
tion memory or register. The primitive operations steered by this controller are
single-cycle microoperations or register transfers (RTs), of which several may be
executable in parallel in each machine cycle. Instruction pipelining and multicy-
cle operations are assumed to be invisible at this level. The detailed instruction
format is part of the processor model and therefore completely user-de�nable.
Possible instruction formats range from purely horizontal (VLIW) to strongly
encoded formats. For encoded formats, all inter-instruction restrictions are de-
rived from the processor model, which typically comprises instruction decoders
in this case.

Arbitrary datapath: The datapath is an arbitrary, user-de�nable netlist of RT-
level hardware components. The basic components, such as registers, ALUs,
decoders, multiplexers, memories, and bus drivers, are described by their be-
havior. Interconnections between these components are described in terms of
wires and busses. No assumptions are made about the overall architecture of
the datapath in advance.

3. Related work

Early contributions to retargetable code generation mainly stem from the areas
of compiler construction and microprogramming. Code generation for embedded
processors as a separate research area has been established only in the beginning of
this decade, and since then has evolved rapidly. We therefore divide the overview
of related work into three categories.

3.1. Compiler construction

Retargetability has already been a goal in the UNCOL project [17]. It was proposed
to compile fromm source languages to n target machine languages by usingm front-
ends to compile to a common intermediate format and then using n back-ends to
translate from that format to the target language. This way,m+n tools are required
instead of the m�n tools for a direct translation from each source language to each

8 R. LEUPERS AND P. MARWEDEL

target language. This approach turned out to be infeasible in general but to work
well for restricted sets of source and target languages.
In Glanville's approach [18], machine-independent code selectors could be gener-

ated, based on shift-reduce parsing of source code statements with respect to an
instruction-set grammar. Satisfactory results were reported for IBM 370 and PDP-
11 machines, but instruction-level parallelism was not treated. Although relying
on a well-de�ned formal background, the parser-based approach su�ers from the
ambiguity of grammars and therefore leads to suboptimal code selection on parallel
machines.
Cattell [19] proposed a new target-independent code selection method ("maxi-

mal munching method"), based on heuristic tree covering. However, his machine
description formalism ISP su�ered from de�cient readability, and neither captured
parallelism. The survey by Ganapathi et al. [20] summarizes the techniques avail-
able in the early eighties and concludes with the demand of shorter compilation
times and more versatile machine description languages. Retargetability was after-
wards put into practice within the GNU project [21]: The GNU C compiler gcc
could be successfully retargeted to a number of CISC and RISC machines, and is
now widely spread in workstation and personal computer environments. In many
cases, gcc outperforms commercial, processor-speci�c compilers. Unfortunately,
gcc requires an exhaustive target machine description in a speci�c language, in
turn including C constructs. Therefore, gcc does not permit frequent changes in
the target architecture, as for instance required in customization of ASIPs. Fur-
thermore, gcc has problems with DSPs. An attempt has been made to port gcc to
Motorola's DSP56000, but the results are poor in terms of exploiting parallelism.
Retargetability with respect to code selection is provided by code generator gen-

erators (or compiler-compilers). Tools like BEG [22], Twig [23], and iburg [24] are
capable of generating fast processor-speci�c tree pattern matchers from instruction-
set descriptions given as tree grammars. In turn, these matchers can generate opti-
mal covers for data-ow trees, i.e. subgraphs of control/dataow graphs (CDFGs),
by dynamic programming. The strength of those tools lie in fact, that also complex
instructions can be handled. Moreover, runtime of the generated matchers is only
linearly dependent on the tree size. Their cost metrics however inherently exclude
instruction-level parallelism.

3.2. Microprogramming

Much input for work on embedded code generation also comes from the area of mi-
croprogramming, which traditionally uses more hardware-oriented machine models
and also treats instruction-level parallelism as a central issue. In contrast to com-
piler construction, no separation is made between assembly-level and machine-level
code generation. Most approaches to microcode generation employ code compaction
algporithms: The general idea is to �rst translate source code into vertical ma-
chine code, consisting of separate, partially interdependent RTs. Afterwards, RTs
are rearranged to form valid microinstructions. Unfortunately, being a resource-

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 9

constrained scheduling problem, already optimal local compaction (restricted to
basic blocks) is NP-hard [25]. A number of heuristic local compaction techniques,
which are extensively compared in [26], turned out to be useful in practice.
The �rst global compaction technique is Fisher's Trace Scheduling [27]. Trace

Scheduling determines the critical path through a set of basic blocks with respect
to given branching probabilities. Ignoring branches, this path is then treated as
a "large" basic block which often reveals a large amount of parallelism. Then, a
standard local compaction technique (list scheduling) is applied. However, Trace
Scheduling tends to signi�cantly increase the code size due to "compensation code"
that needs to be inserted, so that it is not recommendable for embedded code
generation. Percolation scheduling [28] is another well-known technique for global
compaction, which has also been applied to high-level VLSI synthesis [29].
Many researchers have treated retargetable generation of microcode from high-

level programming languages. Most approaches make use of special machine de-
scription languages for speci�cation of instruction formats, binary encodings, avail-
able RTs, and conicts between RTs due to encoding or resource limitations. In
the MPG system [30], focus was on microcode generation for mainframes, including
a complex mechanism for next-address generation for the control store. Vegdahl
[31, 32] emphasized the necessity of phase coupling in microcode generation. His
compiler postponed decisions regarding code selection (followingCattell's approach)
to the compaction phase. Mueller and Varghese [33] proposed code generation based
on a graph model of the target machine, instead of an instruction-set model. These
early approaches however required much manual interaction by the user.

3.3. Embedded code generation

Although embedded processors also include CISCs, RISCs, and microcontrollers,
most recent publications on embedded code generation focus only on standard DSPs
and ASIPs. Emphasis is on high-quality code generation for irregular architectures
and retargetability. Common to nearly all aproaches is the assumption of a micro-
programmable controller.
Rimey and Hil�nger [34] introduced the concept of data routing in code generation

for ASIPs: After operations are bound to functional units in the target processor,
data routing deals with transporting data between functional units, so as to mini-
mize the amount of transport operations. Greedy scheduling orders operations in
time based on information about "routability" of data. In this way, scheduling and
register allocation are closely coupled. Practical application is, however, restricted
to a very simple class of target processors. The data routing approach was re�ned
by Hartmann [35], who also stressed the main disadvantage of data routing, namely
the possibility of deadlocks during scheduling. Consequently, a complex mechanism
for deadlock avoidance was employed. Hartmann's technique was applied to one
realistic example, for which very high code quality was achieved.
Wess [36] proposed the usage of normal form programs [37] for DSP code gener-

ation. Normal form programs are essentially sequences of "small" programs, each

10 R. LEUPERS AND P. MARWEDEL

implementing computation of one expression tree. Optimal code selection on ex-
pression trees is possible in linear time, with respect to the number of selected
instructions. In order to account for special-purpose registers, trellis diagrams are
used. Trellis diagrams can be regarded as state diagrams representing possible
operations on a target processor. An iterative code compaction method aims at ex-
ploitation of parallelism [38]. High-quality code generation is reported for standard
DSPs (DSP56000, TMS320C2x, ADSP-2100). However, no mechanism is provided
for constructing trellis diagrams from more common models.

Fauth's CBC compiler [39] makes use of Hartmann's scheduling and data routing
techniques. The nML language permits concise, hierarchical instruction-set descrip-
tions. CBC uses tree covering by dynamic programming for instruction selection,
and also exploits user-de�ned transformation rules. However, nML is a rather tool-
speci�c language. CBC has been applied to a realistic design at Siemens (Digital
European Cordless Telephone, DECT), and has later been enhanced by global opti-
mization techniques [40], e.g. chaining of operations beyond basic block boundaries,
and heuristically generalizing code selection to directed acyclic graphs (DAGs) in-
stead of trees.

The nML language and the data routing approach are adopted in IMEC's CHESS
compiler [41, 42], which targets ASIPs with load-store architectures. So far, how-
ever, basically modelling results have been reported [43].

