
,Jean Mermet, Peter Marwedel, Franz J. ~g, Cleland Newton,
Domminique Borrione, Claude Lefaou .

Reprinted from

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE

Vol. 3. No.6, December 1998

700 JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998

Jean Mermet, Peter Marwedel, Franz J. Ramming, Cleland Newton~

Domminique Borrione, and Claude Lefaou

Abstract

This paper binds together a collection of short presentations on Hardware Description Languages(HDLs) developed in Europe
and provides a view of the history of HDLs during the last three decades. This historical review wants to present the ideas,
conceived in these previous languages, which are now implemented in the standard languages. Furthermore, this paper will
highlight those early concepts which yet need to be implemente.d in the evolving standards or could provide a way to unify
them (like VHDL or Verilog or SDL) within a formally defmed multi-language environment. Among a large number of
European works over 3 decades, we have selected a sample from different countries France, Germany, U.K, Italy, which have
been implemented and used reliably in various segments of the industry .The selected HDLs, with the date of origination, are:
CASSANDRE (1967), MIMOLA (1977), DACAPO (1977), ELLA(1979), ART (1980), and CASCADE (1981). We do not
pretend to any exhaustive review, which is not the goal of this presentation, and have consciously left aside several works as
valuable as those selected. We have not addressed for example « synchronous languages » very well developed in France, such
as ESTEREL, LUSTRE or SIGNAL. Several other works existed in Geimany, such as KARL, which was popular in the
eighties, and benefits from a large bibliography or REGLAN. We should mention also among those HDLs not presented here
CONLAN (a major international standardization effort involving a notable European contribution). We have tried to compare
the main features of the chosen languages according to a list of criteria and briefly identify those which are still missing in
the recognized worldwide standards.

Keywords: Hardware Description Language, CASSANDRE, MIMOLA, DACAPO, ELLA, ART, CASCADE

I. Introduction

This collection of short presentations on HDL's developed

in Europe provides a view of the history of Hardware

Description Languages (HDL) during the last three decades.

The presentations are aimed at complementing the two paper

series published in the Computer Society "Design & Test"

journal in 1992 That series presented mainly works done in

the USA together with a survey of VHDL related topics.

This historical review wants to present the ideas, conceived

in these previous languages, which are now implemented in

the standard languages. The review may explain partially why

VHDL has become the universally adopted standard in

Europe faster than in the USA. Furthermore, this paper will

highlight those early concepts which yet need to be

implemented in the evolving standards or could provide a

Jean Mennet is with nMA-UJF, Bat.C, 120 rurede la piscine, BP53, 38041
Cedex 9. Grenoble. France.

way to unify them (like VHDL or Verilog or SDL) witrun a
formally defmed multi-language environment.

Among a large number of European works over 3 decades,
we have selected a sample from different countries which have
been implemented and used reliably in various segments of the
industry. The selected HDLs, with the date of origination, are:
CASSANDRE (1967), MIMOLA (1977), DACAPO (1977),
ELLA(1979), ART (1980), and CASCADE (1981).

We do not pretend to any exhaustive review, which is not
the goal of this presentation, and have consciously left aside
several works as valuable as those selected. We have not
addressed for example « synchronous languages » very well

developed in France, such as ESTEREL, LUSTRE or
SIGNAL. Several other works existed in Germany, such as
KARL(G 12), which was popular in the eighties, and benefits
from a large bibliography. We should mention also among
those HDl.f) not presented here, REGLAN (020) (major
contributor was Piloty) and CONLAN (several authors, but
notable in Europe are Piloty and Borrione).

CONLAN was an international effort of 6 scientists from

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 701

Europe and USA that took place between 1975 and 1981 and
has been reported in the D&T series mentioned above.
CONLAN .had a sigIiificant impact on further language
developments, in particular the early specification of VHDL.

magnitude slower) the loading could be triggered by signal
edges through a derivation operator and new clocks could be
derived from the existing ones through delays. A RT level
synthesis was also developed later, in 1974.
Several industrial partners started to use CASSANDRE,
essentially for the design of new computer architectures and

micro-programs (philips, Ordoprocesseur, Crouzet, InStitut
Fran<;ais du Petrole, ...). These collaborations made it possible
to improve the implementation and to obtain a robust system.
The marketing rights were given to a software company, but
during the seventies, the market did not exist for RT
languages such as CASSANDRE, which, consequently, never
really became a commercial product.

II. CASSANDRE : Computer Aided

Simulation, Synthesis, ANalysis, Description
and REalisation of digital systems.

Contributed by Jean Mermet, TIMA Lab., Grenoble, France

1. Introduction

CASSANDRE was designed between July 1966 and March
1968 [2.1], in cooperation with F. Lustman [2.2] a fonner
university colleague who had joined the Thornson company.
The papers by Y. Chu at University of Maryland [2.5],
Schlaeppi [2.6] and K. Iverson at IBM (Yorktown Heights)
[2.7], and the discussions I could have with them in 1968,
were very helpful to validate the main choices of
CASSANDRE.

3. Basic features of CASSANDRE

.Notations
The syntax of CASSANDRE is Algol-like, with if conditions,
go to for state transitions, for loops to describe repetitive

structures, Algol identifiers and usual boolean and arithmetic
operators working on scalar and array type variables.
.Modules
The most important notion is the unit, which represents a

hardware module (a precursor to the VHDL entity). To my
knowledge, CASSANDRE was the fIrst entirely modular
HDL ever implemented.

Units instantiated inside other units as components of the
architecture of these units, were declared external (as
externally described). In CASSANDRE, as in VHDL, it was
possible to mix functional and structural constructs in the
same description. A CASSANDRE unit instantiation was an
arbitrary hierarchy of nested units. But each of these units
could be used separately as an autonomous model and
elaborated for independent simulation or synthesis.

The defmition of Cassandre was driven by the following

requirements:
-An easy to learn programming language syntax associated

with precise hardware semantics.
-Modularity with natural and powerful entities to describe

hierarchical structures
-Primitives to describe the behavior of circuits at several

levels of abstraction: from architectural level down to
Boolean equations.

-Automatic compilation into a simulation model and also
into a directly synthesizable logic network.

-Finite State Machine as a primitive, allowing any
description to be a hientrchy of automata.

-Abilities to describe any format of micro-instructions.
-Mechanisms to allow a list of micro-instructions described

in CASSANDRE to be automatically encoded in the ROM
of a microprocessor architecture also described in
CASSANDRE.

-Data-flow concurrent statements
-Variables (and operators) with an arbitrary number of

dimensions (vectors, arrays, cubes, ...).

2. [mplementation

During years 1969 and 1970, a fIrst implementation of

CASSANDRE was realized in assembly language on an IBM

3601 67 machine. A simulation system was developed in 2

versions: synchronous and asynchronous.

In the synchronous version one or several clocks were used

(declared clock) to trigger memory elements loading. In the

asynchronous simulator (more accurate but an order of

.Automata

To describe the sequential behavior, the notion of automaton

was taken as a primitive in CASSANDRE. The statements

go to and state allowed a user to load or read an implicit

702 MERMET et aI. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

Example 2.3

~ : Ul(l,l;l,l), U2(1,1;1,1);

(2 components with 2 inputs and 2 outputs each)

~ : A(1:9,1:2,1:9);

(3 dimensionnal signal array)

state register. Symbolic state names were used to label the
instructions controlled by this state (see Example 2.1 and Fig.
2.1). The do instruction provided a mechanism to externally
force the automaton in any state, making it possible to build
up a hierarchy of automata superposed on top of the
hierarchy of units.

.Data-flow statements
In CASSANDRE, all statements are concurrent. Sequencing
must therefore be described explicitly using FSMs, (but, in
the asynchronous version, transport delays could impose some
order to signal assignments). In Example 2.1 called ADDER,
A, OF, N and D are assigned concurrently in STATE2.

fQ!K~I~1!Q8~

fQ!J~I~I!Q8~

(!f(2 ~ ((K-1) x 8 + J)=O)

~
U1 (A (K, 1, J), A (K, 2, J) ; A (K+1, 1, J), A(K, 2, J+1))

~
U2 (A (K, 1, J), A (K, 2, J) ; A (K+1, 1, J), A (K, 2, J+1»)

A!1,I,I:9)

,-0;
"'

"?':

~Fig. 2.1. State Chart corresonding to Example 2.

Fig. 2.2. Matrix of cells

4. The simulation algorithm

.Variables and operations

There are 3 types of variables: Register (or memory), Signal

and Pulse. A pulse, used to generate clocks, can be derived

from a rising or falling edge of a signal. Variables and

operators are arrays with an arbitrary number of dimensions.

The basic operations are the 2 operands boolean functions.

They apply, as an array of operators, to each couple of

corresponding elements of 2 compatible variables (dimen-

sional compatibility is checked during compilation). There are

also monadic wire-crossing operations (like shift or rotate)

which apply to all vectors of the fIrst dimension of a variable.

Because the transposition operator () can move any dimension

of an array to the first position, these operations are fully

general (see Example 2.2).

Example 2.2:
Following the dec/aration: ~: 8(1:4,1:5), Z(I:4);
Z(1) := "!8 means: Z(I) := 8(1,1)"8(1,2) "8(1,3)"8(1,4)"8(1,5)

Z(4) := 8(4,1)"8(4,2)"8(4,3)"8(4,4)"8(4,5)

.Generics

Regular structures of registers, signals or units can be

generated by the "faire" statement ("faire" means "generate"

which is used in Example 2.3 and Fig. 2.2 for easier

The CASSANDRE RT level simulator was not event
driven but cycle based, and tIlus quite fast. The description
was compiled into simulation structures generated in tIle 360
assembly code. An elegant stabilization algorithm, conceived
by F. Lustman, was applied to tIle whole list of concurrent
statements contained in tIle CASSANDRE simulation model.
To avoid scanning so many instructions where nothing
happens, flags were positioned which made it possible to skip

large pieces of latent parts of tIle model.
The average number of stabilization cycles (around 2.5)

happened to be surprisingly close to tIle optimum (2) which
corresponds to a complete causal order of all tIle statements.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 703

11ris average figure was derived from « reasonable » models

(it is of course always possible, for example by moving the

carry of an adder in the wrong direction, to make stabilization

longer).
Then the economy of event list structures and file

management, and the speed of the compiled code, made this

mechanism usually much faster than event driven solutions

used in almost all logic simulators. The algorithm was

completed by 'a very simple criteria aimed at detecting

permanent oscillations.

A CASSANDRE « asynchronous » simulator was also

developed to accommodate models using transport delays.

This simulator was working on a simulation structure close

(although simpler) to the VHDL one.

Queues were associated to the drivers of delayed signals.

The scheduling principle was « event-driven » and this

version of the simulator was about 10 times slower than the

« synchronous » version.

[1.3] F. ANCEAU, P. LIDDELL, I. MERMET, and C.
PAY AN A language to describe digital systems,
applications to logic design,3rd Symposium on
Computer and Information Sciences, Miami, pp
179-204, 18-20 December 1969.

