Synthesis of Communicating Controllers for Concurrent
Hardware/Software Systems

R. Niemann
Dept. of Computer Science XII
University of Dortmund
Dortmund, Germany

Abstract

Two main aspects in hardware/software co-design
are hardware/software partitioning and co-synthesis.
Most co-design approaches work only on one of these
problems. In this paper, an approach coupling hard-
ware/software partitioning and co-synthesis will be
presented, working fully-automatic. The techniques
have been integrated in the co-design tool CoOL! sup-
porting the complete design flow from system specifica-
tion to board-level implementation for multi-processor
and multi-ASIC target architectures for data-flow
dominated applications.

1 Introduction

Most approaches in co-design work either on tech-
niques for partitioning or co-synthesis using manual
partitioning. ~ Hardware/software partitioning has
been explored intensively, using different algorithms
to solve this complex optimization problem, e.g. dy-
namic programming, evolutionary strategies, mixed
integer linear programming or several heuristic ap-
proaches. Techniques for interface and communication
synthesis have been explored for example in CHINOOK
[1] or Cosmos [2]. In both approaches, the systems
are partitioned manually. This paper presents an ap-
proach for a coupled hardware/software partitioning
and co-synthesis algorithm. It is based on the syn-
thesis of a system controller (similar to [3]) steering
all processors and ASICs according to the computed
schedule. All techniques have been implemented in
the co-design tool CooL.

2 The CooL framework

The codesign tool CooL is a framework for imple-
menting hardware/software systems starting from a
unified, implementation independent system level de-
scription. The way of specifying systems (based on a
subset of VHDL) and the partitioning algorithms have
been described in detail in [4]. Partitioning is either

1CooL: COdesign toOL

P. Marwedel
Dept. of Computer Science XII
University of Dortmund
Dortmund, Germany

based on mized integer linear programming (MILP),
a combination of MILP and a heuristic, or on genetic
algorithms. This paper describes the design steps in
CoolL after partitioning has finished.

Target Architecture

L o— |

I

Cost Library

‘ System Specification

Design Constraints

»
Partitioning Graph

MILP + Heuristic

——

—

Colored Partitioned Graph ‘

— T
sSwW Parts‘

Interface Parts

_—
-~ |
‘ State/Transition Graph ‘

Controller Synthesis

‘ HW Refinement ‘
Co- l
‘ HW Specifications > Netlist + Controllers < SW Specifications

l | |

High-Level Logic Synthesis SW Compilation
Synthesis OSCAR SYNOPSYS using 'C'-compiler

SW Refinement ‘

Synthesis l

\ /
HW/SW Implementation

Figure 1: Design Flow in CoorL

The result of the partitioning phase is (1) a col-
oured partitioning graph where each colour either rep-
resents a hardware or software resource and (2) a
static schedule as depicted in figure 2. The goal of
the co-synthesis approach in COOL is to generate syn-
thesizable hardware specifications in VHDL and soft-
ware specifications for compilation in C. In a first
step, a state/transition graph (STG) is generated rep-

| void MUL(...)

void ADD(...)
hardware
processor p, component h,

.

Target Architecture

I channel b,

, w1 [][]
FIR, on h, Vi A
FIR, on h, v, v,

v e]

Resulting Schedule

Figure 2: Partitioning Graph for a 4-band equalizer

resenting the fundamental data structure during co-
synthesis. This graph is computed by adding a WAIT-
(w), an EXECUTION-(x) and a DONE-state (d) for
each node of the coloured partitioning graph to the
STG. These states represent the execution order of
a function steered by the system controller. In ad-
dition, RESET-states (r) are inserted for each hard-
ware resource and processor and global system states
(X, R, D) are added. Edges are added according to
the computed schedule and the data dependencies.
After the number of states of the STG has been min-
imized, memory cells are allocated (starting from a
base address) for each edge representing a data trans-
fer between different processing units. The result is
depicted in figure 3.

4
e)—

Figure 3: STG and Memory Allocation

Then, the original specifications of the hardware
and software parts are refined using the information
annotated at the STG. Communication mechanisms
for memory mapped I/0 and direct communicalion are
inserted to replace the abstract communication chan-
nels. To implement a complete hardware/software sys-
tem, additional parts are required: the system con-
troller, steering the complete system according to the
computed schedule, data path controllers to support
hardware sharing, an I/O controller to communic-
ate with the environment and bus arbiters to prevent
conflicts. These additional pieces will be implemen-
ted in hardware, because hardware allows concurrent
processes. COOL generates VHDL-specifications for all

1i0 system
controller controller

| bus
arbiter

FIR, FIR,
data path data path

FIR;
controller

FIR;
controller

O O I 1

processor memory

m,

- - T v
v v v ¥
¥ ¥ ¥

Figure 4: Generated Netlist

these additional pieces and a net-list wiring all them as
depicted in figure 4. Then, these VHDL-specifications
are synthesized by the high-level synthesis tool OscARr
and the commercial synthesis tool SYNOPSYS.

3 Results

CoolL was used during a student project [5] deal-
ing with the design of a fuzzy controller. This fuzzy
system was specified with Coor (about 900 lines of
code) resulting in a partitioning graph containing 31
nodes. This specification was implemented on a target
architecture containing a Motorola DSP56001 placed
on a plug-in card in a PC and two Xilinx FPGAs
4005 (with 196 CLBs each) on a board. In addition, a
memory card with 64kB static RAM was build and all
components were connected by a bus card. Different
hardware/software partitions of the fuzzy controller
were implemented and in all cases the time to execute
the complete design flow from system specification to
an implementation on the prototyping board took not
more than about 60 minutes. The time-consuming
factor was always the hardware synthesis which con-
sumed more than 90% of the design time.

References

[1] P. Chou, R.B. Ortega and G. Borriello. The Chinook
Hardware/Software Co-Synthesis System. ISSS, 1995.

[2] T.B. Ismail and A.A. Jerraya. Synthests Steps and
Design Models for Codesign. IEEE Computer, 1995.

[3] V. Mooney, T. Sakamoto and G. De Micheli. Run-
Teme Scheduler Synthesis For Hardware-Software
Systems and Application to Robot Control Design. 5th
Int. Workshop on HW/SW Codesign, 1997.

[4] R. Niemann, and P. Marwedel. An Algorithm for
Hardware/Software Partitioning using Mized Integer
Linear Programming. Design Automation for Embed-
ded Systems, pp. 165-193, 1997.

[5] S. Bashford, B. Landwehr, R. Niemann et al. FEn-
dbericht der Projektgruppe 293. Forschungsbericht,
Universitat Dortmund, 1997.