The CodeSyn compiler by Paulin et al. [44] maps C programs into machine code
for industrial in-house ASIPs at BNR. Target processors are described by three sep-
arate items: the set of available instruction patterns, a graph model representing
the datapath, and a resource classi�cation that accounts for special-purpose regis-
ters. Code generation follows a more classical direction: code selection is performed
with dynamic programming, however without exploiting available code generator
generators. Register allocation is based on the user-speci�ed resource classi�cation
and the left-edge algorithm [45]. A heuristic postpass compaction phase aims at ex-
ploiting parallelism. High code quality has been achieved, but results are reported
only for few ASIPs, presumably due to the fact, that retargeting CodeSyn requires
too much manual e�ort.

Research within the SPAM project focuses on code optimization for standard
DSPs rather than on retargetability: Araujo and Malik partially integrate regis-
ter allocation into code selection [46], thereby taking into account special-purpose
registers in DSPs. A theoretical instruction-set criterion is developed, under which
generation of spill-free schedules is possible in linear time. Due to usage of code
generator generators, the approach is user-retargetable. Optimal code generation
for data-ow trees is reported for the TMS320C25 DSP, however excluding consid-
eration of parallelism, memory addressing, and mode registers. Liao and Wang et
al. propose address assignment for DSP-speci�c address generation units (AGUs)
as a means of advanced code optimization [47], and provide extensions of previ-
ous work by Bartley [48]. They also investigate improved code selection by DAG
matching instead of tree matching and optimization of mode register usage [49].
High code quality is achieved, but the techniques are tailored only towards the

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 11

TMS320C25. Another promising technique is delayed memory binding of variables
after code generation [50]: On standard DSPs with distributed memory banks (such
as Motorola 56000), this technique signi�cantly increases parallelism in a machine
program.
Worth mentioning is also Mutation Scheduling (MS) by Nicolau et al. [51], which

aims at code optimization by complete phase coupling. MS dynamically maintains
a set of mutations for each value occuring in a source program. Mutations are
essentially obtained via algebraic transformations. Driven by scheduling, MS selects
an appropriate mutation for each value to be computed based on availability of
resources. Apparently, traversing the search space for possible mutations is very
crucial, and MS also demands for a large amount of potential parallelism in order to
be e�ective. Although intended for ASIP code generation, promising results of MS
so far have only been presented for idealized, homogeneous processor architectures,
comprising a large number of registers and parallel functional units. In contrast,
Schenk's compiler [52] focuses on realistic RISC architectures. Complete phase
coupling is ensured by means of extensive backtracking, based on a �ne-grain uni�ed
data structure (resource usages). Results are however not yet reported.
Speci�c contributions to embedded code generation have also been made by Wil-

son et al. [53] and Philips [54], whose techniques permit very high quality code
generation for a narrow class of ASIPs, but are not su�ciently retargetable. The
state-of-the-art in embedded code generation is summarized in [55].
The main conclusion that can be drawn from previous and related work is, that

there is a strong trade-o� between retargetability and code quality. The highest
code quality is achieved in those approaches, which concentrate on very particu-
lar classes of target processors and thus do not provide much exibility. On the
other hand, HW/SW codesign for embedded systems demands for such exibil-
ity in a user-friendly fashion. Retargetable compiler systems, which do provide a
user-friendly interface by using an editable, external processor model, are still few.
Processor models in those approaches are mostly behavioral, i.e. a pure instruction-
set description is used. However, such models have problems with special-purpose
registers and instruction-level parallelism. Therefore, compilers like CHESS and
CodeSyn make use of mixed models, i.e. instruction-set models also including some
structural information. The corresponding processor description formalisms are
necessarily very tool-speci�c.
In contrast to all other approaches, the MSSQ compiler uses a real hardware

description language for processor modelling and uses purely structural models.
The next section describes the input format of MSSQ.

4. Description of source program and target processor

One main concept of MSSQ is the usage of the uni�ed description language MI-
MOLA both for the target processor and the application to be compiled. An ad-
vantage of using a uni�ed language is that no distortion exists between algorithm
and hardware, for instance regarding the available data types. In MIMOLA only

12 R. LEUPERS AND P. MARWEDEL

the data type "bit vector" is prede�ned. Complex data types may be de�ned by
the user. In contrast to VHDL, the arithmetic interpretation (integer, unsigned)
of bit vectors is encoded in the MIMOLA operators. A MIMOLA input for MSSQ
consists of three sections: the algorithm to be compiled, the target processor model,
and additional linkage and transformation rules. In the following we illustrate the
language features using examples. A detailed description of MIMOLA can be found
in [56].

4.1. Program speci�cation

The algorithmic part of MIMOLA is essentially a superset of the PASCAL pro-
gramming language, except for the data types SET, REAL, and FILE, which are
not available. Extensions to PASCAL include

� Prede�ned variable locations: The statement
VAR x : (15:0) AT Reg1;

declares a 16 bit variable x located at register Reg1.

� References to physical storages: Instead of using abstract variables, phys-
ical registers and memories can be directly referenced, e.g. in an assignment to
the accumulator:

ACCU := ACCU + M[1];

� Bit-level addressing: Subranges of operands may be referenced by appending
a bit vector index range. The following assignment loads variable x with the
least signi�cant 16 bits of register ACCU:

x := ACCU.(15:0);

� Module calls: Hardware components can be called like procedures with pa-
rameters, so as to enforce execution of certain operations. For instance, if the
processor description contains a component named AdderComp, this component
can be "called" in an assignment:

x := AdderComp(y,z);

� Operator binding: Operations can be bound to certain hardware compo-
nents, e.g. in the assignment

x := y + AdderComp z;

the addition is bound to component AdderComp.

Since all these extension are optional, the user can select from a variety of "pro-
gramming styles", either more abstract or more hardware-speci�c. Pure PASCAL
programs are possible as well as programs close to the assembly level.

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 13

4.2. Processor modeling

MIMOLA permits modeling of arbitrary (programmable or non-programmable)
hardware structures. Similar to VHDL, a number of prede�ned, primitive oper-
ators exists. The basic entities of MIMOLA hardware models are modules and
connections. Each module is speci�ed by its port interface and its behavior, and
modules together with connections form a netlist. The following example shows
the description of a multi-functional ALU module:

MODULE Alu (IN i1, i2: (15:0); OUT outp: (15:0);

IN ctr: (1:0));

CONBEGIN

outp <- CASE ctr OF

0: i1 + i2;

1: i1 - i2;

2: i1 AND i2;

3: i1;

END;

CONEND;

The CONBEGIN/CONEND construct includes a set of concurrent assignments.
In the example a conditional assignment to output port outp is speci�ed, which
depends on the two-bit control input ctr. Also don't care conditions with respect
to control inputs can be speci�ed by means of "X" CASE tags. The next example
shows a model of a register module.

MODULE ACCU (IN inp: (15:0); OUT outp: (15:0);

IN enable: Bit; CLK clock: Bit));

VAR reg: (15:0);

CONBEGIN

CASE enable OF

0: NOLOAD;

1: AT clock UP DO reg := inp;

END;

outp <- reg;

CONEND;

Variable reg of module ACCU stores a new input value at the rising clock edge if
the enable signal has the value one. Concurrently, the register value is assigned
to output port outp. The prede�ned NOLOAD statement speci�es a "no operation"
mode.
Connections between module ports are de�ned by CONNECTION statements, e.g.

CONNECTIONS Alu.outp -> ACCU.inp;

ACCU.outp -> Alu.i1;

14 R. LEUPERS AND P. MARWEDEL

MSSQ also has a notion of bidirectional tristate busses, which are declared by
BUS statements. In presence of tristate busses, MSSQ assumes that in all modules
driving a bus can be set to a "TRISTATE" mode by approriate control signals.

4.3. Linkage and transformation rules

In case of programmable hardware structures, two distinguished storage locations
exist from a compiler's point of view: the program counter and the instruction
memory. A code generator operating on netlists can hardly identify these locations
only by inspecting the structure. Therefore, these two locations (which are part
of the netlist model) need to be explicitly labelled. This is done by LOCATION

statements:

LOCATION_FOR_PROGRAMCOUNTER PCReg;

LOCATION_FOR_INSTRUCTIONS IM[0..1023];

Other LOCATION statements may be optionally used for restricting the register allo-
cation search space, i.e. storages can be identi�ed as physical locations for declared
user variables or for intermediate results.