[1.4] G. BOGO, A. GUYOT, A. LUX, I. MERMET, and C.
PAY AN, CASSANDRE and the computer aided logical
systems design, lFIP World congress, august 23-28,

1971, Lubljana.
[1.5] Y. CHU, An algol-like Computer Design Language,

Comm. of ACM, october1965, pp 607-615,
[1.6] H.P. SCHLAEPPI, A formal language describing

machine logic, timing and sequencing (LOTIS), IEEE
trans. on electronic computers, vol EC-13 pp 439-448,
aug. 1964.

[1.7] A.D. FALKOFF, K.E. IVERSON, and E.H.

SUSSENGUTH, Formal description of system 360,
IBM sys. I. vol. 3, pp 198-262, 1964.

[1.8] Y. BRESSY, B.T. DAVID, Y. FANTINO, and I.
MERMET, A Hardware compiler for interactive
realization of logical systems described in
CASSANDRE, International Symposium on computer
hardware description languages and their applications,
New-York, September 1975.

5. Limitations of CASSANDRE and further extensions

III. MIMOLA: An HDL Designed for

Synthesis
Contributed by p, Marwedel, University of Dortmund,
Germany

MIMOLA is a hardware design language which was
defmed especially for synthesis, including architectural
synthesis, machine code synthesis (compilation), and test
synthesis. Due to its origin, the full language is synthesizable
(and also simulatable). Special language elements have been
incorpomted into the language to support synthesis. As a
result, the language provides a homogenous environment for
synthesis tools.

1. Origin of the MIMOLA language

Back in 1976 and independently of others following similar
lines of thought, G. Zimmennann proposed a new design
technique, which is now called high-level synthesis or
architectural synthesis. To support this new design technique,
he defmed the fll'St version of a new hardware design
language called MIMOLA [3.15]. MIMOLA stands for

'machine independent micro-prQgramming @lguage.
MIMOLA was designed as an input language for synthesis.
Hence, it does not describe semantics in a way which would
make sense only during simulations. In the years that
followed, the syntax of MIMOLA was very much influenced

The main limitations which appeared in the use of
CASSANDRE were:
-The lack of arithmetic operations in the behavioral

description part. Arithmetic operations existed but they
were only associated to generics (behavioral arithmetic
would be introduced later with the LASCAR [6.1]

language).
-Sequential algorithmic descriptions were not allowed. The

sequencing had to be explicit, through the use of
(synchronous) FSM or asynchronous delays. This was not
satisfactory at system level and became later the motivation
to introduce the LASSO [6.2] language. LASSO was going
to offer a more general explicit description of control
through the use of generalized Petri nets.

-Zero delay loops were not statically detected. These loops
were in fact sometimes real sequential circuits but more
often design mistakes. The later case could be detected by
simulation oscillations, but if the simulation benchmarks
never caused these oscillations to occur, then the mistake
could remain hidden. It was a feature of the CASCADE
[G.5] system, later, to perform a static analysis of loops at
compilation time, using the TRAJAN algorithm on a
data-flow graph.

-CASSANDRE was not portable, due to its implementation
in 360 assembly language.

CASSANDRE References

[1.1] J. MERMET, Le langage CASSANDRE, Rapport final
(225 pages). Contrat DGRST 660069, mars 1968.

[1.2] F. LUSTMAN and J. MERMET, CASSANDRE un
langage de description de machines digitales, Revue
Bleue de lAFIRO, N°15, 1969.

704 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

by other computer languages such as PASCAL and VHDL.
With respect to semantics and description capabilities, the
language which comes closest is Hardware-C [3.4]. A major
set of innovative tools were build around the language. The
fIrSt set of tools, called MSSI (MIMOLA Software System 1)
was used by Honeywell for application studies in the early
808. The design of a second set of tools, called MSS2, was
started during the same period. MSS2 has been used by some
academic design groups until the mid-90s. Important
milestones of the MIMOLA project are listed in Table 3.1.
Table 3.

(see Fig. 3.1 (b». In contrast to architectural synthesis, the
structure is fiXed and the tool has to compile the system
behavior using this structure as the target for the generated
binary code (this is the code for the lowest programmable
level, which can be either machine code or micro-code).
MSS-tool-sets also include simulators for simulating both at
the behavioral and at the structural level. Finally, tools for
generating self-test programs have also been designed [3.5,
3.2]. This variety of tools allows for smooth transitions
between different design tasks [3.13].

Table 3.1 Evolution of the MIMOLA language and

related tpols

1977 G. Zimmemtann defmes MIMOLA as a language to support
high-Ievel-synthesis [3.15]. The language includes advanced
concepts such as mechanisms for design by
correctness-preserving transformations. Its syntax is somewhat
unusual (postfix). P. Marwedel starts to write software for
MIMOLA on a teletype. Target architectures are of a VLIW
type.

3. Salient features of MIMOLA

A language which supports the mentioned tools has to have
description capabilities for (partial or complete) structures, for
the required system behavior and for links between these two.
In the following, we will describe how MIMOLA provides
these capabilities. We will use version 3.45 of the language
[3.3], the version for which most of the tools were written.1987 Tool developers are able to use modern workstations instead

of a mainframe. The ported version of the tools is called
version 3.45. This stable version is transferred to some
academic institutions .work on MIMOLA version 4.0 starts.

Members of the design team move from Kiel to Dortmund
(Germany). New tools are designed to accept VHDL or
MIMOLA (versions 4.x).

Retargetable code generation becomes a hot topic for DSPs
and ASIPs.

3.1 Description of system behavior

Ease of leaming was a major design goal for MIMOLA.

Users try to apply what they already know. Hence, we tried

to be consistent with PASCAL. Only a few changes are

required to translate a PASCAL program into a MlMOLA

program. Fig. 3.2 (a segment of the diffeq high-level

synthesis benchmark) gives an impression of the style of

MIMOLA behavioral system descriptions.

1993

1997 MIMOLA is used as a hardware description language for the
third generation retargetable RECORD compiler [3.6]. Further
use of MIMOLA comes to an end.

2. Tools
PROGRAM dirreq IS (. system behavior .)
V AR three,five,a,x,y,dx,u,ul : (lS : 0); (. bitvector orbits lS..O .)
V AR a,b,c : integer;
BEGIN ...
WHILEx<aDO
BEGIN
x := dx + x;
ul :=u .dx;
y:=y+ul;
u := u- «ul.(x.S»-(dx.(y.3»);

END;
END;

Fig. 3.2 MIMOLA program to be compiled.

The design of MIMOLA was mainly driven by its use for
architectural and micro-code synthesis. In architectural
synthesis, the main input consists of the behavior to be
implemented (see Fig. 3.1 (a), top left). For MIMOLA, this
behavior is described in a PASCAL-like syntax. Additional
inputs include information about structural elements
(information about available library components and possibly
predefmed (partial) structures). Finally, there can be hints for
linking behavior and structure.

System behavior is also an input for micro-code synthesis

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 705

For MIMOLA, the only built-in data type is the vector of
fixed set of four logic values (0, I, X, Z). Vectors of these
values can be used throughout the language. These vectors
have descending index ranges and are denoted by
"(upper-index : lower-index)". See the definition of variables
in Fig. 3.2. In contrast to VHDL, all data elements are
described in terms of such vectors. There is no special data
type for single bits: a single bit is just a vector with a single
element. Due to this, descriptions closely resemble the actual
hardware structure. Also, arguments and results of arithmetic
functions are always bit-vectors. There is no need to consider
arithmetic functions with various combinations of argument
types. This is important in order to avoid combinatorial
explosion of the number of predefmed functions. By default,
all arithmetic operators assume that their arguments have to
be interpreted as twos complement numbers. In cases where
this is not the intended interpretation, special operators have
to be used. For example, operators like 1>1 interpret bit
vectors as natural numbers. For a behavioral description such
as the one in Fig. 3.2, the MIMOLA tool-set can synthesize
custom hardware and it can compile it into the code of a
given target machine, described by its structure (more recent
compilers [3.6] also accept instruction set descriptions of

target machines).

assignments to local variables. Only a single assigrunent is
allowed for each of the outputs and local variables. This
approach allows a very elegant description of multi-port
memories.

MODULE simplecpu;
STRUCTURE of Simplecpu IS
TYPE
word = (15:0);

PARTS
ALU : MODULE Balu(IN a,b:word; FCT s:(1 :0); OUT f:word);

BEGIN
f <- CASE s OF (.signal assignment.)

0: a .b;
1: b;
2: a+b;
3: a- b;

END
END-,

SH : MODULE S64k ..(IN e: word; I: MODULE SRAM ..

PC: MODULE Rw ..
AC : MODULE REG ..(IN e: word; CONNECTIONS

ALU.f -> SH.P2.e; ALU.f -> AC.e; ...
END -structure;

Fig. 3.4. MIMOLA processor description.

3.2 Description of system structure

As an example, we consider the simple processor in Fig.

3.3 and its textual description in Fig. 3,4.

The approach is general enough to specify arguments and
control codes involved in a component operation. Simpler
approaches exist, but are defInitely not sufficient. On the
other hand, more general approaches (e.g. arbitrary behavioral
descriptions) could not be used by any of our three main
tools.

The ability to describe library components and system
behavior in the same language has always been one of the
strong points of our approach and has been exploited by our
tools.

Nets can be described in a CONNECTIONS-defInition
which contains sources and sinks for the nets.

Fig. 3.3. Simple processor.

3.3 Links between behavioral and structural elements
Synthesis is usually not a fully automatic process, but

relies on user guidance. Such guidance is frequently provided
through the help of control files or pragmas (pseudo
comments). Since MIMOLA is a synthesis-oriented language,
language elements for user-guidance can be built into the
language. As a result, there is a reduced risk of incon-
sistencies.

Major emphasis of the tools centered around the language
is on the support of programmable instruction set
architectures (e.g. ASIPs, core processors). For these, some of
the registers and memories serve a special purpose: for
example, a register is used as the program counter, a certain
memory is used to hold instructions and so on. Tools usually
cannot figure out, which of the registers and memories serve

The description starts with introducing a name for the
current design object (sirnplecpu). The body is structurally
described (keyword STRUCfURE). The structural body
defines all available components (parts). Each part is of a
certain library element type, called module. To make things
easier for the user, the syntax of modules resembles that of

PASCAL procedures.
Module bodies, may be described either behaviorally or

structurally. The example contains a behavioral description of
module Balu. Each case line describes an operation mode of
the component. Case labels denote control codes which are
required to select an operation mode.

Behavioral modules of local modules cannot contain
anything but a set of concurrent signal assignments or

706 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION lANGUAGES IN EUROPE

a certain purpose. Therefore, we add hints to the descriptions.
These are introduced by the keyword LOCATIONS.

The preceding examples were based on version 3.45 of the
MIMOLA language. Reprints of the corresponding language
manual are available [3.3]. Cleaning-up the language has
resulted in a more comprehensive document [3.1]. Papers
describing tools using MIMOLA published from 1989
onwards can be accessed through the world-wide web
(http://ls1 2-www .cs.uni-dortmund.de).

MIMOLA References
[3.1] S. Bashford, U. Bieker, B. Harking, R. Leupers, P.

