
HDL-based Modeling of Embedded Processor Behavior
for Retargetable Compilation

Rainer Leupers

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract{ The concept of retargetability enables
compiler technology to keep pace with the increasing
variety of domain-speci�c embedded processors. In or-
der to achieve user retargetability, powerful processor
modeling formalisms are required. Most of the recent
modeling formalisms concentrate on horizontal, VLIW-
like instruction formats. However, for encoded instruc-
tion formats with restricted instruction-level parallelism
(ILP), a large number of ILP constraints might need to
be speci�ed, resulting in less concise processor models.
This paper presents an HDL-based approach to proces-
sor modeling for retargetable compilation, in which ILP
may be implicitly constrained. As a consequence, the
formalism allows for concise models also for encoded
instruction formats. The practical applicability of the
modeling formalism is demonstrated by means of a case
study for a complex DSP1

1 Introduction

As a result of the increasing diversity of embedded pro-
cessors, retargetable compilers have received renewed in-
terest [1]. Retargetable compilers are cross-compilers
that can be quickly adapted to di�erent target instruc-
tion sets without modifying the kernel of the compiler
source code. Retargeting is performed by providing the
compiler with a { usually textual { model of the pro-
cessor for which code is to be generated. Retargetable
compilers are particularly important in the context of
application-speci�c processors (ASIPs), for which nor-
mally no target-speci�c compiler support is available.

Recent activities in retargetable compilation for
embedded processors aim at generating compilers from
processor models in uniform, user-editable languages
that also capture instruction-level parallelism (ILP). In
most of this work machine instruction behavior is de-
scribed as a collection of RT templates, which represent
atomic processor operations. During code generation,
instances of di�erent RT templates may be packed into
the same instruction word, i.e., some RTs can be exe-
cuted in parallel. Potential ILP is constrained either by
the resource usage of RTs or by the instruction encoding
scheme.

In such a processor modeling style, ILP is implicit,
because there is an a priori assumption of unrestricted
parallelism between RT templates. Constraints on ILP

1Publication: ISSS, Hsinchu/Taiwan, Dec 1998, c
IEEE.

are made explicit through enumeration of invalid tem-
plate combinations. This is mainly useful for instruction
formats with a small number of constraints, i.e., for hor-
izontal VLIW-like formats, where there is a dedicated
instruction �eld for each of the parallel functional units
in the data path. On the other hand, encoded instruc-
tion formats with very restricted ILP may require the
enumeration of a large amount of constraints.

The purpose of this paper is to present a hardware
description language (HDL) based processor modeling
formalism for retargetable compilation. The key feature
of the proposed formalism is a
exible notion of instruc-
tion behavior and parallelism. By means of appropriate
modeling language constructs, ILP may be modeled ex-
plicitly, while all ILP constraints are implicit and can
be automatically extracted from the model. However,
also the abovementioned converse modeling style with
implicit ILP and explicit constraints is supported. As a
result, concise models can be developed both for hori-
zontal and encoded instruction formats.

The organization of this paper is as follows. In sec-
tion 2, we discuss several recent processor modeling for-
malisms. In section 3, we outline our approach to pro-
cessor modeling for retargetable compilation. Since the
details are best described by an example, we present a
case study for a real-life DSP in section 4. Concluding
remarks are given in section 5.

2 Related work

Several compilers for embedded processors have been de-
signed recently, which make use of tool-speci�c processor
description formalisms, mainly intended for internal use
in the compiler [2, 3, 4, 5, 6]. The compiler generation
approach used in [7] does support user retargetability,
but it is based on a collection of translation rules instead
of a uniform modeling language.

The MSSQ compiler [8] operates on RT-level pro-
cessor models in the MIMOLA HDL, which resemble
structural VHDL. However, in certain cases this may re-
quire knowledge of hardware details which are not avail-
able to the compiler user. MSSQ also handles horizon-
tal and encoded instruction formats, but speci�cation
of the latter demands for insertion of (possibly large)
instruction decoders into the netlist in order to inhibit
generation of invalid parallel instructions.

A completely di�erent modeling paradigmunderlies
the nML language developed at TU Berlin, which is the

processor modeling formalism for the CBC and CHESS
compilers [10, 11]. nML mainly applies to processors
with hierarchically structured instruction sets, such as
the Analog Devices ADSP-210x.