An important feature of MSSQ is the replacement mechanism. This mechanism
works through user-de�ned rewrite rules, which can be used in two ways: for imple-
menting operations in the algorithm, which are not available in the target processor,
and for increasing the degrees of freedom for code generation. if the resulting code
is more favorable. Replacement rules may comprise arbitrary MIMOLA expressions
with formal parameters. The following example shows two replacement rules.

REPLACE_ALWAYS &a * 2 WITH &a + &a;

REPLACE_CONDITIONALLY &a + 1 WITH "INCR" &a;

Rules with an ALWAYS attribute are unconditionally applied already during inter-
mediate code generation. In the example, multiplication of a formal parameter &a
by 2 is replaced by an addition &a + &a. This rule permits code generation for
&a * 2, even if the target processor does not contain a multiplier. Rules with a
CONDITIONALLY attribute are applied on demand, e.g. if an addition &a + 1 is re-
quired, the compiler may decide to bind an addition of value 1 to an incrementer
if the resulting code is more favorable. By means of the replacement mechanism,
a high degree of exibility is o�ered by the MSSQ frontend. As indicated by the
above examples, typical applications of replacement rules include implementation
of operators which are unimplemented in hardware and strength reduction of arith-
metic operators. Furthermore, replacement rules permit to cope with unforeseen
idiosyncrasies of new target processors.

A complete MIMOLA description of a very simple 8-bit processor is given in �g. 3.
The corresponding schematic is shown in �g. 4.

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 15

MODULE SimpleProcessor (IN inp:(7:0); OUT outp:(7:0));

STRUCTURE IS -- outermost module is a structural one

TYPE InstrFormat = FIELDS -- 21-bit horizontal instruction word

imm: (20:13);

RAMadr: (12:5);

RAMctr: (4);

mux: (3:2);

alu: (1:0);

END;

Byte = (7:0); Bit = (0); -- scalar types

PARTS -- instantiate behavioral modules

IM: MODULE InstrROM (IN adr: Byte; OUT ins: InstrFormat);

VAR storage: ARRAY[0..255] OF InstrFormat;

CONBEGIN ins <- storage[adr]; CONEND;

PC, REG: MODULE Reg8bit (IN data: Byte; OUT outp: Byte);

VAR R: Byte;

CONBEGIN R := data; outp <- R; CONEND;

PCIncr: MODULE IncrementByte (IN data: Byte; OUT inc: Byte);

CONBEGIN outp <- INCR data; CONEND;

RAM: MODULE Memory (IN data, adr: Byte; OUT outp: Byte; FCT c: Bit);

VAR storage: ARRAY[0..255] OF Byte;

CONBEGIN

CASE c OF: 0: NOLOAD storage; 1: storage[adr] := data; END;

outp <- storage[adr];

CONEND;

ALU: MODULE AddSub (IN d0, d1: Byte; OUT outp: Byte; FCT c: (1:0));

CONBEGIN -- "%" denotes binary numbers

outp <- CASE c OF %00: d0 + d1; %01: d0 - d1; %1x: d0; END;

CONEND;

MUX: MODULE Mux3x8 (IN d0,d1,d2: Byte; OUT outp: Byte; FCT c: (1:0));

CONBEGIN outp <- CASE c OF 0: d0; 1: d1; ELSE: d2; END; CONEND;

CONNECTIONS

-- controller: -- data path:

PC.outp -> IM.adr; IM.ins.imm -> MUX.d0;

PC.outp -> PCIncr.data; inp -> MUX.d1; -- primary input

PCIncr.outp -> PC.data; RAM.outp -> MUX.d2;

IM.ins.RAMadr -> RAM.adr; MUX.outp -> ALU.d1;

IM.ins.RAMctr -> RAM.c; ALU.outp -> REG.data;

IM.ins.alu -> ALU.c; REG.outp -> ALU.d0;

IM.ins.mux -> MUX.c; REG.outp -> outp; -- primary output

END; -- STRUCTURE

LOCATION_FOR_PROGRAMCOUNTER PC;

LOCATION_FOR_INSTRUCTIONS IM;

END; -- STRUCTURE

Figure 3. Complete MIMOLA description of a simple 8-bit processor

16 R. LEUPERS AND P. MARWEDEL

+1PC

IM

I.(20:0)

ALU

REG

MUX

RAM
I.(4)

I.(3:2)

I.(1:0)

inp

outp

I.(12:5)

I.(20:13)

Figure 4. Schematic of the example 8-bit processor

5. Internal data structures

MSSQ uses two main internal data structures, which are described in this section.
The connection operation graph (COG) represents the RT-level hardware structure
and capabilities of RT-level functional units. The COG is used for pattern matching
between the intermediate program representation and primitive target processor
operations. The necessary control codes for RT-level components involved in a
primitive processor operation are maintained by means of instruction trees (I-trees).

5.1. Connection operation graph

The COG is MSSQ's internal representation of the target processor. The COG
nodes represent hardware operators and module ports, while directed edges represent
dataow between nodes. The direction of edges is opposite to the dataow in the
hardware.

Fig. 5 shows two connected RTL modules in MIMOLA, as well as the corre-
sponding partial COG: Operation dat denotes a transparent mode, i.e. an identity
operation on the input data. Module Mux can perform two dat operations, either
on input d0 or d1. The edges to port c reect that selection of a certain operation
depends on the value assigned to that control port. The output d of Mux ("Mux.d")
is connected to input port i1 of module AddSub. This module performs either ad-
dition or subtraction on i1 and i2, depending on the value of control signal ctr,
and assigns the result to output port p.

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 17

CONBEGIN
 d <- CASE c OF 0: d0; 1: d1;

 CONEND;

CONBEGIN
 p <- CASE ctr OF
 0: i1 + i2;
 1: i1 - i2;
 END;
CONEND;

datdat

i1 i2 ctr

-+

p

d

cd1d0

MODULE AddSub (IN i1,i2:(7:0);

 OUT p:(7:0));

MODULE Mux (IN d0,d1:(7:0);
 FCT c:Bit; OUT d:(7:0));

 FCT ctr: Bit;

CONNECTIONS Mux.d -> AddSub.i1;

Figure 5. Partial connection operation graph for two MIMOLA modules

In this way, the complete target processor structure is represented by a COG. For
variables in sequential modules, separate read and write operation nodes are present
in the COG. The direction of COG edges permits to trace back the dataow from
module output ports to input ports, and further to other module output ports.

In a preprocessing step, the COG is constructed from the textual MIMOLA pro-
cessor model. The complexity of COG construction linearly depends on the number
of hardware operators in the target processor. Even for complex target processors
(e.g. TMS320C25), COG construction takes less than one minute of CPU time on
a SPARC-20. COG nodes representing hardware operations are annotated with
the corresponding settings of module control ports. These settings can be directly
derived from CASE statements in module bodies. For example, consider again the
partial COG shown in �g. 5. The dat operation on input port d0 of module Mux
is selected by setting control port Mux.c to zero, so that "0" would be annotated.
Similarly, "1" would be annotated for the "{" node for module AddSub. During
preprocessing, MSSQ also checks for reachability of module control ports: A con-
trol port is directly reachable, if a direct connection to the instruction memory
exists. If a control port is indirectly connected to the instruction memory via other
combinational modules, whose control ports are reachable in turn, then the control
port is called indirectly reachable. Indirect reachability is, for instance, important
in presence of instruction decoders in the processor model.