Marwedel, A. Neumann, and D. Voggenauer,
MIMOLA reference manual -version 4.]-,

l/ls12.www.cs.uni- dortmund.de
[3.2] U. Bieker and P. Marwedel, "Retargetable Self-Test

Program Generation Using Constraint Logic
Programming," 32nd Design Automation Conference,
1995

[3.3] R.]ohnk and P. Marwedel, MIMOLA reference
manual -version 3.45-, Technical report 470,
Computer Science Department, University of
Dortmund, 1993

[3.4] D. Ku and G. De Micheli, Hardware C -A language
for hardware design, version 2.0, Technical report

CSL-TR-90-419, Stanford University, 1990
[3.5] G. Krlier, "A tool for hierarchical test generation,"

lEEE Trans. on CAD, Vol. 10, pages 519-524, 1991
[3.6] R. Leupers, Retargetable Code Generation for Digital

Signal Processors, Kluwer Academic Publishers, 1997
[3 .7] R. Leupers and P. Marwedel, "Retargetable Code

Generation Based on Structural Processor
Descriptions," Journal on Design Automation of
Embedded Systems, 1997

[3.8] P. Marwedel, "The MlMOLA design system: Detailed
description of the software system," 16th Design
Automation Conference, pages 59-63, 1979

[3.9] P. Marwedel, "A retargetable compiler for a high-level
microprogramming language," ACM Sigmicro News-
letter, Vol. 15, pages 267-274, 1984

[3.10] P. Marwedel, " A new synthesis algorithm for the

MIMOLA software system," 23rd Design Automation

Conference, pages 271-277, 1986
[3.11] P. Marwedel and L. Nowak, "Verification of hardware

descriptions by retargetable code generation," 26th
Design Automation Conference, pages 441-447,1989

[3.12] P. Marwedel and W. Schenk, "Improving the perfor-
mance of high-level synthesis," Microprogramming

and Microprocessing, Vol. 27, pages 381-388, 1989
[3.13] P. Marwedel and W. Schenk, "Cooperation of

synthesis, retargetable code generation and test
generation in the MSS," EDAC-EUROASIC93, pages
63-69, 1993

[3.14] L. Nowak, "Graph based retargetable microcode com-
pilation in the MIMOLA design system," 2dh Annual

Furthermore, MIMOLA is also able to represent program
transformation rules explicitly. Program transformation rules
provide a meai1S for transforming the behavioral specification

,
before generating an implementation. According to our
knowledge, MIMOLA is the only HDL including this feature.
Designers usually have some clever ideas about essential
elements of the design. It would be silly not to take
advantage of the designers knowledge. In an earlier paper
[3.8], we have demonstrated the effect of such knowledge on
the efficiency of the r~ulting design. MIMOLA contains
several language features which facilitate capturing the
designers knowledge. These consist of features for

Manual operation to operator binding

Designers are frequently able to provide valuable hints about
which hardware operator should be used to perform certain
operations. Such hints can be included in MIMOLA

descriptions.

a +-alu b (* for + use alu *)

Manual variable to storage binding

MlMOLA provides an extension to PASCAL to indicate such

a binding. Example: Assume SH is a memory. A variable

called zero can be bound to location O of this memory by the

declaration:

Manual operation to control step binding

Towards this end, MIMOLA provides special strictly
sequential blocks. Such blocks contain parallel blocks, each
of which describes the operations in a control step. Strictly

sequential blocks are excluded from automatic scheduling.

3.4 Initialization
lNIT SH[O..20]:=O;

Several of our tools generate requirements for the
initialization of memory locations. For example, our
retargetable code generator basically just generates such
requirements, called t binary code. It is desirable to store

these requirements independently of structural descriptions.
Therefore, we have created a language element for it.

4. Further information

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO.6, 1998 707

generator and an intelligent result generator has been

implemented and marketed by DOSIS GmbH. Later a parallel

implementation of the DACAPO III simulator has been

implemented on Transputer systems [4.7]. DACAPO III has

been licensed by companies like Nixdorf Computer AG and

played its role in a couple of research projects.

Worbhop on Microprogramming, pages 126-132,

1987.

[3.15] G. Zimmennann, Report on the computer architecture

design language MIMOLA, Technical Report 4/77 ,

Institut fUr Infonnatik & P:M., Universitat Kiel, 1977

[3.16] G. Zimmennann, "The MIMOLA design system: A

computer-aided digital processor design method," 1 ~

Design Automation Conference, pages 53-58, 1979 2. Some basic concepts of DACAPO III

2.1 Basic Notations
DACAPO m is a language that looks like MODULA II as

far as possible. Concerning variables DACAPO makes the
distinction between storing (called explicit) and non storing
(called implicit) data carriers. The latter ones need a
continuous data assignment to be defmed while the fIrSt ones
keep a once assigned value as long as no other value has
been assigned to. fu addition so called auxiliary variables are
available, comparable to variables in VHDL. DACAPO
follows the idea of orthogonality concerning operators and
operands (overloading). So all operators are not only defined
on scalars but on arrays and records, too. Most aspects where
DACAPO is different from MODULA lay in a domain
outside the syntax of MODULA, while aspects covered by
MODULA have the same meaning in DACAPO. The real
power of DACAPO, however, originates from the extensions
beyond MODULA.

IV. The Hardware Description Language
DACAPO III

Contributed by Franz J. Rammig, Universitat Paderbom,
FB Mathem./lnform., Paderbom, Germany,
and Christoph Ohsendoth, Universitat Dortmund, FB

Informatik. Germany

1. Historical notes

The HDL DACAPO III originated from an evolutionary

process that started in 1977. In the begintiing this language

has been called CAP , standing for Concurrent Algorithmic

Programming. The name reflected several basic design

principles that have been kept during the entire language

evolution:

2.2 DACAPO III at the Algorithmic Level
The algorithmic part of a DACAPO description consists of

a single compound statement. It may contain other statements,
including compound statements. There are four different types
of compound statements:

.sequential: seqbegin Sl;...;Sn end;

.concurrent: conbegin Sl;...;Sn end;

.parallel: parbegin Sl;...;Sn end;

.compact: begin Sl;...;Sn end;

.CAP was intended as an algorithmic language, covering the

abstraction level above the RT -level. At the same time it

was designed in such a way that lower levels (gate and

RT) have been covered as well.

.CAP was intended to express a high degree of concurrency

in an easy and concise manner.

.The design of hardware was looked at as a special kind of

programming. At this time (prior to the age of synthesis)

this was a very unusual point of view.

The semantics of the compact compound statement are
equivalent to those of the compound statement of languages
like MODULA: The embedded statements are executed
sequentially and uninterruptable in the given order. Slightly
different is the semantics of the sequential compound
statement. In this case, too, the embedded statements are
executed sequentially in the order written down, but the
consecutive execution is no longer guaranteed. In fact the
statements Sl,...,Sn now may be seen as (lightweight) threads.
When a concurrent compound statement is initiated, all
embedded statements are initiated concurrently. It is fmished
when the last one of the embedded statements has been
executed. This means that (lightweight) threads S 1,...,Sn are
created and initiated. Contrarily to this asynchronous
interpretation, the embedded statements of the parallel
compound statement are executed in a stnctly synchronized
manner without any interdependencies.

The semantics was fonnally defmed in terms of interpreted
Petri Nets. We implemented a compiler, a simulator and a
generator for microprocessor based controllers from specifi-
cations given in CAP.

In 1979, a revised version of the language then was called
CAP/DSDL [4.6, 4.1]. We added a couple of new principles,
including an assertion mechanism and interpreted abstract
data types. CAP/DSDL has been used by SIEMENS in a
couple of projects and a subset, named FBDL [4.2], became
part of SIEMENS' VLSI design system" VENUS [4.5].

In 1985 a third redesign of the language took place. Now
concepts of modularization, inherited from MODULA and
advanced generic concepts were added. This language was
called DACAPO III [4.9]. A software system consisting of a
compiler (analyzer), a high performance (mixed compiled
mode and event driven) simulator [4.4], a test pattern

708 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION lANGUAGES IN EUROPE

A little example may illustrate some of these concepts: procedures, functions and export procedures. But contrarily to
languages like MODULA procedures, functions and export
procedures niay be defmed as types. This allows to generate
an arbitrary number of instances of such an object" even

complex structures like multidimensional arrays of

procedures.

conbegin
seqbegin

a '=l"" ,

b:=10/a;

a:\O;

end

2.3.2 Generics

Procedures, functions and export procedures are the level

of granularity to apply generics in DACAPO. Each type and

each constant used within such a construct may be a generic

one that may be personalized individually at each

instantiation.

2.3.3 Abstract Data Types
Above, the tenn export procedures has been used several

times. The characteristic property of an export procedure is
the export of the operations (methods) for the manipulation of
its internal data instead of the data itself. The declaration
looks like the following example:

type processor = export(instrl,...,instrn) procedure

processor: ...end;

Export procedures allow to describe implemented ADTs,
i.e. ADTs where the defIning equations have been replaced
by implemented code. In DACAPO for each ADT method a
procedure must be provided. Internally the methods are
defmed based on an internal carrier structure, that may be an
ADT as well.

The following example defmes a fifo queue as generic type
and instantiates three instances: one fifo of 64 single bytes
{called byte-fifo-array), one consisting of four records, each
of them containing two words of different length {called
record-fifo), and fmally one with the capacity of two arrays
of 16 words each {called array-fifo).

In this little fragment a concurrent compound statement has
two embedded' statements, the fIrSt one being a sequential
compound statement. Due to the asynchronous characteristic
of the concurrent compound statement and the non-atomicity
of the sequential compound statement it is not excluded that
the variable a gets a value O before the assignment b := l0/a
is executed. Replacing the sequential compound statement by
a compact one would overcome this problem.

Other statements of algorithmic DACAPO III are similar to
MODULA: assignment, while, repeat, !I: case. The for-
statement has a slightly different semantics: It is interpreted

as a shorthand of a compound statement.
Usually in imperative languages the flow of control is

entirely given by the control structure of the algorithm. This
makes it difficult to describe the synchronization of the
algorithm with externally given events (e.g. keystrokes or
clock signals). For this purpose in DACAPO any statement
may be prefixed with at event do. The semantics is, that after
the prefiXed statement is ready for execution due to the
normal control flow, the event mentioned in the prefix has to
occur to initiate the statements execution.

Procedure and function calls are handled as in MODULA,
with slight differences in the parameter passing mechanism.
An important difference is the introduction of timing.
Assignments and empty statements may be delayed. The
delay may be constant or calculated dynamically at runtime.
The basic delay model is transport delay. More complicated
delay models can be programmed easily (see example below).

c:= a delay (if a>b then loadtime/a else prechar,getime+b)

It has to be noticed that in DACAPO an assignment
statement with an associated delay consumes time, i.e. not
only the assignment itself but also the initiation of a
statement that follows sequentially is delayed.

type fifo = «type definition»

generic const depth ; type item-type:
export (reset, insert, remove) procedure fifo ;

var buffer : array [O :depth-l] ofitem-type ;
next, first: bit (depth) ;

procedure reset ;

seqbegin
first, next := O

end; {reset}

2.3 DACAPO III at the System Level
At this level support of modularization, abstract data types

(structural object orientation), interrupt handling and generics
are of interest. The entire algorithmic power of DACAPO is
a very useful at the system level.