In ISDL models [16] it is assumed that the instruc-
tion word is subdivided into several �elds, which inde-
pendently control parallel data path components in the
processor. For each �eld, a list of possible RT templates
is given. Grouping of similar RT templates is supported
by symbolic "factoring" of processor resources into non-
terminal symbols. ISDL permits concise models of pro-
cessors with a horizontal instruction format. However,
all constraints prohibiting parallel execution of certain
combinations of operations need to be enumerated sep-
arately.

3 The HDL-based formalism

3.1 Component behavior

Unlike in most other approaches, we do not use a no-
tion of an instruction set or of RT templates in proces-
sor models, but models are supposed to be composed
of a set of one or more components working in parallel.
Each component C = (I;R;B) consists of an interface
I (speci�ed as an I/O port list), a set of local regis-
ters or register �les R, and a behavior B. In case of
multiple components a list of connections and busses
between component I/O ports are speci�ed. The be-
havior B = fA1; : : : ; Ang is a set of one or more concur-
rent conditional assignments Ai. The syntax for com-
ponent behavior corresponds to the MIMOLA language
used by the MSSQ compiler [8]. The modeling concept,
however, is independent of a certain language, and us-
ing VHDL, which o�ers the same language constructs,
would obviously be possible as well. The main enhance-
ment, as compared to MSSQ, is that not only RTL struc-
tural models are permitted, but also purely behavioral,
instruction-level models as frequently found in processor
reference manuals. The syntax of component behavior
speci�cation is as follows:

<behavior> ::= <concurrent behavior>
| <conditional behavior>
| <assignment>

<concurrent behavior> ::= CONBEGIN <behavior>+ CONEND ;

<conditional behavior> ::= CASE <value> OF <tagged behavior>+
[ELSE <behavior>] END

| IF <value> THEN <behavior>
[ELSE <behavior>]

<tagged behavior> ::= <constant> : <behavior>

<assignment> ::= <register destination> := <value>
| <port destination> <- <value>

<value> ::= <conditional value>
| <expression value>

<conditional value> ::= CASE <value> OF <tagged value>+
[ELSE <value>] END

| IF <value> THEN <value> ELSE <value>

<tagged value> ::= <constant> : <value>

<port destination> ::= <an output port of the
component interface I>

<register destination> ::= <a member of the local register set R>

<expression value> ::= <an input port of the
component interface I>

| <a member of the local register set R>
| <unary operator> (<value>)

| <value> <binary operator> <value>
| <subrange value>

<subrange value> ::= <value> . (<upper subrange index> :
<lower subrange index>)

The semantics of a behavior is, that an assignment
is enabled, if and only if all execution conditions attached
by IF or CASE constructs evaluate to "true" in the spe-
ci�c instruction cycle. An instance of each enabled as-
signment is executed once per machine instruction cycle.

All assignments enclosed in a CONBEGIN
. . .CONEND construct are concurrent. Assignments to
sequential components ("<register destination> :=

...), which are supposed to be synchronized by a global
clock, are executed with a unit delay. Assignments to
ports ("<port destination> <- ...) have zero delay.
An unconditional assignment corresponds to an RT tem-
plate in other processor modeling languages. Available
unary and binary operators for expressions include all
common arithmetic, logical, and shift operators, as well
as special operators for sign or zero extension and con-
catenation. The "subrange" construct enables selection
of a certain bit index subrange from an argument value.

3.2 Analysis of ILP constraints

The analysis of ILP constraints in the HDL processor
model is based on manipulation of Boolean functions
that represent the execution conditions for assignments.
Each bit line contributing to controlling a component
behavior is represented as a Boolean variable. For each
possible assignment, a Boolean function is constructed
that evaluates to true exactly for those variable bindings
that enforce that assignment. Two assignments can be
executed in parallel, if their execution conditions can be
simultaneously satis�ed, i.e., their logical conjunction is
not a zero constant.

Any assignment may have multiple occurrences in
a behavior, each with di�erent execution conditions. In
this case, the logical disjunction of the di�erent condi-
tions is computed, before ILP constraints w.r.t. other as-
signments are tested. Di�erent execution conditions can
be considered as alternative versions of machine opera-
tions. The notion of alternative versions is important,
since on some DSPs ILP constraints cannot be simply
represented as a binary relation2 between operations.