18 R. LEUPERS AND P. MARWEDEL

10 = "0"

6..5 = "1X"

3..1 = "000"

15..12 = "1011"

3..1 = "XX1"

15..12 = "0101"

OR

represents
AND

"0101X0XXX1XXXX1X"

"1011X0XXX1XX000X"

OR

Figure 6. I-tree representing two alternative versions

5.2. I-trees

MSSQ assumes all module control signals to originate at the labelled instruction
memory, either directly or indirectly via decoders. Therefore, all control signals
can be represented by partial instructions or versions. For a target processor with
instruction wordlength W , a version is a bitstring B 2 f0; 1; XgW . For processors
with single-cycle operations, partial instructions are su�cient for checking both
for encoding and resource conicts: Due to explicit modelling of multiplexers and
busses, all resource conicts are reected in instruction conicts. MSSQ uses I-trees
for e�ciently and dynamicallymaintaining sets of versions and checking for instruc-
tion conicts. I-trees are constructed on-the-y during code generation. They are
associated with register transfers and represent the necessary partial instructions
and possible alternatives.
I-tree nodes contain an instruction �eld, i.e. an instruction bit index subrange and

a bitstring over f0; 1; Xg. The relative position of nodes decides on the relation
between instruction �elds: Nodes on the same path in the tree are related by
"AND", i.e. they must be simultaneously valid. Nodes on di�erent paths are related
by "OR", i.e. di�erent paths represent alternatives. The set of versions represented
by an I-tree is obtained by separately traversing all paths from the root to the
leaves. Instruction �elds not contained on a path are assumed to be don't care. For
each path, the instruction �elds in the nodes are bitwise combined by operation
"*" de�ned as follows:

* 0 1 x

0 0 E 0
1 E 1 1
x 0 1 x

The value E represents an error, that is, the �elds cannot be simultaneously valid.
In this case, the �elds are called incompatible or conicting. An example I-tree for
a 16-bit instruction word length with its interpretation is given in �g. 6.
I-trees are constructed by means of three operations:

SET: instruction �eld 7! I-tree: SET(B) constructs a single-node I-tree repre-
senting version B.

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 19

CUTMERGE

...

T1

T1 T2

T2 T2

a) b)

T2T2 T1T1

Figure 7. Operations MERGE and CUT on I-trees

MERGE: I-tree � I-tree 7! I-tree: MERGE(T1; T2) constructs an I-tree T3,
which represents the union of the version sets of T1 and T2. This is performed
by attaching T1 and T2 to a common root (�g. 7 a). The MERGE operation is
used, whenever alternative versions for a register transfer are detected during
code generation.

CUT: I-tree � I-tree 7! I-tree: CUT(T1; T2) constructs an I-tree T3, which rep-
resents the intersection of the version sets of T1 and T2. This is performed by
appending T2 to all leaves of T1, and checking for conicts on each path (�g.
7 b). CUT may yield a void I-tree in case that all versions represented by T1
and T2 are pairwise conicting. The CUT operation is used in code generation,
whenever di�erent partial instructions must be simultaneously set in order to
activate a certain register transfer.

6. Code generation

This section describes how the source algorithm is mapped to the target processor
using the above data structures. Code generation proceeds in three sequential
phases. The �rst phase transforms the high-level source program into an RT-level
program. The second phase integrates code selection and register allocation, while
the third phase heuristically exploits potential instruction-level parallelism.

20 R. LEUPERS AND P. MARWEDEL

6.1. Preprocessing

Before code generation takes place, the high-level source program is transformed
into an RT-level program. All declared user variables are bound to storage modules,
and variable references are substituted by references to the corresponding storages.
The process of variable binding may be steered through reservations provided by the
user. Otherwise, variables are bound to a arbitrary storage modules of su�cient
capacity. Furthermore, all high-level control structures like FOR, WHILE, and
REPEAT loops are replaced by IF-constructs, with explicit reference to the labelled
program counter register. The following example shows a piece of source code and
the corresponding RTL program:

source code:

VAR x, y, z: integer;

REPEAT

y := y + z;

x := x - 4;

UNTIL x < 0;

RTL code: (let x, y, z be bound to Mem[0], Mem[1], Mem[2])

lab:

Mem[1] := Mem[1] + Mem[2];

Mem[0] := Mem[0] - 4;

PC := (IF Mem[0] >= 0 THEN lab ELSE INCR PC);

The REPEAT/UNTIL loop is replaced by a conditional assignment to the pro-
gram counter PC. If Mem[0] >= 0 is true at the end of the loop body, then the
branch to label lab is taken. Otherwise, PC is incremented so as to point to the
next instruction after the loop. Replacement rules for high-level control structures
are contained in an external library, which can be edited by the user. In this way,
the most appropriate replacements can be selected for each particular target pro-
cessor. On a DSP for instance, it might be favorable to replace FOR-loops by
hardware loops.
After source code has bee transformed down to the RT level, the program consists

of a sequence of (possibly conditional) assignments to storage locations, and thereby
is prepared to be mapped to the hardware. IF-statements or expressions are the
only remaining high-level control structures. In hardware, IF-constructs correspond
to multiplexers.

6.2. Code selection and register allocation

The next phase is responsible for selection of instruction patterns which implement
the desired behavior. Simultaneously, registers for intermediate results are allo-

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 21

cated as required. The basic idea is to perform pattern matching between RTL
assignments and COG subgraphs. The necessary control signals are dynamically
maintained by means of I-trees. Code selection and register allocation are per-
formed by two interacting modules: the pattern matcher and the temporary cell
allocator.

6.2.1. Pattern matching

Single assignments can be represented by trees. For each of those trees, pattern
matching is performed separately. MSSQ tries to �nd a subgraph in the COG, which
matches the tree representation of the assignment. This is restricted to single-cycle
operations, i.e. read and write nodes in the COG are not crossed during pattern
matching. However, pattern matching does exploit transparent modes of combina-
tional modules. Pattern matching stops as soon as the �rst matching subgraph is
found. This subgraph corresponds to one register transfer. Then, MSSQ generates
all module control signals required for that RT: The COG provides information
about the paths between the designated instruction memory and each RT-level
component. For each control port of an RT-level component involved in the se-
lected RT, the annotated setting is adjusted by tracing back the path from that
port to the instruction memory, and generating the appropriate partial instructions,
say i1; : : : ; in. Since i1; : : : ; in are simultaneously required to execute the selected
register transfer, the corresponding I-tree is computed by n � 1 consecutive CUT
operations:

i = i1 CUT : : : CUT in

If a CUT operation yields a void I-tree due to conicting settings, pattern matching
is iterated, until a subgraph leading to a non-void I-tree is found. If alternative
control port settings for a certain subgraph node exist, all alternative versions are
kept in the I-tree by using the MERGE operation. Since all alternative versions
correspond to a single-cycle operation, there is no cost function for versions, but
all versions have unit cost. The most appropriate version is selected only during
code compaction, dependent on the context of potentially parallel register transfers.
MSSQ also exploits commutativity and neutral elements of arithmetic operations
in order to detect more alternative versions. The result of pattern matching for one
RTL assignment is an RT, as well as an I-tree representing all its alternative partial
instructions. Fig. 8 illustrates pattern matching for an example assignment.
The partial structure in �g. 8 b) consists of six modules: instruction memory

I, memory M, decoder DEC which computes powers of two, multiplexer MUX, an
ALU comprising a subtraction mode, and register R. Each module has attached
the instruction index subrange that controls the module, e.g. DEC is steered by
instruction bits 5..3, and M is addressed by instruction bits 13..6. Pattern matching
between the assignment tree in �g. 8 a) with the partial structure delivers two
versions for the assignment. The di�erence lies in the control signal for MUX and

22 R. LEUPERS AND P. MARWEDEL

the way of generating the constant 64. In the �rst version, MUX passes its left
input, and the constant is immediately allocated at the instruction bits 13..6. The
second version exploits DEC for constant generation and MUX passes the right input.
Assuming that instruction bits 2 and 1 enable register R and select subtraction on
the ALU, respectively, �g. 8 c) shows the resulting I-tree. However, during I-tree
construction, a conict is detected regarding instruction bits 13..6: this instruction
�eld cannot be simultaneously used for generating the memory address and the
constant in this case. Therefore, the �rst version is discarded.

6.2.2. Temporary cell allocation

Assignments may contain complex expressions which cannot be computed within
a single machine cycle. In this case, storage allocation for intermediate results is
required. Whereas binding of declared user variables to storage locations in MSSQ
is done before code generation (through linkage speci�cation), temporary allocation
is done on-the-y during code generation. Temporary cells may be storage cells or
datapath registers. Temporary allocation is activated, if the above pattern matching
process fails. In this case, the assignment is split into a sequence of two simpler
assignments, for which the pattern matcher is called recursively. Suppose, the
assignment

-

READ M[]

"00000001"

"10000000"

LOAD R

M MUX

ALU

R

DEC

I.(0)

I.(1)

I.(2)

I

I.(13..6) I.(5..3)

M MUX

ALU

R

DEC

I.(0)

I.(1)

I.(2)

I

I.(13..6) I.(5..3)

0 = "0" 0 = "1"

13..6 = "10000000"

13..6 = "00000001"

1 = "0"

2 = "1"
CONFLICT!!

