
A Uniform Optimization Technique for
O�set Assignment Problems

Rainer Leupers, Fabian David

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract{ A number of di�erent algorithms for op-
timized o�set assignment in DSP code generation have
been developed recently. These algorithms aim at con-
structing a layout of local variables in memory, such
that the addresses of variables can be computed e�-
ciently in most cases. This is achieved by maximizing
the use of auto-increment operations on address reg-
isters. However, the algorithms published in previous
work only consider special cases of o�set assignment
problems, characterized by �xed parameters such as reg-
ister �le sizes and auto-increment ranges. In contrast,
this paper presents a genetic optimization technique ca-
pable of simultaneously handling arbitrary register �le
sizes and auto-increment ranges. Moreover, this tech-
nique is the �rst that integrates the allocation of modify
registers into o�set assignment. Experimental evalua-
tion indicates a signi�cant improvement in the quality
of constructed o�set assignments, as compared to pre-
vious work1.

1 Introduction

One architectural feature typical for DSPs is the special
hardware for memory address computation. DSPs are
equipped with address generation units (AGUs), capa-
ble of performing indirect address computations in par-
allel to the execution of other machine instructions. In
fact, the AGU architectures of many DSPs, such as the
TI C25/C50/C80, the Motorola 56k family, the Ana-
log Devices ADSP-210x, or the AMS Gepard DSP core,
are very similar and, for support of indirect addressing,
di�er mainly in the following parameters:

� The number k of address registers (ARs). ARs store
the e�ective addresses of variables in memory and
can be updated by load and modify (i.e., adding or
subtracting a constant) operations.

� The numberm of modify registers (MRs). MRs can
be loaded with constants and are generally used to
store frequently required AR modify values.

� The auto-increment range l.

1Publication: ISSS, Hsinchu/Taiwan, Dec 1998, c
IEEE.

Further di�erences in the detailed AGU architectures of
DSPs are whether MR values are interpreted as signed
or unsigned numbers, and whether ARs and MRs are
orthogonal, i.e., whether each MR can be used to modify
each AR.

Typically, such AGUs permit to execute two types
of address arithmetic operations in parallel to other in-
structions:

1. Auto-increment operations of the form

AR[i] += d or

AR[i] -= d,

where AR[i] is an AR, and d � l is a constant less
or equal to the auto-increment range.

2. Auto-modify operations of the form

AR[i] += MR[j] or

AR[i] -= MR[j],

where AR[i] is an AR, and MR[j] is an MR.

These two operations can be executed without any over-
head in code size or speed. In contrast, loading an AR or
MR, or modifying an AR by a constant larger than l al-
ways requires one extra machine instruction. Therefore,
any high-level language compiler for DSPs should aim at
maximizing the use of auto-increment and auto-modify
operations for address computations, so as to maximize
code speed and density. This is extremely urgent in
embedded DSP systems with real-time constraints and
limited silicon area for program memory.

One method to minimize the code needed for ad-
dress computations is to perform o�set assignment of
local variables. Let v be a variable accessed at some
point of time in a program, and let variable w be the
immediate successor of v in the variable access sequence.
Whether or not the address of w can be computed from
the address of variable v by auto-increment obviously
depends on the absolute di�erence of their addresses.
Since the compiler determines the addresses ("o�sets")
of local variables in the stack frame of a function, the
o�sets can be chosen in such a way, that the o�set dis-
tance of v and w is less or equal to l, so that auto-
increment is applicable. A more precise description of
o�set assignment is given in section 2. Alternatively,
an MR containing the o�set distance may be exploited

to implement the address computation by auto-modify.
Examples are given in section 4.

Since o�set assignment requires detailed knowledge
about the variable access sequences in a program, this
optimization is typically executed as a separate compiler
phase subsequent to code generation.

The purpose of this paper is to present a novel tech-
nique for solving o�set assignment problems, which is
more general than previous work and, as a consequence
of this, yields better solutions. It is complementary to
techniques, which optimize address computations for a
�xed memory layout with application to global variables
or array elements [1, 2, 3, 4]. The exact contributions
of this paper are the following:

� In section 3 we present a genetic algorithm (GA)
formulation for solving the o�set assignment prob-
lem given an arbitrary number k of ARs and a �xed
auto-increment range l = 1.

� In section 4, we extend the GA to incorporate an
arbitrary number m of MRs into o�set assignment.
Utilization of MRs, which is treated separately from
o�set assignment in previous work, has a large im-
pact on the quality of the constructed o�set assign-
ments.