For e�ciency reasons, the analysis of ILP con-
straints via Boolean function manipulation is based on
binary decision diagrams (BDDs). A detailed descrip-
tion is given in [9].

4 Case study: TI TMS320C25

This section describes details of a behavioral model
for a complex standard DSP, the Texas Instruments
TMS320C25, which shows a strongly encoded instruc-
tion format. Due to its very restricted ILP, we model the
'C25 in a purely behavioral style as a single component.

2On the TI TMS320C25 DSP, for instance, an accumulate op-
eration can only be executed in parallel to an address register
increment, if a third operation (load T register or multiply) is
executed in parallel.

4.1 Instruction format

The 'C25 has 16-bit instructions with an extremely
ex-
ible format. For some instructions, the 16 bits are fully
occupied by the opcode. Other instructions have opcode
widths between 3 and 14 bits, while using the remain-
ing bits as immediate operand �elds. In total, 12 named
bit �elds may occur in the di�erent instructions, which
leads to the following instruction format declaration:

TYPE Instruction = /* 16-bit instruction format */
FIELDS

AGU: (6:4); /* AGU control field */
AR: (10:8); /* address register index */
NAR: (3); /* address register modify flag */
INDIRECT: (7); /* direct/indirect addressing flag */
Y: (2:0); /* address register pointer */
DMA: (6:0); /* data memory address */
SHIFT4: (11:8); /* 4-bit shift value */
SHIFT3: (10:8); /* 3-bit shift value */
K8: (7:0); /* 8-bit immediate operand */
K13: (12:0); /* 13-bit immediate operand */
PM: (1:0); /* product mode */
opcode: (15:0); /* instruction opcode */

END;

The "FIELDS" construct (which resembles C struc-
tures or unions) in the instruction format declaration is
used to assign names to certain index subranges of a bit
vector. The context-dependent use of instruction bits is
re
ected in the multiple overlap of the �elds. The use
of some of these �elds will be shown later.

4.2 Component speci�cation

The 'C25 is modelled as a single component with all
processor registers being local to that component. The
local registers include data registers (e.g., the accumu-
lator), control registers (e.g., the program counter), and
AGU registers. Furthermore, there are mode registers,
whose states account for the current arithmetic opera-
tion mode. The overall shape of the model, including
local register declarations, is the following:

TYPE Instruction = ... /* instruction format as shown above */
TYPE LongWord = (31:0); /* 32-bit vector type */
TYPE Word = (15:0); /* 16-bit vector type */
TYPE Byte = (7:0); /* 8-bit vector type */
TYPE Bit = (0); /* 1-bit vector type */

MODULE TMS320C25 (...); /* interface declaration */
BEHAVIOR IS
VAR
IR: Instruction; /* instruction register */
PC: Word; /* program counter */
B0: ARRAY[0..255] OF Word; /* on-chip memory */
AR: ARRAY[0..7] OF Word; /* 8 x 16 addr register file */
ARP: (2:0); /* 3-bit addr register pointer */
DP: (8:0); /* 9-bit memory page pointer */
ACCU: LongWord; /* accumulator register */
PR: LongWord; /* product register */
TR: Word; /* multiplicator register */
SXM: Bit; /* sign extension mode register */
PM: (1:0); /* 2-bit product mode register */

CONBEGIN
... /* instruction behavior, see next section */

CONEND;

4.3 Instruction behavior

The main execution condition for all instructions is the
instruction opcode. Therefore, the processor behavior
can be modelled as a single "large" CASE-statement,
where the selector is the opcode �eld of the instruction
register IR:

CASE IR.opcode OF
<opcode 1>: <behavior 1>
...
<opcode n>: <behavior n>
END;

For each value of IR.opcode a di�erent behavior
is speci�ed. However, as mentioned earlier, di�erent
instructions have a di�erent number of signi�cant bits
in the opcode. Therefore our modeling syntax permits
speci�cation of don't care conditions. As an example,
consider the "multiply immediate" instructionMPYK
which has the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 |||||{ 13-bit constant |||||!

Since only the �rst 3 bits are opcode bits, we specify the
behavior with don't cares in the 13 least signi�cant bits
of the CASE tag constant.