5..3 = "110"

c) I-tree

a) Assignment

b) Matching subgraphs

Figure 8. Pattern matching between assignment trees and hardware structure

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 23

R := RAM[0] - RAM[2];

is to be allocated, but the target processor permits only one RAM access per cycle.
Then, (using temporary cell TMP) the assignment can be be split into the sequence

TMP := RAM[2];

R := RAM[0] - TMP;

for each of which the pattern matcher is invoked recursively. Recursion terminates,
when a sequence has been successfully allocated, or the allocation process has con-
clusively failed, e.g. in case of insu�cient hardware resources. In the latter case, a
detailed error message reporting the failure reason is emitted, so that the user may
accordingly correct either the source code or the hardware description.
Basically, MSSQ allocates temporary cells in a greedy fashion. This results in a

worst-case runtime exponential in the number of recursion steps during temporary
allocation, i.e. the complexity of assignments to be compiled. The possibly vast
search space is pruned by obeying the following rules:

� Allocation of temporary cells for intermediate results is goal-directed in the
sense, that the information gained during pattern matching is exploited. Tem-
porary cells are generated for that subexpression of a complex expression, for
which the pattern matcher reported a failure.

� Only those locations are considered, which have been speci�ed by the user
in the linkage section of the processor description. All speci�ed locations are
tried before an additional recursion stage in pattern matching is initiated. This
prevents temporary allocation from generating costly additional control steps,
which could be avoided by a di�erent temporary allocation.

� The bitwidth of possible temporary locations must be equal or greater to the
required temporary result bitwidth. In the latter case, MSSQ performs sign,
zero, or don't care extension.

� MSSQ has a notion of distances between storage locations. Distance is de�ned
as the number of clock cycles required to tranfer data from one location to
another, possibly via combinational modules. Only those temporary locations
are considered, whose distances to the destination of an assignment do not
exceed 2. Fig. 9 shows an example.

Although the latter strategy inhibits successful code generation in some special
cases (e.g. if more than three registers need to be passed for a data transfer), it
turns out to be a good compromise, since without such a general restriction the
search time can become unacceptable.
During temporary allocation MSSQ keeps track of storage contents. Common

subexpressions in complex expressions are identi�ed, and allocated only once. How-
ever, common subexpression analysis does not cross assignment boundaries. The
result of code selection and register allocation in general is a sequence of register

24 R. LEUPERS AND P. MARWEDEL

M1

M2

R1
R2

R3 R4 R5

D

BUS

*
+

Figure 9. Temporary search space for destination register D

transfers, each executable within a single machine cycle. Each of these RTs has
an associated I-tree representing necessary partial instructions and possible alter-
natives. Note that code selection and register allocation do not imply any decision
concerning version selection and control step binding.

6.3. Control ow allocation

So far, only allocation of "dataow-related" assignments in MSSQ has been de-
scribed. In contrast to other approaches, MSSQ derives possible control-ow op-
erations, i.e. modi�cations of the program counter register PC, directly from the
hardware structure. Using the above pattern matching mechanism, MSSQ tries to
generate versions for the following assignments to PC in advance:

� PC := "INCR" PC; Increment program counter

� PC := label; Jump to a symbolic label

� PC := (IF cond THEN "INCR" PC ELSE label);

Conditional ELSE-branch

� PC := (IF cond THEN label ELSE "INCR" PC);

Conditional THEN-branch

� PC := (IF cond THEN label1 ELSE label2); Two-way branch

Whether or not versions for all these assignments exist depends on the branch logic
of the current target processor. A partial controller structure permitting all �ve PC

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 25

MODULE PCMux (IN d0,d1,d2: pcwidth;

 IN cond: Bit; ctr:(2:0);

 OUT outp: pcwidth);

 3: IF cond THEN d0 ELSE d1;

 4: IF cond THEN d1 ELSE d0;

 5: IF cond THEN d1 ELSE d2;

 END;

CONEND;

PC

PCMux

"INCR" PC label2

d0 d1 d2
ctr

cond

label1

outp

CONBEGIN

 outp <- CASE ctr OF

 0: d0; 1: d1; 2: d2;

Figure 10. A "universal" branch logic

assignment types is depicted in �g. 10 together with a possible MIMOLA model of
the PC multiplexer PCMux.
MSSQ tries the latter three assignment types for implementation of conditional

assignments via conditional branch constructs. The symbolic labels are later re-
placed by instruction memory addresses.
There exist several other methods for implementing conditional assignments in

hardware besides conditional branches [57]. One of these (conditional load) is im-
plemented in MSSQ. An implementation by "conditional load" is available, when
the assignment condition can be routed to the enable input of the destination. In
this case, no PC modi�cation is necessary. In turn, this increases the freedom for
code selection. If available, MSSQ allocates conditional jump as well as conditional
load versions for IF-statements, and both are kept for the compaction phase. Like
all other RT operations, also assignments to PC are associated with a corresponding
I-tree.

6.4. Compaction and version selection

The compaction phase aims at exploiting potential instruction-level parallelism,
while simultaneously selecting the most appropriate binary encoding versions. Com-
paction operates on the output from code selection and register allocation, i.e. a
sequence of RTs, each with an I-tree representing all alternative versions. Heuristi-
cally, these RTs are assigned to control steps while obeying dependencies between
RTs. If RT1 is dependent on RT2, e.g. RT1 reads a register value by RT2, then
RT2 must be scheduled earlier than RT1. Pairwise independent RTs may be sched-
uled in parallel, if they are compatible, i.e. no conicts exist with respect to their
partial instructions. Compatibility can be e�ciently checked by means of the CUT
operation on I-trees.

26 R. LEUPERS AND P. MARWEDEL

0 x 1 1 x x x x 0 0 1 x x x 1 0

7..5 = "110"

14..13 = "10"

6..4 = "010"

15 = "0"

14..13 = "01"

12..10 = "1X0"

6..4 = "010"

compatible version

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 X 0 0 1 0

current instruction

bit index

Figure 11. Version selection from I-trees

MSSQ employs a modi�ed version of the "�rst-come-�rst-serve" (FCFS) heuristic
[26]: The microinstructions are generated step-by-step, starting with the "last"
control step. For each control step, �rst a "ready" RT is arbitrarily selected. An RT
is ready, if all its successors with respect to the dependency relations have already
been processed. The selected RT is packed into the current microinstruction, and
an arbitrary version is selected from its I-tree. Then, all other ready RTs are
investigated sequentially. For each of these, MSSQ checks whether a compatible
version exists, so that the RT can also be packed into the current microinstruction.
Selection of compatible versions from I-trees is illustrated in �g. 11.
This is iterated until no further RT can be packed. Then, the microinstruction

is �nished, and the next one is generated in the same way. Compaction terminates
when all RTs have been packed into a microinstruction. The complexity of this
compaction heuristic is O(n2) for n register transfers.
When "�nishing" a microinstruction, MSSQ inserts additional partial instructions

in order to avoid undesired side e�ects. Such side e�ects potentially arise from two
sources:

Unused storages: In each microinstruction, a certain set of sequential modules
(registers and memories) are not written. As shown for the example module
ACCU (see section 4.2), sequential modules typically use distinguished control
ports for enabling write operations on their variables. Whenever such a mod-
ule variable contains a live value, but is not written in a certain control step,
it must be ensured that its value is retained, which corresponds to activation
of the prede�ned MIMOLA operation NOLOAD. Similar to other hardware op-
erations, NOLOADs are associated with partial instructions. Since MSSQ does
not perform book-keeping of live registers across RTs, it uses a conservative

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 27

 CONBEGIN
 CASE ctr OF
 0: outp <- inp;
 1: TRISTATE outp;
 END;
 CONEND;

inp

outp

ctr

M

M’

B
U
S

c)

Z

Z

Z Z

dat

a)

MODULE TriDrv (IN inp: (15:0);
 OUT outp: (15:0);
 FCT ctr: Bit);

b)

Figure 12. Tristate buses: a) tristate driver in MIMOLA, b) driver symbol, c) tristate bus with
multiple drivers

approach: A NOLOAD operation is "scheduled" for each unused module variable
in each microinstruction.