2.3.1 Modularization
A DACAPO description is composed of mOdules. Like in

MODULA there are definition modules to specify the
interfaces and implementation modules to specify the
internals. MOdules may be further organized using

procedure insert (in item: item-type ; out full: bit) ;

conbegin
if (next 1+1 iOOOl i) mod depth = first

then full := ili
else conbegin
buffer [next] := item ;
next := « next 1+1 iOOOli) mod depth) ;
full := iOi
end

end; {insert}

710 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

values

In ELLA the values used for circuit construction and those

used for signal description are disjoint. The circuit is fully

defmed before the start of simulation, preventing signal

dependent hardware. Construction generics allow integers,

signal types and functions (which may themselves be

parameterised), to be the parameters of generic functions. The

disjointness is achieved by insisting that all signal values

must be tagged, leaving untagged values for hardware

construction.

1988.
[4.8] A. Oczko, "Hardware Design with VHDL at a Very

High Level of Abstraction," Proc. Ist European
Conference on VHDL, Marseille, 1990.

[4.9] C. Ohsendoth and B. Reusch. "System Level Des-
cription and Simulation With VHDL and DACAPO-
ill," Proc. European Simulation Multiconference, Rome,
Italy, 1989.

v. Ten Years of ELLA

Contributed by, John D. Morison and Cleland 0.
Newton, Defense Research Agency, Malvern, U.K.

1. History

For example:
TYPE integer = NEW i/(0..255).

defmes a new signal type called 'integer' with values from
i/O to i/255. These signal values are disjoint from numbers
used to defme circuit size:
FN TRANSPOSE = ([3][4] integer: matrix) -> [4][3] integer:

[INT p=1..4][INT q=1..3] matrix [q][P].
defines a function which may be instantiated by:
LET new-matrix = TRANSPOSE(my-matrix).

TRANSPOSE could also be described generically to work on
all sizes of matrices.

3.2. No distinction between behavior and structure
It is generally accepted that behavior refers to simulation

and structure to implementation. In many HDLs behavior is
described using software constructs, while structure is
described using net-lists. For example VHDL uses a dualism
of concurrent processes (software constructs) and component
instantiations (net-lists). To make simulation possible a
behavior needs to be associated with a structure, so structure
is elaborated as the flattening of a hierarchical description of
behavior. ELLA bases its descriptions on net-lists, using a
form which is exactly consistent with the functional
expression of behavior. Software constructs compatible with
structure are supported (for example sequential assigmnent is
supported but not GOTO). Constructs in ELLA thus express
behavior and structure at the same time.

The ELLA language is the result of more than 10 years
experience in modeling and design of digital electronic
systems. The project started in 1979 at the UK Defense
Research Agency (DRA) at Malvem, then known as RSRE,
and a license for the fIrSt prototype system was sold to a UK
company in 1982. In 1985 the system was marketed
commercially, while the language evolved steadily in an
upwards compatible way. ELLA has been used to design
hundreds of circuits from those of a handful of gates to
complex VLSI systems of over 500,000 gates.

The project is now complete with the defInition and
implementation of a fInal version of the language, 'ELLA
2000', described in a book [5.1] and available in the public
domain in source code and executable forms [5.2].

2. Underlying model

ELLA is designed to be extremely safe to use, with a
simple underlying model close to the network view of
hardware. The user thinks in terms of creating and connecting
together blocks of hardware rather than handling processes
and simulator events. This 'structural' view is often looked
on as low level, as opposed to a 'behavioral' view which is
looked on as high level. Possibly the main contribution of
ELLA is to demonstrate that a 'structural' view when taken
to a high enough level can be just as abstract as other
approaches. The underlying 'structural' model, as well as
being close to the real world of hardware and hence
appealing to the engineer, is also well suited to efficient

simulation. program transformation (one third of the language
is defmed in terms of transformations into the remainder),
synthesis and formal methods. The formal semantics of a core
subset has been defmed [5.3].

The following example shows four ways of creating the
structurally identical cascade of three AND gates in ELLA,
showing 'structural', 'behavioral', 'mixed' and 'recursive'

styles:

Distinguishing features

3.1. Distinction between circuit parameters and signal

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL, 3, NO.6, 1998

Here AND is a user-defmed function, not a
language-defined primitive. It could for example defme the
complex number addition of row vectors (which would
require a change to bool in the defmition of CASCADE).

4. Other design features

ELLA has been designed with conventional virtues in mind.
Safety is achieved by strong type checking. lack of
overloading and compile time checks. Language constructs
are orthogonal. i.e. minimal but usable with the same
meaning wherever relevant. BIOPs offer a full repertoire of
arithmetic. character and bit operations. sufficient for the user
to specify his own floating point algorithms. The ELLA
language is designed to work within an environment. which
comprises a library and context system for design
management. a tr~fonnation friendly database and an
interface to a simulator and other tools.

3.3. A universal unknown value
ELLA offers a built-in unknown value for every signal

type, with strictly defmed semantics for each language
construct. Each unknown value, rather than being an
additional value of the type, represents the set of all possible
values and therefore cannot be specifically tested for in a
multiplexing operation. In contrast VHDL provides the
leftrnost value as the unknown value.

5. Strengths

3.4. Variant record types
ELLA offers variant records in the fonD of tagged unions,

which are particularly valuable for trapping design faults:

TYPE int = NEW i/(Q,.lQ24),
Z& (int,int) I instr & code).1code = NEW (add I sub I jump I stop),

opop = NEW (address 1 & int I address2 & (int,int) I instr & code).

3.5. A specific backwards-looking time primitive
In ELLA the model of time employs signal history to

defme a new set of signal values. The delay primitive has to
be wrapped up as a simple function before it can be used.

FN DELBOOL = bool -> bool : DELAY (false, I).

Here 'false' defmes the initialization value of the si~ at
time zero and l' the number of delay cycles. An ELLA
simulator may be expected to use an event driven algorithm
but any such mechanism is hidden from the user. ELLA's
simple model of time makes it naturally suited to
synchronous design because the simulator provides an
automatic clocking mechanism. Alternatively the user may
associate the ELLA delay unit with say I nsec or with
asynchronous events. Undelayed feedback is not illegal in
ELLA but is discouraged; if it causes oscillation the unknown
value is substituted automatically by the simulator.

.ELLA's simple hardware-based model is attractive to
engineers because it is easy to relate an ELLA description
to the hardware equivalent.

.ELLA is attractive to education because it makes possible
a lagical progression of tuition from standard network
descriptions through functional expressions to register
transfer level descriptions and beyond.

.ELLA is attractive for design particularly for digital signal
processing applications, because of its simplicity,
functionality, inherent concurrency and powerful generics-

.ELLA is attractive for synthesis because of the
transfomiation facility, which includes the ability to
transform to VHDL, and because any design automatically
has a hardware equivalent.

.ELLA is attractive for formal methods because it has a
small tractable core subset with a formally defined
semantics. Any ELLA design may be transformed into this
subset and hence is amenable to a range of formal methods

[5.3].

6. Weaknesses

.ELLA has not been considered for standardization at a time
when there is universal demand for standards.

.Compatibility between ELLA and VHDL is low at high
level because of the differences described above. The
ELLA to VHDL translator transforms out high level ELLA
constructs and therefore generates low level VHDL.

.ELLA has been seen in the UK as a proprietary system
and is little known outside the UK.

.The only full implementation of ELLA is m Algol.
Although the Algol code is machine translated to C, the
system is not easily portable.

3.6. A language and intennediate fonnat designed for
transformations

The ELLA system is designed to allow language
transformations. This has enabled the language to be extended
to progressively higher levels without change to the simulator.
New constructs such as bi-directional signals and complex
generics are automatically transformed to the primitive set of
constructs of the simulator. Tools are provided to write
special purpose transformations.

Specific transformations have been designed for synthesis,
such as mapping integers to Boolean. Both the parse-tree
fonnat of the database and the transformation writing tools
are available to end users as a C language toolkit.

7. Use of ELLA

Use of ELLA peaked at over 100 licensees, with more than
100 commercial designs completed. At least one was at the

712 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

500,000 gate level, with several around 50,000 gates. These
have been genuine high level designs employing user-defmed
abstract types. Designers went on record to claim right-ftrst-
time operation and to say that circuits of such complexity
would not have been attempted without it. Direct sales of
ELLA tools exceeded 1.5M. Commercial interest in ELLA
has now lapsed but interest in universities survives.

2. The HDL

The ART* HDL is strongly typed, non-procedural,
applicable at RT and logic levels. It is rather flexible, free of
inconsistencies, and not restricted to a specific technology or
design method. Referring to the classification of [6.1], Fig.
6.2 outlines the covered abstraction levels and representation

domains.
ELLA References

[5.1] J.D.Morison and A.S.Clarke, ELLA 2000, McGraw-HilI,

1993,1995.
[5.2] ELLA public domain software FTP address:

src:doc.ic.ac. uk:packages/ELLA.
[5.3] H.Barringer, G.Gough, B.Monahan, and A. Williams, " A

Process Algebraic Semantics for Core ELLA,"

University of Manchester Technical Report

UMCS-93-2-1, 1994.

VI. The ART* System

Contributed by P. Prinetto, Politecnico di Torino,

Dipartimento di Automatica e Infonnatica, Torino, Italy

1. Introduction

The ART* is a register transfer level simulation system

partially implemented ~t the Politecnico di Torino, Italy, in
the early 1980s [6.2]. The system has been built mostly
resorting to the RTSla simulation system, previously
developed by H.-J. Knobloch at the Institut fUr Datentechnik
of the Tech. Hochschule Darmstadt, Germany [6.3}, [6.4].
The architecture of the overall system is shown in Fig. 6.1,
where four main blocks are distinguishable: the HDL
Compiler, the Unit Management System, Waveform
interpreter, and the Simulator .

The main characteristics of the ART* HDL may be
swnmarized as follows:
.The underlying model in which system behavior is

interpreted is a Mealy automaton:
-all the alphabets (input, output, state) consist of ordered

sets of Boolean values (0-1, true-false, high-low, etc.)
-the timing model is very simple (before/after relation),

thus avoiding the mixture of synchronous and

asynchronous behavior.
.A great deal of flexibility is provided to the designer: the

same design may be described in several equivalent ways,
k dependence of the aspects he is mainly concerned with:

-many constructs are available to describe complex
automata in a very compact and easily understandable

way, suppressing repetitive pieces of text
.Design hierarchy and partitioning can be exploited through

subsystems described at different abstraction levels (units,
like in CASSANDRE). Such subsystems may be notated
by a set of statements to be treated as a procedurein
behavioral descriptions, or to be treated as a building block
in structural ones.. The scope of internal variables is
similar to Pascals. The user may declare his own units
and/or utilize some previously defmed ones stored in a
dedicated Unit Data Base.