/* CASE IR.opcode OF ... */

%101xxxxxxxxxxxxx: /* MPYK instruction */

CONBEGIN
PR := TR * IR.K13; /* multiply TR by immediate constant */
PC := INCR PC; /* increment program counter */
CONEND;

Next, we consider modeling of instructions with a
more complex behavior. The "add to accumulator with
shift" instruction ADDmay appear in the following two
formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 { shift {! 0 memory addr !

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 { shift {! 1 | AGU ops |!

Bits 11 down to 8 (IR.SHIFT4) specify a shift
value for an argument taken from memory. Bit 7
(IR.INDIRECT) selects direct (0) or indirect (1) address-
ing and decides on the interpretation of bits 6 down
to 0. If IR.INDIRECT = 0, then bits 6 down to 0
(IR.DMA) are taken as an o�set of a direct memory ad-
dress, which is appended to the page pointer DP. Oth-
erwise, if IR.INDIRECT = 1, then the following AGU
operations are encoded: Bits 6 down to 4 (IR.AGU)
specify a parallel address computation in the AGU, and
bit 3 (IR.NAR) determines whether the address regis-
ter pointer ARP is updated. If IR.NAR = 1, then ARP
is assigned the 3-bit value in bits 2 down to 0 (IR.Y).
Furthermore, the behavior ofADD depends on the sign
extension
ag SXM. In total,ADD is modelled as follows:

/* CASE IR.opcode OF ... */

%0000xxxxxxxxxxxx: /* ADD instruction */

CONBEGIN
IF IR.INDIRECT THEN /* indirect addressing */
CONBEGIN

/* add shifted, extended memory operand to ACCU with */
/* operand address taken from address register AR[ARP] */
ACCU := ACCU +

IF SXM THEN SHIFTLL(SIGNEXT(B0[AR[ARP]]),IR.SHIFT4)
ELSE SHIFTLL(ZEROEXT(B0[AR[ARP]]),IR.SHIFT4);

/* conditional update of ARP */
IF IR.NAR THEN ARP := IR.Y;

/* AGU operation */
CASE IR.AGU OF

%001: AR[ARP] := DECR AR[ARP];
%010: AR[ARP] := INCR AR[ARP];
%101: AR[ARP] := AR[ARP] - AR[0];
%110: AR[ARP] := AR[ARP] + AR[0];
... /* further AGU operations */
END;
CONEND;

ELSE /* direct addressing */

/* add shifted, extended memory operand to ACCU */
/* with concatenated (!!) operand address */
ACCU := ACCU +

IF SXM THEN
SHIFTLL(SIGNEXT(B0[DP!!IR.DMA],16),IR.SHIFT4)
ELSE
SHIFTLL(ZEROEXT(B0[DP!!IR.DMA],16),IR.SHIFT4);

PC := INCR PC; /* increment program counter */
CONEND;

The CONBEGIN/CONEND construct makes par-
allelism between the data path and the address gener-
ation unit explicit. A number of further 'C25 machine
instructions use the same encoding of the addressing
mode in bits 7 down to 0 in the instruction word. In the
behavioral descriptions of these, the same AGU-related
behavior as for ADD can be simply inserted as a be-
havioral "macro".

Parallelism within the data path is modelled sim-
ilarly. For instance, this concerns the 'C25 instruction
LTA, which loads register TR and accumulates a previ-
ous product stored in register PR.

4.4 Results

Knowledge of ILP constraints is necessary to prevent
invalid parallelization of RTs generated by a compiler.
Due to the small instruction word length of the 'C25,
the Boolean functions required for ILP contraint anal-
ysis depend only on few variables: 16 variables for in-
struction bits, as well as one variable for each mode reg-
ister bit. For the 'C25 model, extraction of all ILP con-
straints using BDDs takes 41 CPU seconds on a SPARC-
20. Even though horizontal instruction formats require
many more Boolean variables due to very long instruc-
tion words, most of these variables are don't care for
each speci�c RT operation. Since don't cares are not
contained in the BDD representations of Boolean func-
tions, e�ciency is preserved also for horizontal formats.