Tristate buses: All modules that can write to a bidirectional bus must provide
a TRISTATE operation. In the simplest case, such modules are tristate drivers
as shown in �g. 12 a). These modules ensure, that bus conicts can be avoided
by disconnecting the driver from the bus. If data is to be transmitted from
moduleM to moduleM 0 via a bus (�g. 12 c), then exactly one driver performs
a dat operation, while all unused drivers perform a TRISTATE (denoted by "Z").
Similar to NOLOADs, MSSQ packs TRISTATE operations for all unused bus drivers
into each microinstruction.

The integrated compaction and version selection phase concludes code generation
in MSSQ. Compaction is called for each RT sequence generated by code selection
and register allocation. Concatenating all machine instructions generated by com-
paction yields the complete machine program for the source algorithm. Binding
of instructions to instruction memory addresses and insertion of jump addresses
into the binary code are performed during a postpass phase. Fig. 13 illustrates the
overall structure of the code generation process.

7. Results

Besides requiring a microprogrammable controller, MSSQ is not dedicated to a
certain processor family. Therefore, MSSQ could be successfully retargeted to a
variety of di�erent machines. Table 1 lists target processors, for which MSSQ has
generated code so far, and the corresponding MIMOLA model sizes.

28 R. LEUPERS AND P. MARWEDEL

PREPROCESSOR

 a[i] := k * i;

 b[i] := a[i] - d;

FOR i:= 1 TO 10

PREPROCESSOR

101001010011
010001000101

010100101001

101001010011
010001000101

010100101001

R1 := M[k] +4;

ACCU := 0;
M[R2] := R1 + 1;

PATTERN MATCHER

a + b + c

TEMP ALLOCATOR

R := M[A];

A := R + 4;

 001001010100
 010001010010

010010010010
111010001001
010010100110

110011101010

110100101001

CODE SELECTION & REGISTER ALLOCATION

c-step 1

c-step 2

c-step 3

COMPACTION & VERSION SELECTION

dependency

RT

algorithm
source

sequence
assignment

RTL

CO-graph

netlist
processor

target

with I-trees
sequence

RT

sequence
instruction
machine

program
machine

Figure 13. Overview of code generation in MSSQ

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 29

Table 1. Target machines for MSSQ and MIMOLA model sizes

machine type # RTL modules model size (lines)

AMD 29203 bit-slice processor 11 533
SAMP self-timed VLIW machine 36 624
PRIPS VLIW PROLOG processor 38 1255
BassBoost ASIP 20 773
TMS320C25 digital signal processor 94 1889
DSP56156 digital signal processor 116 1439

PC

MUL

0

RAM

ROM

CLP

in

out

IM

adr

s2

m

base

offset

mod

coef

data

s1

sum clpres

AGU

ADD

Figure 14. Industrial ASIP for digital audio signal processing

Detailed descriptions of the AMD 29203, SAMP, and PRIPS architectures, as well
as code generation results for these machines are given in [58, 59, 60, 61, 62]. Here,
we focus on the latter three architectures in table 1, which are more representative
for embedded processors.

7.1. Bass boost ASIP

The architecture depicted in �g. 14 is an industrial ASIP, which is used in the
area of digital audio signal processing. The ASIP has a moderately encoded 41-bit
microinstruction format, a dedicated address generation unit (AGU) supporting
ring bu�ers, and a 120 � 18 bit RAM. Arithmetic computations are performed on
a 24-bit multiply-accumulate section. Filter coe�cients are stored in a ROM. All
functional units can work in parallel in order to guarantee high throughput.

We used MSSQ to map a digital bass boost (DBB) algorithm into machine code
for the ASIP. The DBB consists of two identical stereo channels, each realizing a
low-pass �lter. Since MSSQ does not provide particular support for ring bu�ers,
we traded manual description e�ort against code quality by using three di�erent
MIMOLA descriptions of the DBB source algorithm:

30 R. LEUPERS AND P. MARWEDEL

Table 2. Results for digital bass boost ASIP

programming # source code # machine CPU seconds
style statements instructions (SPARC-20)

high level 84 197 602
medium level 98 98 200
low level 329 64 7

High level: In the �rst program, the DBB algorithm is described at the pure
PASCAL level, without any particular reference to the underlying hardware.
Ring bu�ers are replaced by successive data moves at the end of each sample
period. Code selection, register allocation, and compaction are completely left
to the compiler.

Medium level: In the second program, storage layout is manually prede�ned by
storage binding of variables. This also includes explicit storage allocation for
ring bu�ers and access to ring bu�er elements by means of the modulo ad-
dressing capabilities of the AGU in order to avoid data moves. Code selection,
register allocation, and compaction are left to the compiler.

Low level: In the third program, very few freedom is left to the compiler. The
MIMOLA program already closely reects the machine program by prede�ning
a sequence of control steps. Variables are completely replaced by storage and
register references. The compiler is only responsible for binding operators to
hardware resources and translating the RTs into binary machine instructions.

Each of these programs were separately compiled by MSSQ. The results are shown
in table 2. The high-level program required few description e�ort, but led to infe-
rior code quality, essentially due to insu�cient AGU utilization. This problem was
avoided in the medium-level program, for which a 50 % reduction in the number of
generated instructions was obtained. The highest code quality was achieved for the
low-level program. Through extensive manual analysis of hardware capabilities, a
very high resource utilization is ensured, resulting in only 64 machine instructions.
This is the same code quality as it was obtained originally by completely man-
ual code generation. The e�ort for writing the low-level program was, however,
comparatively high.

For sake of completeness, table 2 also shows the compilation times, which are
relatively high for the �rst two program versions. Nevertheless, in contrast to
compilers for general-purpose systems, compilation speed plays only a secondary
role in embedded code generation. While the user of a C compiler on a workstation
is hardly willing to spend more than a few minutes in compiling thousands of
source code lines, even compilation times of several hours may be regarded as being
acceptable for embedded code generation, because the demands on compilers are
much higher in this area. In fact, most publications on embedded code generation

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 31

Table 3. Results for TMS320C25

program # source code # machine CPU seconds
statements instructions (SPARC-20)

test1 7 22 53
test2 17 49 77
elliptical wave �lter 74 184 186
greatest common divisor 8 18 20
PID control 34 75 74
di�erential equation solver 59 99 117

do not explicitly mention compilation speed, as long as an acceptable amount of
CPU time is not exceeded.

7.2. TMS320C25

The Texas Instruments TMS320C25 is a popular standard DSP [63] with a strongly
encoded 16-bit instruction format and a moderate amount of instruction-level par-
allelism. We have used MSSQ to compile six high-level programs into TMS320C25
code. These include arithmetic test programs as well as realistic DSP algorithms.
The results are listed in table 3.
Analysis of the generated code yields an estimated overhead of 50 - 100 % com-

pared to hand-crafted code. This overhead is mainly due to the fact, that MSSQ
maps only statement-by-statement, but does not perform dataow analysis be-
tween statements. This sometimes results in redundant data move instructions.
The statement-wise mapping mechanism also prevents MSSQ from su�ciently ex-
ploiting instruction-level parallelism on the TMS320C25, e.g. in form of multiply-
accumulate instructions. The quality of the generated code is however not too bad,
if compared to results obtained by processor-speci�c compilers. A recent experi-
mental study [10] revealed that current commercial compilers for standard DSPs
yield code with similar overheads in quality.