An example is given in Fig. 6.3, in which two alternative

ways are given to represent a multiplexer, the former being

conventionally referred to as structural(a) and the latter as

behavioral (b), respectively.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO.6, 1998 713

-INPUT- A[I:4], 8[1:4], S;
-OUTPUT- Y[I:4];
-8EGIN-

-INPUT- A[I:4], 8[1:4], S;
-OUTPUT- Y[1:4];
-8EGIN-
-IF- S' -THEN:. Y = A

-ELSE- Y = 8y= A;B s
-FI-
-FINISH.-FINISH-

(a) (b)

Fig. 6.3. Altemative descriptions of 157 (quadruple 2:1
multiplexer without STROBE signal).

many facilities are provided, the most significant ones being:
* forcing the system to any initial state condition
* imitating the behavior of the environment of the system by

supplying primary inputs with arbitrary patterns. Input
waveforms may be specified through an ad-hoc Waveform
Description Language, which provides facilities to describe
peculiar behaviors, such as: periodic, random, increment,
decrement, count, etc. (Fig 6.1)

* inserting break points, specified by various activation

conditions. Such conditions are nowadays common on most
simulation environments, but were innovative and peculiar
at that time.

* tracing the simulation steps.

.saving the status of the system either at a given cycle or
periodically, and later on restoring it.

4. Conclusions

SN74163 : SYNCHRONOUS 4-BIT UP-COUNTER
behavioral description
one clock cycle > two simulation cycle

-INPUT- CLEAR, ENP, ENT, LOAD, D, C, B, A, CLOCK;
-REGISTER- QD, QC, QB, QA;
-TERMlNAL- RIPCAR;
-BEGIN-

RIPCAR=QD*QC*QB*QA*ENT,
-IF-CLOCK-rnEN-
-IF- CLEAR'

-1HEN- "clear = 0"
(QD,QC,QB,QA) <= #OB4
-ELSE-
-IF- LOAD'
-1HEN- "clear = l,load = 0"
(QD,QC,QB,QA) <= (D,C,B,A)
-ELSE- "clear = l,load = 1 "

-IF-ENP*ENT
-rnEN- (QD,QC,QB,QA)<=INC«QD,QC,QB,QA»
-FI-
-FI-

The ART* and the RTSla systems have been widely used
in both academic and industrial environments, thanks to a
complete set of reference manuals and collection of examples,
distributed with the software.

In addition, libraries including the descriptions of most
MSI-LSI chips of the TTL family and a bipolar
microprocessor family were made available.

Although the simulation systems presented some intrinsic
limitations, mainly due to the underlying timing model and to
the applicability , restricied to register transfer and logic level
descriptions, they provided some innovative features that
became common in systems of the next generation, only.

.FI-

.FI-

Fig. 6.4. A sample ART* HDL description.

3. The ART* Simulator

ART References
[6.1] R. Camposano, High level synthesis: a tutorial, IEEE

Design & Test of Computers, October 1990.
[6.2] S. Gai, M. Mezzalama, P. Prinetto, and F. Somenzi,

ART* : a register Transfer simulation system, IEEE
ICCAD-83, September 1983, Santa Clara, CA (USA).

[6.3] H.-J.Knobloch, RTS la ein System zur formalen
Bescreibung und Simulation komplexer Schaltwerke,
Dissertation, Technische Hochschule Darmstadt, 1978.

[6.4] H.-J.Knobloch, Description and simulation of complex
digital systems by means of the register transfer
language RTS la, In P.Antognetti, D.O.Pederson, and
H.De Man (Hrsg.),Computer Design Aid'> for VLSI
Circuits, pp. 285-320, Sijthoff and Noordhoff, NATO
Advanced Study Institute Series E-48, 1981.

The ART* Simulator enables the user to simulate the
behavior of a digital system whose description has been
previously translated by the HDL Compiler into an internal
tabular fonn (Fig. 6.1).

The simulator cyclically changes between two modes of
operation: INTERPRETE and SIMULATE. In the fonner it
accepts any sequence of control commands either from a set
of command files or from the user tenninal. As soon as the
Resume command is read, the SIMULA TE mode is entered
and the simulation started. When an error is detected or a
break condition becomes true, the INTERPRETE mode is
re-entered.

As previously stated, the ART* system models hardware
behavior by a Mealy automaton. This simulator was one of
the most efficient in the late 70's. It is table driven and the
elemental time unit of the discrete time scaling is one
simulation cycle. The default behavior of the simulator
suffices to model single phase clock systems. If more
complex clocking schemes are required, explicit clock signals
must be introduced. To ease the design verification task,

,. The CASCADE and its multi-level
mixed mode simulator

Contributed by D.

Laboratoire TIMA,

Borrione, Cl. Lefaou, J.

Grenoble, France

Mermet,

714 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

1. Introduction

The CASCADE project started on 1980 was the
continuation of a research started in the sixties at IMAG.
Initial studies were aimed at defIning the concepts for
hardware description, and the basic mechanisms for building
simulation software, at a given level of design. At that time
simulation was a research topic, and far from being
recognized as ' a valuable design aid tool. Over the years,

languages were defmed, and simulators implemented, for a
variety of modeling levels:

CASSANDRE [7.7] at register transfer level,
IMAG[7.5] at electrical (circuit) level,
LASCAR [7.1] at functional architecture level,
LASSo[7.2] at system level.

All these languages were independent.

oriented towards circuit designers,. Furthennore it does not
limit itself to discrete modeling.

Thus, none of the toolmaker specific statements of
CONLAN has been incorporated in CASCADE: new types
may only be defmed as subtypes of existing ones; language
segments may only extend their reference language by adding
new types, functions, procedures and descriptions, without

any syntax alteration. Furthennore extensions to CONLAN
were made to incorporate electrical and mixed discrete-
continuous modeling: the value type REAL, the electrical
node and electrical wire carrier types which hold voltages and
currents and the derivation operator for writing differential
equations. The intercommunication of modules described at
various CASCADE levels was made possible even if their
interface carriers are of different types (default conversion
functions are provided, which may be overridden by
user-defined conversion functions).

Therefore, CASCADE was not yet another hardware
description language. It was the synthesis of over 15 years
of efforts by several groups of researchers.

2. Modularity

In CASCADE two kinds of decomposition exist:
1- Structural decomposition, which corresponds to

physically disjoint parts. The design is described as a
hierarchy of networks of interconnected boxes modeled by
the description segment.

2- Functional decomposition which is modeled, as in
programming languages, by function and procedure segments
and corresponds , in a given box, to various operations on
the same resources.

2.1. Description

A description segment is the model of an arbitrarily

complex ~ware module. It can have generic parameters,

thus representing a family of modules of similar structure or

behavior. A particular circuit is an instance of a description

segment, where generics have been fixed.

A description, being a full model, can be verified

independently of any model in which it is instantiated.

Therefore, access to global variables is forbidden (with one

exception at the electrical level where shared read-only

variables are used). A unit communicates with its enclosing

environment only through its interface carriers typed as in

(input), "out" (output), inout (alternatively input or output), or

nd (non-directional, reserved for switch and electrical levels).

Our participation in the CONLAN effort, and the emerging
need for multi-level modeling tools and simulators, motivated
research with the main objective of integrating all description
leyels (discrete and continuous) into a single language,
allowing mixed level modeling, and mixed mode simulation.
CASCADE was the ftrst language to achieve and implement
totally this goal.

CASCADE covers all hardware modeling levels, from the
abstract system behavior down to the electrical behavior of
basic components. It is 'worth saying that the most advanced
language to-day -VHDL- still does not offer system level
primitives, nor analog concepts (VHDL-AMS in the IEEE
standardization process will eventually provide it).
More specifically, CASCADE can be divided into:
-core CASCADE, a kernel of notions, data types, operators

and constructs, common to several or all leyels of
abstraction. with unique syntax and semantics.

-predefmed language levels, which include the applicable
value types, carrier types, operators, primitive hardware
modules, and statements associated to a primitive control
model if any.

CASCADE is strongly based on CONLAN [7.3, 7.8]: all
CONLAN notions related to the genericity of carrier types,
parameterization of descriptions, user defli1ition of segments
as a means of expressing modularity in structure and behavior
have been incorporated. As with CONLAN, CASCADE is a
strongly typed language, which accepts user-defined types,
and performs extensive type checking in expressions and
procedure/function calls. Except for a few minor changes, the
syntax of CASCADE follows the syntax of CONLAN when
referring to the same statement.

The most significant differences between CASCADE and
CONLAN are that CONLAN provides toolmakers with digital
primitives for defming user languages, CASCADE is only

2.2. Description segment

In CASCADE (as in CASSANDRE or VHDL) a

description segment can be structural, functional, or a mixture

of both (except in POLO or CASTOR which are only

structural levels). It has two optional parts:

.the structural part contains local carriers and constants

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO.6, 1998
715

(declare statement), the naming of enclosed units
(components) and their pennanent interconnection (use

statement).
.the functional part, introduced by key-word relations,

describes the beh1l.vior .The statements and primitives
available depend on the stated language level of
CASCADE.

3. Behavior modeling and abstraction levels

A CASCADE language level is defmed by:
1- a set of primitive value and carrier types, and a set of

operations on the objects of these types;
2- a (possibly empty) set of primitive function, procedure

and description segments;
3- a (possibly empty) set of statements available for writing

relations.

3.1. Value and carrier types
The user may defme subtypes of primitive value types by

enumeration of the subtype elements, or by stating the
subtype characteristic function.

As in CONLAN, a carrier type is derived from a generic
type (which defmes the assignment operators, the time
behavior and memory properties.). Actual carrier types may
be renamed by the user. The most widely used carrier types
are given an abbreviation in each CASCADE language level.
The very powerful ARRA y generic type of CONLAN applies
to value and carrier types: any number of dimensions;
increasing or decreasing bounds; selecting an element or a
slice, one or several times, by indexing; shifts and rotates by
indexing; transpositions and reduction operators.

selections ("SELECT"). Operation statements may be attached
to a transition. When the transition fIres, these statements are

sequentially executed.
The LASSO simulator is event-driven: a simulation event

is a change of value of a CTRL, which may cause a
transition to fire. At any point of the simulated time, the
simulator fIrSt determines all the transitions that may fIre,
then fIres them one after the other, executing their associated

operative part. A new cycle is performed if new transitions
have become able to fIre as a result.

3.3. Lascar And Synchronous CASSANDRE: Addressing
the Architecture and Register Transfer Levels

LASCAR and Synchronous CASSANDRE are the
architectural and register transfer levels of CASCADE. Time
is expressed in terms of clock cycles. The system state may

change only when a clock pulse occurs, and combinatorial
circuits are assumed to stabilize before the next clock pulse.
The behavioral part of a description may represent:
.Combinatorial circuits are memory-less. All statements

are connections to TERMINALs, with various value types,
of possibly complex expressions built on the values of
other terminals. All statements are concurrent and
permanently active-

.Sequential circuits contain memory elements, registers and
latches, holding various value types.

.The control is modeled by an automaton.

Statements that depend on a given state are labeled with
the symbolic state name (:IDENTIFIER:); within a state, all
operations are concurrent. An implicit state register contains
the current state. Sequencing is modeled by loading the state
register with a new state value, which takes one clock period.
The difference between LASCAR and CASSANDRE is in the
operators and value types available (only boolean in
CASSANDRE, also arithmetic in LASCAR more oriented
towards performance simulation).