In order to demonstrate the applicability to code
generation, we have used the 'C25 model as an input
to Record [13], a retargetable compiler for �xed-point
DSPs. Using the above model, Record was able to
compile the DSPStone benchmarks [14]. The model
size for the 'C25 DSP is approximately 900 lines of MI-
MOLA HDL code. This appears to be rather concise as
compared to other approaches. An nML model devel-
oped for a 'C25 extension (the TMS320C50) has been
reported [15], which is about twice as large. A 'C25 RT-
level netlist model, that has been developed for use with
the MSSQ compiler [8], consists of more than 5,000 lines
of code.

5 Conclusions

In this paper we have presented a
exible HDL-based
processor modeling formalism for use with retargetable
compilers for embedded processors. We have exempli-
�ed, that our modeling formalism is capable of concisely

describing the complex instruction sets of realistic em-
bedded processors. This includes the capture of ILP,
as well as architectural peculiarities like mode registers.
The modeling formalism has been sucessfully applied to
retargetable code generation for DSPs. With respect to
processor simulation, it is important to note that the
modeling formalism only makes use of language con-
structs which are contained in most hardware descrip-
tion languages. This implies that the use of standard
HDL simulators is possible.

References
[1] P. Marwedel, G. Goossens (eds.): Code Generation for Embed-

ded Processors, Kluwer Academic Publishers, 1995

[2] B. Wess: Automatic Instruction Code Generation based on
Trellis Diagrams, IEEE Int. Symp. on Circuits and Systems
(ISCAS), 1992, pp. 645-648

[3] C. Liem, T. May, P. Paulin: Instruction-Set Matching and Se-
lection for DSP and ASIP Code Generation, European Design
and Test Conference (ED & TC), 1994, pp. 31-37

[4] T. Wilson, G. Grewal, B. Halley, D. Banerji: An Integrated
Approach to Retargetable Code Generation, 7th Int. Symp. on
High-Level Synthesis (HLSS), 1994, pp. 70-75

[5] S. Liao, S. Devadas, K. Keutzer, S. Tjiang: Instruction Selec-
tion Using Binate Covering for Code Size Optimization, Int.
Conf. on Computer-Aided Design (ICCAD), 1995, pp. 393-399

[6] C.H. Gebotys: An E�cient Model for DSP Code Generation:
Performance, Code Size, Estimated Energy, Int. Symp. on Sys-
tem Synthesis (ISSS), 1997

[7] C. Liem, M. Cornero, P. Paulin, A. Jerraya, et al.: An Embedded
System Case Study: the Firmware Development Environment
for a Multimedia Audio Processor, 34th Design Automation
Conference (DAC), 1997

[8] P. Marwedel: Tree-based Mapping of Algorithms to Prede�ned
Structures, Int. Conf. on Computer-Aided Design (ICCAD),
1993, pp. 586-593

[9] R. Leupers, P. Marwedel: A BDD-based Frontend for Retar-
getable Compilers, European Design & Test Conference (ED &
TC), 1995

[10] A. Fauth, A. Knoll: Translating Signal Flowcharts into Mi-
crocode for Custom Digital Signal Processors, Int. Conf. on
Signal Processing (ICSP), 1993, pp. 65-68

[11] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man:
A Graph Based Processor Model for Retargetable Code Gener-
ation, European Design and Test Conference (ED & TC), 1996

[12] A. Fauth, J. Van Praet, M. Freericks: Describing Instruction-
Set Processors in nML, European Design & Test Conference
(ED & TC), 1995, pp. 503-507

[13] R. Leupers, Retargetable Code Generation for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[14] V. Zivojnovic, J.M. Velarde, C. Schl�ager, H. Meyr: DSPStone
{ A DSP-oriented Benchmarking Methodology, Int. Conf. on
Signal Processing Applications and Technology (ICSPAT), 1994

[15] M.R. Hartoog, J.A. Rowson, P.D. Reddy, et al.: Genera-
tion of Software Tools from Processor Descriptions for Hard-
ware/Software Codesign 34th Design Automation Conference
(DAC), 1997

[16] G. Hadjiyiannis, S. Hanono, S. Devadas: ISDL: An Instruction-
Set Description Language for Retargetability 34th Design Au-
tomation Conference (DAC), 1997

[17] Texas Instruments: TMS320C2x User's Guide, rev. B, 1990