7.3. DSP56156

The DSP56156 [64] is a member of the widespread Motorola 56000 family of digital
signal processors. In contrast to the TMS320C25, it as a moderately encoded 24-bit
instruction word, with a signi�cant amount of instruction-level parallelism. We have
used MSSQ to compile the same set of benchmark programs onto this processors
as for the TMS320C25. Table 4 shows the results.
Except for the elliptical wave �lter program, the number of generated instructions

is comparable to the results achieved for the TMS320C25. The code quality is
however worse, because the parallel memory access capabilities of the DSP56156
are not exploited. This is due to the fact, that binding of variables to memory

32 R. LEUPERS AND P. MARWEDEL

Table 4. Results for DSP56156

program # source code # machine CPU seconds # instructions
statements instructions (SPARC-20) GNU gcc

test1 7 24 48 45
test2 17 44 59 55
elliptical wave �lter 74 133 224 290
greatest common divisor 8 20 36 30
PID control 34 90 67 113
di�erential equation solver 59 93 58 202

banks in MSSQ takes place before code generation. For architectures with parallel
memory banks, such as the DSP56156, delayed binding of variables, as proposed in
[50] yields much higher utilization of parallelism.
For comparison purposes, we have also applied the DSP56000 version of the GNU

C compiler gcc to the above benchmark programs. The results (optimizations
enabled) are shown in the rightmost column of table 4. Naturally, gcc compiles
much faster and only needs fractions of a CPU second for each program. The
code quality is however very poor. Instruction-level parallelism is not exploited
at all, and insu�cient utilization of special-purpose registers leads to overheads of
more than 100 % compared to MSSQ-generated code. Furthermore, MSSQ requires
much smaller e�ort for processor modelling: The MIMOLA model of the DSP56156
consists of approximately 1400 lines, while the GNU model comprises more than
7700 lines.

8. Conclusions

Design automation for HW/SW codesign of embedded systems demands for exi-
ble code generators as an interface between software synthesis and embedded pro-
cessors. Retargetable compilers provide a promising solution, if di�erent target
processors need to be investigated during HW/SW partitioning. Furthermore, re-
targetable compilers are necessary for single-chip designs comprising ASIPs, for
which compiler support is hardly available so far.
In this contribution, we have presented the MSSQ compiler. In contrast to other

approaches to retargetable code generation for embedded processors, MSSQ op-
erates on purely structural RT-level processor descriptions. Probably the most
important result of our work with MSSQ is the fact, that the compiler could be
successfully retargeted to a large variety of di�erent real-life machines. In contrast
to related work, for which practical results are reported only for a single target
or at most a narrow class of targets, MSSQ has been applied to general-purpose
processors, standard DSPs, and ASIPs, and it was able to generate code. This is
essentially due to the fact, that MSSQ uses very detailed processor models, and de-
rives all required information automatically from these models, instead of making
assumptions about the target architecture in advance. Furthermore, the hardware

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 33

description language MIMOLA provides a well-de�ned, exible, and easy-to-learn
interface to MSSQ. In this way, a close link to hardware synthesis tools and simu-
lators is provided. Alternatively, a corresponding subset of VHDL could be used,
which would provide compliance with existing standards.
Limitations of the current MSSQ version mainly concern code quality. Although

the quality of MSSQ-generated code is comparable with the quality achieved by
contemporary processor-speci�c compilers, more advanced code optimization tech-
niques are de�nitely necessary, in particular for DSPs. By considering larger entities
than single source code statements, more potential parallelism can be revealed for
code compaction. Furthermore, MSSQ will bene�t from faster register allocation
techniques, as for instance presented in [46]. Recent research results show, that the
structural modelling approach does not contradict such advanced code generation
techniques based on behavioral and mixed models, since these can be constructed
from structural model by means of instruction-set extraction [65, 66]. Work is in
progress to overcome the limitations of MSSQ. We are currently considering special
enhancements tailored to RISCs [52] and DSPs [67, 68] within the context of the
Maps and Record compiler projects. We believe that usage of advanced code
optimization techniques, yet retaining the exibility achieved with structural pro-
cessor models, is possible and bears the potential of signi�cant progress in code
generation for embedded processors.

Acknowledgments

The authors would like to thank Ralf Niemann for performing some of the exper-
imental work. Material on the digital bass boost ASIP was provided by Jef van
Meerbergen, Philips Research Labs, Eindhoven (The Netherlands). The �nancial
support by the European Union through ESPRIT project 9138 (CHIPS) is grate-
fully acknowledged.

References

1. R.K. Gupta, G. De Micheli: System-Level Synthesis Using Re-Programmable Components,
European Conference on Design Automation (EDAC), 1992, pp. 2-8

2. P. Chou, G. Boriello: Software Scheduling in the Co-Synthesis of Reactive Real-Time Sys-
tems, 31st Design Automation Conference (DAC), 1994, pp. 1-4

3. R. Ernst, J. Henkel, T. Benner: Hardware-Software Cosynthesis for Microcontrollers, IEEE
Design & Test Magazine, no. 12, 1993, pp. 64-75

4. K. Buchenrieder, A. Sedlmeier, C. Veith: Design of HW/SW Systems with VLSI Subsystems
Using CODES, 6th IEEE Workshop on VLSI Signal Processing, 1993, pp. 233-239

5. A. Kalavade, E.A. Lee: A Hardware-Software Codesign Methodology for DSP Applications,
IEEE Design & Test Magazine, no. 9, 1993, pp. 16-28

6. R. Camposano, J. Wilberg: Embedded System Design, Design Automation for Embedded
Systems, vol. 1, nos. 1-2, 1996

7. G. Goossens, F. Catthoor, D. Lanneer, H. De Man: Integration of Signal Processing Systems
on Heterogeneous IC Architectures, 5th High-Level Synthesis Workshop (HLSW), 1992, pp.
16-26

34 R. LEUPERS AND P. MARWEDEL

8. P. Paulin, C. Liem, T. May, S. Sutarwala: DSP Design Tool Requirements for the Nineties:
An Industrial Perspective, Technical Report, Bell Northern Research, 1992

9. M. Strik, J. van Meerbergen, A. Timmer, J. Jess, S. Note: E�cient Code Generation for
In-House DSP Cores, European Design and Test Conference (ED & TC), 1995, pp. 244-249

10. V. Zivojnovic, J.M. Velarde, C. Schl�ager: DSPStone { A DSP-Oriented Benchmarking
Methodology, Technical Report, Dept. of Electrical Engineering, Institute for Integrated Sys-
tems for Signal Processing, University of Aachen, Germany, 1994

11. P. Marwedel: A new Synthesis Algorithm for the MIMOLA Software System, 23rd Design
Automation Conference (DAC), 1986, pp. 271-277

12. P. Marwedel:Matching System and Component Behaviour in the MIMOLA Synthesis Tools,
European Conference on Design Automation (EDAC), 1990, pp. 146-156

13. P. Marwedel: Tree-based Mapping of Algorithms to Prede�ned Structures, Int. Conf. on
Computer-Aided Design (ICCAD), 1993, pp. 586-993

14. G. Kr�uger: A Tool for Hierarchical Test Generation, IEEE Trans. on CAD, vol. 10, no. 4,
1991, pp. 519-524

15. U. Bieker, P. Marwedel: Retargetable Self-Test Program Generation Using Constraint Logic
Programming, 32nd Design Automation Conference (DAC), 1995, pp. 605-611

16. P. Marwedel, W. Schenk: Cooperation of Synthesis, Retargetable Code Generation and Test
Generation in the MIMOLA Software System, European Conference on Design Automation
(EDAC), 1993, pp. 63-69

17. M.E. Conway: Proposal for an Uncol, Comm. of the ACM, vol. 1, 1958
18. R.S. Glanville: A Machine Independent Algorithm for Code Generation and its Use in Re-

targetable Compilers, Doctoral thesis, University of California at Berkeley, 1977
19. R.G.G. Cattell: Formalization and Automatic Derivation of Code Generators, Doctoral the-

sis, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh, 1978
20. M. Ganapathi, C.N. Fischer, J.L. Hennessy: Retargetable Compiler Code Generation, ACM

Computing Surveys, vol. 14, 1982, pp.573-592
21. R.M. Stallmann: Using and Porting GNU CC V2.4, Free Software Foundation, Cam-

bridge/Massachusetts, 1993
22. H. Emmelmann, F.W. Schr�oer, R. Landwehr: BEG { A Generator for E�cient Backends,

ACM SIGPLAN Conference on ProgrammingLanguage Design and Implementation (PLDI),
SIGPLAN Notices 24, no. 7, 1989, pp. 227-237

23. A.V. Aho, M. Ganapathi, S.W.K Tjiang: Code Generation Using Tree Matching and Dy-
namic Programming, ACM Trans. on Programming Languages and Systems 11, no. 4, 1989,
pp. 491-516

24. C.W. Fraser, D.R. Hanson, T.A. Proebsting:Engineering a Simple, E�cient Code Generator
Generator, ACM Letters on Programming Languages and Systems, vol. 1, no. 3, 1992, pp.
213-226