The simulatable model is compiled. A stabilization
algorithm is applied. All assignments to TERMINALs are
statically put in a causal order by the compiler. This
guarantees the stabilization of combinatorial parts in one
cycle, when no loops are found, in a cycle based simulation.
The automaton is compiled as a "cage" statement on the value
of the state register (see example in CASSANDRE paper).

3.2. Lasso: addressing the system level
In LASSO, one specifies the timing and fW1ctional

behavior of digital systems, and the interactions between
system components, but no implementation detail. Routing of
messages in a network, or synchronizing communicating
parallel processes, are typical examples.

The behavior of a LASSO model is based on the separation
between operations and control.

The operative part is expressed as assignments to abstract
variables which may contain integer, string or symbolic
values. Operations may be permanently valid, or may depend
on the model control part.

The control part uses a directed control graph model,
inspired by the LOGOS project [7.5]. Places hold Boolean
values (carrier type CTRL), and memorize the occurrence of
events. Transitions modify the value of one or several CTRLs
to which they are connected. A transition "fIring" takes into
account one or more events (its input CTRLs), thus creating
other events (its output CTRLs). A variety of transitions
model the launching and synchronization of parallel actions
(" AND"), switches ("TEST"), decoders ("INDEX"), and

3.4. Asynchronous CASSANDRE: addressing the register
transfer level with another time model

Asynchronous CASSANDRE allows the modeling of
transport delays, expressed in terms of time units. Past
values of carriers may be referenced in expressions. A
synchronization pulse may be the rising or falling edge of a
local Boolean carrier and not necessarily an externally
provided clock pulse.

MERMET et al. THREE DECADES OF HARDWARE DESCRIP1lON LANGUAGES IN EUROPE716

CASCADE allows for mixed level description. Building a
simulation model requires algorithms and scheduling modes
adapted to each modeling level.

We describe here how CASCADE realizes the scheduling
and control mechanisms of the mixed-mode simulation, and
solves the cohabitation problems of scheduling modes and
different abstraction modeling levels (Circuit, Switch, Gate,
Register Transfer and System levels). These cohabitation
problems have led us to preserve until simulation run time a
hierarchical structure of nested boxes, each of which has its
own scheduling mode and its particular modeling level
(consequently its particular simulation algorithm).

3.5. Polo: Addressing the Gate Level
The lower levels of CASCADE (pOLO, CASTOR and

IMAG-F) provide the designer with a set of predefmed
description segments, whose behavior is directly implemented

in the simulator [7.6].
The primitives in POLO are the usual logic gates, transfer

gates, tri-state gates, and a simple model of a unidirectional
N inputs 1 output wired-or BUS. Their interface ports are

directional. They are typed:

5. Scheduling modes

In a Simulation Model partitioned in "blocks" (a block can
be an electrical node, a gate, a set of registers, the operative
part of a circuit, etc.), the way of defming the "next event
time" and choosing the blocks to be activated, (to simulate
the model), is named scheduling mode. Various scheduling
modes exist in CASCADE according to modeling levels.

3.6. Castor: addressing the switch level
The three types of MOS transistors are primitive

description segments: NTRANS, D TRANS, PTRANS. Their
3 interface elements (GATE, DRAIN, SOURCE), of type PIN
= V ARIABLE (LOGIC3, 'u) are non-directional. They have

a STRENGTH attribute (positive integer <100).
The primitive description NODE is the model of an

interconnection point. It has a variable number N of
non-directional interface PINS. Its 3 other attributes are:

SIZE, RISEDELAY, FALLDELAY.

5.1. Discrete scheduling mode
The Time Unit is abstract and is defmed as an Integer.

The Time measures the number of clock cycles and the
scheduler increases the time by one or more cycles. The
model evaluation process at a given time returns the Next
Event Time. Two kinds of discrete scheduling modes are

possible.

3.7. Imag : addressing the electrical (circuit) level
The primitive description segments are the various dipoles

found in an electrical circuit. Their interface is description
component-name (nd FIL PJ, P2,. in VAR VAL) where PI and
P2 are two non-directional electrical wires, and V AL is the
component value. V AL may be a constant or a function of
the circuit state (node voltages, pin voltages and currents).
Two functions are attached to each FIL carrier: i (PI) is the
current in PI, and v (PI) the voltage. Each primitive
component defmes an equation on i (PI), i (P2), v (PI), v

(P2) and V AL [7.5]. In addition, the compiler automatically
generates: i (PJ) + i (P2) = O (Kirchhoff laws).

5.2. Event driven
The initial circuit is flattened down and fonns a network

of interconnected elementary blocks. The blocks which have
to be activated at a given time (an Event Time), are linked
to a Time wheel. This mode is the one which is used in
VHDL or gate level simulation.

5.3. Pre-ordered or levelized
The initial nesting of the circuit is preserved -if possible

-by the elaboration program. At each level of the hierarchy
a static order is built, taking into account the dependence of
variables. If a loop yields this order impossible, then this loop
is automatically encapsulated into a new entity created by the
elaboration. The scheduler follows this order through the
nodes of the hierarchy. It explores the tree in pre-order and,
while examining each node, it has to determine if the node
is to be activated or not.

5.4. Continuous scheduling mode
This mode is presently used only at circuit level: the

scheduler, linked with simulation algorithms, chooses the best
integration step for the algebro-differential system solver,
according to the difficulties encountered and the precision
needed (The Time is a real number, measured in seconds).

Two different continuous scheduling modes, (and

Fig. 7.1. Primitive description segments of IMAG-F.

4. The cascade hierarchical mixed-mode multikernel

simulator (HM3)

~

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 717

simulation algorithms,) are used in CASCADE.

5.5. Global
No network partitioning is done. In this case, the scheduler

has only to define the next event time which is the sum of
current time and integration step. There is only one block
which is activated (the analog model block) and the simulator
uses its integration scheme to solve the whole system at this
time.

5.6. Levelized
The network is partitioned into several analog blockc;. At

the current time, each block is solved separately, and a global
relaxation algorithm stabilizes the whole system. Choosing a
levelized vs global continuous simulation "mode is left to the
designer who knows the electrical model and may exploit
some decoupling.. Fig. 7.4. The CASCADE HM3 Simulator.

SCHEDULING MODE

Control waph Driven

Cycle based

Cycle based

Discrete Event Driven

Discrete Event Driven

Continuous Levelized

Continuous .I!Jobal

The CASCADE compiler builds two kinds of data
structures to be used by the mixed-mode scheduling: a
Scheduling Mode Tree (SMT) which allows one to change
the scheduling mode in different parts of the same model, and
Scheduling Data Structures (SDS) adapted to each of the
scheduling modes.

For each node of the SMT, a specific data structure is
associated: the Scheduling Data Structure (SDS). This SDS
represents the connectivity and, the nesting of the blocks
working with the same scheduler.

ABSTRACTION LEVEL

System level

Re,gister Transfer level

Synchronous Gate level

Asynchronous Gate level

Switch level

Circuit \with user partitionin,g)

Circuit (without partitionin~)

Fig. 7.2. Relations between scheduling modes and

abstraction levels in CASCADE.

6. The Simulation Data Structure

This section defines the f1fSt general implementation of

mixed mode scheduling, a problem still hot to-day.

Ertity OOsigl Litx'ay

Qle Qrcuit T t,S" rals er

Bu I cEr
SMr

~~

6.1. The scheduling principle
When the mixed-mode scheduler supervisor fmds a SMT

node, it calls the specific scheduler associated to the mode of
this node, and transfers it the two items of timing information
required by this scheduler :

* TI, the date of the beginning of the activity for this

block;
* T2, the scheduled end of activity.

[TI-T2] is a "Quiet Time Interval" (QT1). During this
interval, the supervisor guarantees the specific scheduler that
no input of the associated block will change.
Then during the evaluation, between TI and T2, three cases
may occur :
I -A modification is detected on an output pin before time

T2 (at T3 where TI < T3<T2). In this case, the control

is returned to supervisor with T3 as Next Event Time.
2 -No output variation occurs before T2 but the block is not

quiescent. In this case, the control is returned to
supervisor with T2 as Next Event Time.

3 -No output variation occurs before T2 but the block is
quiescent. Control is returned to the supervisor with
"NIL " as Next Event Time (latency information).~

SMr

7. Conclusion

Fig. 7.3. Simulation Data Structures figure

718 MERMET et at. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

A complete prototype of the HM3 simulator was
implemented on V AX/VMS by the end of 1986. The
prototype was tested on a large microprocessor model, which
embedded components described at all CASCADE levels.
The emergence of the VHDL standard prevented us from
completing an industrial development out of this successful
university project, and going to the marketplace. Yet the
experience gained in CASCADE was a basis which
contributed to'the VHDL/AMS standardization effort and will
continue to contribute to VHDL extensions. No commercial
tool, 12 years later incorporates all the similation capabilities
demonstrated on the CASCADE prototype. The OMI /IEEE
standard recently voted proposes a scheduling of OMI models
which follows the principles described above.

-1- Combination of programming-language syntax with
hardware semantics:

European originated languages such as PASCAL, ADA or
MODULA have contributed to works such as MIMOLA,
ART, DACAPO or even VHDL. But also international de
facto standards {with strong European roots) like ALGOL or
CONLAN influenced CASSANDRE, ELLA and CASCADE.

-2- Formal Semantic Models :
Exist in DACAPO, ELLA, or CASCADE., using

PETRI-nets, process algebra or Base-CONLAN.
Dont exist in VHDL or VERILOG

-3- Hierarchy & Modularity of design descriptions.
-4- Generics:
-5- Unconstrained blend of behavior with structure in a

design description:
-6- Abstract data types, private types
{exist in CASCADE, DACAPO, ADA but neither in

VHD L nor in VERILOG .)

Fig. 8.1. Tabulation of 15 Language Properties Versus
The Languages Examined. The numbers are
indexed to the language properties listed.
Abbreviations: NA : Not Applicable, TD :
Transport Delay, MDO : Multi -Dirnensional
Objects, SV: Sub-variable, WDL: Wavefonn
Description Language, TPDL: Temporal
Profiles Description Language

CASCADE References
[7.1] D. Borrione: LASCAR: a Language for Simulation of

Computer Architecture, Proc. CHDL '75, New York,
USA, Sept. 1975

[7.2] D. Borrione, J .F .Grabowiecki: Informal introduction to
LASSO: a Language for Asynchronous System
Specification and simulation, Proc. Euro-IFIP 79,

London, Sept.79.
[7.3] D. Borrione, R. Piloty: The CONLAN Project:

concepts, implementations and applications, IEEE
Computer Magazine, Vol 18, N°2, Feb. 1985

[7.4] C. Le Faou: Un programme general de simulation de
circuits electroniques: IMAG, Electronique et
Micro-Electronique Industrielle, Octobre 1974.

[7.5] C.W. Rose: "LOGOS and the software engineer", Proc.
Fall Joint Computer Conf. 1972 pp. 311-323

[7.6] J. Mermet: Etude methodologique de la conception
assistee par ordinateur des systemes logiques, These
d'Etat es-sciences mathematiques, Universite de
Grenoble, France, 21mars1973.

[7.7] J. Mermet: Circuits and System Computer Aided
Design and Engineering:CASCADE, Proc. CAPE83: 1st
Int. Conf. on Computer Applications in Production and
Engineering, Amsterdam, The Netherland, April 1983,
pp. 245-262.

[7.8] R. Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F.
Hill and P. Skelly: CONLAN Report, Lecture notes in
Computer Science 151, Springer-Verlag, Berlin, 1983.

VIII. Comparison of the Selected

Languages IX. More Recent Work

The sample of languages presented above provides a large
coverage of the concepts and features of modem HDLs
among which we have chosen the following fifteen
characteristics to qualify more precisely these languages

1. VHDL93:

VHDL87 cannot be claimed an European language. But it
is inspired by ADA which was one.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 719

channel or protocol after it has been implemented once).
Objective VHDL is a true superset of VHDL with only two
new keywords: class, abstract.

A complete prototype of the Objective VHDL to VHDL
translator was due on summer 1998.

4. VHDL+

This VHDL extension was developed at ICL (UK) as an
attempt to address some system level requirements not
fulfilled by VHDL. The initial work was a language and set
of tools called cmsLE (for Combined Hardware and
Interface Specification Language for Engineers). The syntax
was inspired by Algo168. Then a fast VHDL87 simulator
was developed, followed by VHDL+, when it appeared that
most EDA tools would be based on this standard.

The new concept brought by VHDL+ is that of Interface
primary unit, which defmes the communication between
entities, can be re-used, and is multi-level. In the interface the
communication protocol can be defmed at different levels, so
that different, more or less refmed, views of 2 entities can
always communicate through the same interface unit. This
provides a kind of polymorphism to linking entities to each
other at different abstraction levels that VHDL does not have.
Interfaces contain: transactions (2 ways exchange),
messages, packets, signals and compositions (mapping from
one level to another), and some constructs, serial blocks,
parallel blocks, clock, after, pause, aimed at describing more
easily non event-driven temporal properties at high level. A
new kind of port, the interface port, is added to the VHDL
entity interface to be the link with Interface units. The
architecture contains other additions: interface signals,
interface map, activities, and send and receive to allow the
use of interface items from processes and activities.

After declassification by the DoD the influence of European
partners on the evolution of the standard became strong, and
this is reflected in VHDL93. Europe was also the earlier
adopter of VHDL which is still the dominant language there
today. This can be qualified a cultural problem. Europe has
always been a region of proliferation of languages (whether
natural or formal). There was a strong need for standard.
VHDL did not bring unfamilair concepts and had a flavor of
neutrality: it was immediately adopted.

Then we cannot forget VHDL in this Europe-centric paper.
VHDL brings a few features new to previous languages:
.Service modularity with packages and libraries.
.Generalized modularity of entities, with the notion of

architecture independent of an entity .A given piece of
design. the entity can have several views in VHDL,
instantiated as « architectures ». Then VHDL encompasses
several levels of abstractions, within the limits of « discrete

event driven timing ».
.Functions and Procedures (like CONLAN)
.Overloading of operators by functions
.Description of truth tables
.Process network execution model which provides

concurrency and initializes the model at simulation.

2. VHDL-AMS.

Among European requirements for VHDL93, there was a
strong demand for mixed analog/digital modeling and
simulation. The timeframe appeared, during the VUFE in
Santander, too short to introduce this evolution into VHDL
93. Then a new IEEE working group was created, which has
been chaired by European people until now. VHDL/AMS is
a true superset of VHDL which brings new concepts such as
nature which relates to their specific domain of application
(electrical, mechanical, ..) the variables of the analog model.
When adding a continuous time model semantics to the event
driven model of computation VHDL-AMS does not bring a
new concept as this was previously in some mixed mode
languages (the IMAG level of CASCADE for example), but
this is for the first time done at all levels of the VHDL
description, using for example the across and through new
statements, not only in distinct entities VHDL-AMS can be
used also at system level, to describe models and their
environment with a continuous/discrete timing scheme.

x. Concluding Remarks

It is clear that a modern language like VHDL, apart from
being THE recognized standard in Europe and offering many
commercial quality environments, does not yet incorporate
many of the features implemented in some of the ancestor
languages cited above. Registers, Clocks, FSMs, communi-
cation and synchronization mechanisms, object constructs,
private data types, all these proven concepts are requirements
for VHDL 200X, the version of the standard that will follow
VHDL 98, whose preparation has started already. Are also
lacking continuous or system level modeling capabilities. The
continuous modeling capability hopefully will come with
VHDL-AMS, but system level description and modeling,
which is the main concern of European system houses, will
not be provided by VHDL extensions only. VHDL is already
a complex language and there is a limit to the increase of

3. Objective VHDL;

Objective- VHDL is an object-oriented extension of VHDL
developed within an European R&D ESPRIT project called
REQUEST, mainly at university of Oldenburg. The concepts
introduced by objective VHDL are entity classes,
architecture classes, and type classes The benefit of such an
object-oriented extension depends on the availability of class
libraries (for example to store and re-use a communication

THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPEMERMET et al.720

Many interesting works, mainly in Europe and USA, have
tried, over the last 30 years, to give a sound theoretical
foundation to the construction of large software systems. The
domain of HDLs or SLDLs does not require different
theories. It is clear that the advanced software concepts have
been adapted after a certain delay to the specification of
hardware. The tremendous speed of micro-electronics
technology progress may have hidden this trend for a while:
many difficult problems have not been solved, but just erased
by the brute force of a doubling of performances every 18
months. But at the time of System-Chip design the unsolved
problems re-appear and a look back to mathematical
background imposes. itself.

Following the pioneers, Dijkstra, Hoare,..., J. R. Abrial has
made an impressive and clear synthesis of the knowledge in
this domain with B. B is a method for specifying, designing,
and coding software systems. The basic mechanism of this
approach is that of abstract machine, a concept close to
modules, classes or abstract data types. The task of B is to
accompany the technical process of program construction by
a similar process of proof construction, which guarantees that
the proposed program agrees with its intended meaning.
System on Chip specification and design demand a similar
approach. The solution to the challenges of system level
modeling will be met, only as Abrial says, "by returning to

mathematics".

General Bibliography

[G. 1] J.R. Abrial, The B-book .Assigning programs to

meanings, Cambridge university press, 1996.

[G. 2] M. Harbacci, D. Horrione, D. Dietmeyer, F. Hill, R.

Piloty, and P. Skelly, CONLAN Report, Lecture notes

in Computer Science N° 151, Springer Verlag, 1983.

[G. 3] M. Harbacci, T. Uehara, guest editors, IEEE

Computer (special issue on hardware description

languages,) Vol. 18, No 12, February 1985.

[G. 4] D. Horrione, JF Gmbowiecki, "Introduction to

«LASSO» Language for Asynchronous System

Specification and simulation," Proc, EuroIFIP 79,

London, sept 1979.

[G. 5] D. Horrione, "CASCADE," in Fundamf!ntals and

Standards in Hardware Description Languages,

KLUWER ACADEMIC, 1993.

[G. 6] R. T. Houte, "On the shortcoming of the axiomatic

approach as presently used in Computer Science,"

Proc IEEE COMPEURO 88 -Systems design:

concepts, methods and tools, pp. 184-193, April

1988.

[G. 7] R. T. Houte, "Fundamentals of Hardware Description

Languages and Declarative Languages," in Funda-

complexity that users can further accept and EDA tool

providers implement.
Design environments will have probably to accommodate

a variety of different languages at a level ABOVE VHDL,
but DEEPLY INTERFACED with it. The above mentioned
extensions will shorten the distance to these other languages
and certainly facilitate the establishment of a seamless design
flow, from system specification to circuit level, in a few

years.
The future of HDLs is not an HDL. HDLs have made it

possible to design multi-ririllion gate chips and to follow the
Moores law over a third decade. But a paradigm shift has
occurred: what is to be designed now is System on Chip
(SOC). SOC is no-longer hardware only, but more and more
embedded software. The hardware itself is no longer digital
circuits only but also analog, RF, sensors, microwaves,
batteries, micro-machine, optical devices why not living

cells?
If we only restrict ourselves to hardware/software co-design

and verification there is today a Babel Tower situation among
dozens of languages and formalisms, which recalls us the
situation of HDLs around 1975, when the CHDL conference
decided to create a unification group called CONsensus

LANguage.
We need another CONLAN effort today at system level.

But this effort can last several years. In the meantime many
of these languages will continue to be used beneficially in
different application domains. And the design environments
will have to be multi-language for an undefmed period of

time.
To accomodate all these languages in a system design

space, an architecture specification language or notation is
still to be defmed, which will provide bridging semantics
between different languages and computation interpretation
mechanisms, between different time models. Like in
CONLAN, the goal would not be to defme Yet Another
Language, but to defme the underlying semantics and provide
the basic mechanisms to re-build the candidate system level

languages on it.
Some projects exist, in Europe, around Esterel for example,

with EC an extension of C with synchronisation mechanisms
translatable into Esterel (Lavagno). Already mentioned also is
the project of the CADENCE lab in France to insert Esterel
in their Polis environment. Similarly the VERILOG team in
Grenoble works on integrating LUSTRE in their
Object-Geode environment. Many of these multi-language
environments exist now in large European companies
designing systems. As an example, at Italtel, OCCAM,
Objective- VHDL and C++ are used in conjunction with
retargetable code generators to implement DSPs and
embedded systems. But many steps in the design flow are not
yet automated, and the verification tools available dont reach
the necessary (and fast growing) level of performances.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 3, NO.6, 1998 721

[G.21] F. Rarnmig, "DIGITEST II: An Integrated Structural

and Behavioural Language," Proc. IFIP CHDL75,

1975.

[G.22] F. Rammig, 'The Hardware Description Language

DACAPO III," in Fundamentals and Standards in

Hardware Description Languages, KLUWER

ACADEMIC, 1993.

[G.23] F. Rammig, "System Level Design," in Fundamentals

and Standards in Hardware Description Languages,

KLUWER ACADEMIC, 1993.

[G .24] H.P Schlaeppi, A fonnallanguage describing machine

logic, timing and sequencing (LOTIS), IEEE Trans.

on Electronic Computers, vol EC-13 pp 439-448,

Aug. 1964.
[G.25] B. Hennion, G. Mazare, P. Senn. and H. Tahawy,

"New Implementation Technique for the Simulation

of Mixed (Digital-Analog) VLSI Circuits,"

Proceedings from the international conference on

Computer-Aided Design, Santa-Clara, CA, Nov. 1987,

pp 396-399.
[G.26] A. Vachoux, "Analog and Mixed-Level Simulation

with Implications to VHDL," in Fundamentals and

Standards in Hardware Description Languages,

KLUWER ACADEMIC, 1993.

[G.27] E. Villar, L. Berrojo, and P. Sanchez, "High-level

synthesis and simulation with VHDL," Proc. of the

Second European Conference on VHDL, Sockholm,

Sept. 8-11, 1991, pp 62-69.