25. D.J. DeWitt: A Machine Independent Approach to the Production of Optimal Horizontal
Microcode, Doctoral thesis, Technical Report 76 DT 4, University of Michigan, 1976

26. S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallet: Some Experiments in Local Microcode
Compaction for Horizontal Machines, IEEE Trans. on Computers, vol. 30, no. 7, 1981, pp.
460-477

27. J.A. Fisher: Trace Scheduling: A Technique for Global Microcode Compaction, IEEE Trans.
on Computers, vol. 30, no. 7, 1981, pp. 478-490

28. A. Aiken, A. Nicolau: A Development Environment for Horizontal Microcode, IEEE Trans.
on Software Engineering, no. 14, 1988, pp.584-594

29. R. Potasman, J. Lis, A. Nicolau, D. Gajski: Percolation Based Synthesis, 27th Design Au-
tomation Conference (DAC), 1990, pp. 444-449

30. T. Baba, H. Hagiwara: The MPG System: A Machine Independent E�cient Microprogram
Generator, IEEE Trans. on Computers, vol. 30, no. 6, 1981, pp. 373-395

31. S.R. Vegdahl: Local Code Generation and Compaction in Optimizing Microcode Compilers,
Doctoral thesis, Dept. of Computer Science, Carnegie-Mellon University, 1982

32. S.R. Vegdahl: Phase Coupling and Constant Generation in an Optimizing Microcode Com-
piler, 15th Ann. Workshop on Microprogramming (MICRO-15), 1982, pp. 125-133

RETARGETABLE CODE GENERATION BASED ON STRUCTURAL DESCRIPTIONS 35

33. R.A. Mueller, J. Varghese: Flow Graph Machine Models in Microcode Synthesis, 16th Ann.
Workshop on Microprogramming (MICRO-16), 1983, pp.159-167

34. K. Rimey, P.N. Hil�nger: Lazy Data Routing and Greedy Scheduling for Application-Speci�c
Signal Processors, 21st Annual Workshop on Microprogramming and Microarchitecture
(MICRO-21), 1988, pp. 111-115

35. R. Hartmann: Combined Scheduling and Data Routing for Programmable ASIC Systems,
European Conference on Design Automation (EDAC), 1992, pp. 486-490

36. B. Wess: On the Optimal Generation for Signal Flow Graph Computation, IEEE Int. Symp.
on Circuits and Systems (ISCAS), 1990, pp. 444-447

37. A.V. Aho, S.C. Johnson: Optimal Code Generation for Expression Trees, Journal of the
ACM, vol. 23, no. 3, 1976, pp. 488-501

38. B. Wess: Automatic Code Generation for Integrated Digital Signal Processors, IEEE Int.
Symp. on Circuits and Systems (ISCAS), 1991, pp. 33-36

39. A. Fauth, A. Knoll: Translating Signal Flowcharts into Microcode for Custom Digital Signal
Processors, Int. Conf. on Signal Processing (ICSP), 1993, pp. 65-68

40. A. Fauth, G. Hommel, A. Knoll, C. M�uller: Global Code Selection for Directed Acyclic
Graphs, in: P.A. Fritzson (ed.): 5th Int. Conference on Compiler Construction, 1994

41. D. Lanneer, M. Cornero, G. Goossens, H. De Man: Data Routing: A Paradignm for E�cient
Data-Path Synthesis and Code Generation, 7th Int. Symp. on High-Level Synthesis (HLSS),
1994, pp. 17-21

42. J. Van Praet, G. Goossens, D. Lanneer, H. De Man: Instruction Set De�nition and Instruc-
tion Selection for ASIPs, 7th Int. Symp. on High-Level Synthesis (HLSS), 1994, pp. 11-16

43. A. Fauth, J. Van Praet, M. Freericks: Describing Instruction-Set Processors in nML, Euro-
pean Design and Test Conference (ED & TC), 1995, pp. 503-507

44. C. Liem, T. May, P. Paulin: Instruction-Set Matching and Selection for DSP and ASIP Code
Generation, European Design and Test Conference (ED & TC), 1994, pp. 31-37

45. C. Liem, T. May, P. Paulin: Register Assignment through Resource Classi�cation for ASIP
Microcode Generation, Int. Conf. on Computer-Aided Design (ICCAD), 1994, pp. 397-402

46. G. Araujo, S. Malik: Optimal Code Generation for Embedded Memory Non-Homogeneous
Register Architectures, 8th Int. Symp. on System Synthesis (ISSS), 1995, pp. 36-41

47. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage Assignment to Decrease Code
Size, ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 1995

48. D.H. Bartley: Optimizing Stack Frame Accesses for Processors with Restricted Addressing
Modes, Software { Practice and Experience, vol. 22(2), 1992, pp. 101-110

49. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Code Optimization Techniques for
Embedded DSP Microprocessors, 32nd Design Automation Conference (DAC), 1995, pp.
599-604

50. A. Sudarsanam, S. Malik: Memory Bank and Register Allocation in Software Synthesis for
ASIPs, Int. Conf. on Computer-Aided Design (ICCAD), 1995, pp. 388-392

51. S. Novack, A. Nicolau, N. Dutt: A Uni�ed Code Generation Approach using Mutation
Scheduling, chapter 12 in [55]

52. W. Schenk:Retargetable Code Generation for Parallel, Pipelined Processor Structures, chap-
ter 7 in [55]

53. T. Wilson, G. Grewal, B. Halley, D. Banerji: An Integrated Approach to Retargetable Code
Generation, 7th Int. Symp. on High-Level Synthesis (HLSS), 1994, pp. 70-75

54. A. Timmer,M. Strik, J. van Meerbergen, J. Jess: Conict Modelling and Instruction Schedul-
ing in Code Generation for In-House DSP Cores, 32nd Design Automation Conference
(DAC), 1995, pp. 593-598

55. P. Marwedel, G. Goossens (eds.): Code Generation for Embedded Processors, Kluwer Aca-
demic Publishers, 1995

56. S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, D. Voggenauer:
The MIMOLA Language V4.1, Technical Report, University of Dortmund, Dept. of Com-
puter Science, September 1994

36 R. LEUPERS AND P. MARWEDEL

57. P. Marwedel: Implementation of IF-statements in the TODOS microarchitecture synthesis
system, in: G. Saucier, J. Trilhe (eds.): Synthesis for Control Dominated Circuits, IFIP Trans.
A-22, North-Holland, 1993, pp. 249-262

58. AdvancedMicro Devices: Bipolar Microprocessor Logic and Interface Data Book, Sunnyvale,
1983

59. L. Nowak: SAMP: A General Purpose Processor Based on a Self-Timed VLIW Structure,
ACM Comp. Arch. News, vol. 15, no. 4, 1987, pp. 32-39

60. W. Schenk:A High Speed PROLOG Implementation on a VLIW Processor, Microprocessing
and Microprogramming, vol. 27, nos. 1-5, 1989, pp. 601-606

61. C. Albrecht, S. Bashford, P. Marwedel, A. Neumann, W. Schenk: The Design of the PRIPS
Microprocessor, 4th EUROCHIP Workshop on VLSI Design Training, 1993, pp. 254-259

62. L. Nowak: Graph Based Retargetable Microcode Compilation in the MIMOLA Design Sys-
tem, 20th Ann. Workshop on Microprogramming (MICRO-20), 1987, pp. 126 - 132

63. Texas Instruments: TMS320C2x User's Guide, rev. B, 1990
64. Motorola Inc.: DSP 56156 Digital Signal Processor User's Manual, 1992
65. R. Leupers, P. Marwedel: A BDD-based Frontend for Retargetable Compilers, European

Design & Test Conference (ED & TC), 1995, pp. 239-243
66. R. Leupers, P. Marwedel: Retargetable Generation of Code Selectors from HDL Processor

Models European Design & Test Conference (ED & TC), 1997
67. R. Leupers, P. Marwedel: Time-constrained Code Compaction for DSPs, 8th Int. System

Synthesis Symposium (ISSS), 1995, pp. 54-59
68. R. Leupers, P. Marwedel: Algorithms for Address Assignment in DSP Code Generation, Int.

Conference on Computer-Aided Design (ICCAD), 1996

Received Date
Accepted Date
Final Manuscript Date