[G.28] VHDL Modeling Terminology and Taxonomy,

RASSP doc, Sept 9, 1996.
[G.29] G. Zimmennann, 'The MIMOLA design system: A

computer aided digital processor design method,"
Proceedings of the 16th Design Automation

Conference, pages 5358, 1979.
[G.30] Y. Chu et al., "Three decades of HDLs: Part 1, CDL

Through TI-HDL," JEEE Design & Test of

Computers, June 1992.

mentals and Sta~rdr in Hardware Description
Languages, KLUWER ACADEMIC, 1993.

[0.8] L.A. Cherkasova, V.E. Kotov, "Structured Nets,"

Proc. MFCS81, Springer LNCS 118, 1981.

[0.9] Y. Chu: An algol-like Computer Design Language,
Comm. of ACM, October 1965, pp 607-615.

[0.10] T.D Friedman, "ALERT: a program to produce logic

design from preliminary machine description ," RCt
1578, March 24, 1966, mM Research.

[0 .11] D. Harel, 11 Statecharts: A visual formalism for

com-plex systems," Science of Computer Program-

ming, 8, 1987.
[0.12] R. Hartenstein and P. Liell, KARL-2 Language

Reference Manual, Kaiserslautern 1983.

[0.13] A.D Falkoff, K.E. Iverson, and E.H. Sussenguth,

Formal description of system/360 IBM sys. J. , vol.

3, pp 198-262, 1964.
[0.14] A. Jerraya, H.Ding, P. Kission, and M. Rahmouni,

Behavioral synthesis and component reuse with VH

DL, KLUWER ACADEMIC, 1997.

[0.15] P. Liddell, "Decoupage syntaxique de ~'Ystemes
logiques decrits en CASSANDRE," These de 3ieme

cycle, Grenoble, March 1970.

[0.16] B. Lutter, W. Olunz, and F.J. Rammig, "Using
VHDL for Simulation of SDL Specifications," Proc.

Euro-DAC92, 1992.
[0 .17] P. Marwedel, II A new synthesis algorithm for the

MIMOLA software system," 23rd Design Automation

Co1!f:, pages 271277, 1986.
[0.18] J.D. Morison and C. Newton, "ELLA, a Language for

the Design of Digital Systems," in Fundamentals and

Standardr in Hardware Description Languages,

KLUWER ACADEMIC, 1993.
[0.19] J.D. Morison and A.S. Clarke, ELLA 2000, A

Language for Electronic System design, McOrawhill,

October 1993.
[0.20] R. Piloty, IIREOLAN,II in Fundamentals and

Standardr in Hardware Description Languages,
KLUWER ACADEMIC. 1993.

722 MERMET et al. THREE DECADES OF HARDWARE DESCRIPTION LANGUAGES IN EUROPE

Dr. Jean.P .Mermet Directeur de re-
cherches at the CNRS (TIMA lab.,
Grenoble University) and director of the
European CAD Standardisation Initia-
tive (ECSI). J.M holds an engineering
degree (ENSIMAG 66), a master in
Mathematics (1967), and a DESS
degree in Economics (1977). He

achieved a 'Doctorate thesis in Informatics (1970) and a
Docteur dEtat thesis in mathematics (1973). He has been
working on Hardware Description Languages since 1966,
mostly at the University of Grenoble. The languages and
associate simulators, CASSANDRE, LASCAR, LASSO,
IMAG2, CASCADE, were developed by him or in his team.
Besides this research activity JM has also held the positions
of: Delegue aux Relations Industrielles in region Alpes
(1974-78), Directeur Scientifique of .the Mediterranean
Institute of Technology / IMT (1988-92). JM has created: -

the Association MICADO (1974) for the promotion of CAD
in all domains. -The European event MICAD (paris, 1980),
-The conference EuroVHDL (Marseilles, 1990), -The
conference APChDL (Brisbane, 1993), -The European
association ECSI (Grenoble, 1993). JM has been the director
of 4 NATO advanced Study Institutes (1971, 93, 96, 98). He
has a long experience of European projects as he was the
leader of the fIrst of them in micro-electronics: the CERES
project (feb 1983). JM has edited 7 books and written over
100 publications. He is editor in chief of « the ECSI letter
» and the « VHDL newsletter ». He is presently the chair of
the IFIP 10.5 Working Group. JM has been involved for a
long time in the standardisation activities: the CONLAN
project, the VHDL Analysis and StandardisatiQn Group
(IEEE), which he co-chairs from the creation, the Design
Automation Standardisation Committee (IEEE-DASC). In
1995, he received the « meritorious service award » from the

IEEE, for these achievements.

"Code Generation for Embedded Processors" published by
Kluwer Academic publishers in 1995.

Dr. Rammig studied mathematics and
infonnatics at Bonn University,
Gennany. He obtained a Ph.D. title in
infonnatics from Dortmund University,
Gennany in 1977. Since 1983 he is
Professor for Practical Infonnatics at
Paderborn University, Gennany. Dr.
Rammig is one the two directors of

C-LAB, the joint. R&D lab of Paderborn University and
Siemens AG. At the same time he has one of the chairs of
Heinz Nixdorf Institute of Paderborn University, an
interdisciplinary institute between infonnatics and engi-
neering. He is Vice Chair of the Gennan Informatics Society
(GI) and represents Gennany in TC10 (Computer Tech-
nology) of IFIP. After working in the area of hardware
design, especially in the area of hardware description
languages his current research interests are focused on
distributed embedded real time systems.

Dr. Cleland Newton is Principal
Scientist in the System Assurance
Group at the Defence Evaluation and
Research Agency (DERA) at Malvem,
UK. He has been involved in the design
of VLSI circuits since the early days of
Hardware Description Languages. He
was one of the pioneer users and

contributors to the ELLA HDL at RSRE (which is now
DERA Malvem). He has worked on correct-by-construction
methods for hardware using ELLA, VHDL and V DM. His
current interests are the safety, supportability and reliabilty of
electronic hardware. This includes the use of fonnal methods
to achieve design assurance for safety critical applications
and the investigation of prognostic techniques to obtain
higher reliability for complex electronic systems.

Peter Marwedel received his Ph.D. in
Physics from the University of Kiel
(Germany) in 1974. He worked at the
Computer Science Department of that
University from 1974 until 1989. In
1987, he received the Dr. habil. degree
(a degree required for becoming a
professor) for his work on high-level

synthesis and retargetable code generation based on the
hardware description language MIMOLA. Since 1989 he is a
professor at the Computer Science Department of the
University of Dortmund (Germany). His research areas
include hardware/software codesign, high-level test
generation, high-level synthesis and code generation for
embedded processors. He is one of the editors of the book

I Dominique Borrione is Professor of
, Computer Science at Universite Joseph

Fourier, Grenoble, France, and leads the
research group on "Modeling and
Verification of Digital Systems" at
TlMA Laboratory. Previously, she had
been a Research Scientist at CNRS,
then a Professor at the University of

Marseille until 1988. She received a PhD in 1976 and a
Doctorat d'Etat in Computer Science in 1981, both from the
Univesity of Grenoble. Her research interests include

JOURNAl OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO.6, 1998 723

Hardware Description Languages, CAD for large digital
electronic systems, and the application of formal methods in
design and verification. She is the author of numerous
publications on these topics, and has served in many
conference and workshop committees. She was a member of
the Conlan Working Group, and is active in various aspects
of VHDL standardization. She is a member of the IFIP
Working Group 10.5.

Claude Lefaou (born on May 20th
1938) received his diploma of Electrical
Engineering from the INPG Grenoble in
1962. His fields of interest are CAD,
Simulation, Hardware Description Lan-
guages, and he is author or co-author of
about 20 publications in these domains.
He is author of IMAG2 (1970) and

IMAG3 (1972), simulation programs at the circuit level and
he was technical manager of the CASCADE project
(1981-87): CAD system for VLSI circuits and systems. From
1990 to 1995 he was Adjoin Director of ARTEMIS
Laboratory .He is currently "Ingenieur de Recherche" at
nMA (CNRS laboratory) and he is working in the field of
Formal Verification from VHDL descriptions.

724 JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO.6, 1998

Johnny Oerg, Anshul Kumar, Ahmed Hemani, and Shashi Kumar

Abstract

ProGram is a grammar based specification language aimed for specification of protocols, interfaces and control dominated
functionality .Specification of exception handling functionality and its automatic implementation are key requirements for a
robust design methodology. We have extended ProGram to include specification of a wide range of exception handling
functionality: reset, to deal with exception handling needs of global nature; interrupt, for representing exception handling on
a hierarchical basis; and error sequences, to handle situations when inputs are not according to the specified grammar. We have
also enhanced our synthesis algorithms and relieved them from some earlier limitations, to allow the ProGram compiler to deal
with the exception handling extensions to the ProGram language. The tool based on these techniques has been used for the
implementation of 1) a send/receive protocol supplied by industry, 2) a bus-arbiter and 3) the Intel 8251A Personal

Communication Interface.

Keywords: Exception Handling, ProGram, Specification, Synthesis

I. Introduction

Exception handling is necessary to be able to describe

hardware and real-time systems in an efficient way and is a

key aspect of any system functionality, where it takes the

fonn of reset sequences, interrupt service routines and error

handling. The key characteristic of exception handling is its

global nature. For instance, a reset would bring the state

machine to a known state from any state and clear the storage

elements. Reset, though a common hardware construct, does

not have any explicit support in VHDL, in which any

exception of global nature is treated as any other condition.

This makes it very cumbersome to specify exception handling

functionality. Other languages, like SpecChart[1][2], have

explicit support for specification of exception handling

functionality. Interrupts are of a more local nature than a

reset, and specify how the protocol should react if a

high-priority situation occurs, caused by some hardware
failure, some illegal operation performed elsewhere in the
system, an intemJpt request or some other external event.
Error handling is crucial since it makes it possible to detect
and recover from error situations.

ProGram [10][11][12] is a grammar based specification
language aimed for specification of protocols, interfaces and
control dominated functionality. Synthesis from grammar-
based descriptions result in efficient hardware. In addition,
the ProGram methodology allows to perform design space
exploration of the port-sizes by letting the designer pose the
input and output port-sizes as constraints to the tool. The
input port constraints are used to partition the message
specified by the grammar rules into chunks of appropriate
size. The output port constraints are used in the same way to
partition the output assignments into chunks of appropriate
size. The partitioned output assignments are then scheduled
over the available stages of the input message.

ProGram has been extended to include exception handling
[13]. The inclusion of exception handling constructs results in

constraints which make the previous output scheduling
algorithms [12] produce inefficient or, in some cases, wrong
results. The synthesis algorithms have been extended to
handle the new exception handling constructs [14], but the

Johnny Oerg and Aluned Hemani are with the Electronic Systems Design
Laboratory. Royal Institute of Technology. ESDLab/KTH-Electrurn. Electrurn

229, S-I64 40 Kista. Sweden.
Anshul Kumar and Shashi Kumar are with the Department of Computer

Science & Engineering. Indian Institute of Technology, New Delhi. India.