� In section 5, we further generalize the GA, so as to
optimize o�set assignments for an arbitrary auto-
increment range l.

In all three sections we provide experimental results
that indicate the improvement achieved over previous
techniques. Finally, section 6 gives conclusions.

2 Simple and general o�set as-
signment

Bartley's algorithm [5] was the �rst that solved the sim-
ple o�set assignment problem (SOA), which can be spec-
i�ed as follows.

Given an AGU with a single AR and an auto-
increment range of 1, a set of variables V = fv1; : : : ; vng
and an access sequence S = (s1; : : : ; sm), with each si
being a member of V , compute a bijective o�set map-
ping F : V ! f1; : : : ; ng, such that the following cost
function is minimized:

C(S) =
m�1X
i=1

d(i)

d(i) =

�
1; if jF (si)� F (si+1)j > 1
0; else

Bartley proposed a graph-based heuristic to compute
F based on information extracted from S, and showed
that using SOA as a compiler optimization (instead of
a straightforward o�set assignment that neglects S) in-
deed gives a signi�cant improvement in code quality.

Liao [6] proposed an alternative SOA algorithm,
proved the NP-hardness of SOA, and provided a heuris-
tic algorithm for the general o�set assignment problem

(GOA). GOA is the generalization of SOA towards an
arbitrary number k of ARs. Liao pointed out that GOA
can be solved by appropriately partitioning V into k
subsets, thereby reducing GOA to k separate SOA prob-
lems. In [7, 8] improved SOA algorithms are described,
while in [9] an improved variable partitioning heuristic
for GOA has been given. However, these techniques only
work for a �xed auto-increment range l = 1 and do not
exploit modify registers.

3 Genetic optimization for GOA

Genetic algorithms (GAs) are a well-tried optimization
technique imitating natural evolution to achieve good
solutions (cf. [10] for an overview). GAs are partic-
ularly well-suited for nonlinear optimization problems,
since they are capable of skipping local extrema in the
objective ("�tness") function, and thus in general come
close to optimal solutions. Among many other applica-
tions, GAs have been successfully applied to data path
synthesis [11].

We have chosen GAs for solving o�set assignment
problems mainly due to two reasons: First, GAs are
more robust than heuristics. If enough computation
time is invested, then a GA most likely approximates
a global optimum, while heuristics in many cases are
trapped in a local optimum. Since very high compila-
tion speed is not important for DSP compilers, GAs are
more promising than heuristics, whenever a reasonable
amount of time is not exceeded. Second, since o�set as-
signment essentially demands for computing a good per-
mutation of variables w.r.t. simple cost functions, o�set
assignment has a straightforward encoding as a GA.

In this section, we present our solution approach the
GOA problem in the form of a GA. The same formula-
tion is also used for the extensions described in sections
4 and 5, where only the �tness function is adapted, so
as to solve generalized o�set assignment problems.

3.1 Chromosomal representation

The chromosomal representation in our approach closely
re
ects the o�set mapping F de�ned in section 2. Each
variable in V is represented by its unique index in
f1; : : : ; ng. Each gene in the chromosome represents one
variable, and its position in the chromosome accounts
for its o�set. This representation can be immediately
used for solving the SOA problem, since SOA essentially
demands for a certain permutation of variables.

In order to solve the GOA problem, it must be ad-
ditionally decided, which of the k available ARs will be
used for accessing a certain variable. We accommodate
this by using a modi�ed chromosomal representation:
In addition to the variable indices f1; : : : ; ng, the genes
may assume a value in fn + 1; : : : ; n + k � 1g. In any
step of the GA, each chromosome represents one per-
mutation of the values f1; : : : ; n+ k� 1g. Indices larger
than n serve as "separator symbols" in the chromosome.
Starting with AR number 1, each separator represents
a transition to the next higher address register, which is
then used for all variables following in the chromosome

2 5 4613
AR1

SOA representation (k=1)

2 5 3 1 6 47

AR1 AR2

separator

GOA representation (k=2)

1
2
3
4
5
6

assignment
offset

v2
v5
v3
v1
v6
v4

V = {v1, v2, v3, v4, v5, v6}
S = (v2, v4, v1, v2, v3, v6, v1, v5, v4, v1)

SOA GOA
AGU operations

AR1 = 1
AR1 += 5
AR1 -= 2
AR1 -= 3
AR1 += 2
AR1 += 2
AR1 --
AR1 -= 2
AR1 += 4
AR1 -= 2

AR1 = 1
AR2 = 6
AR1 += 3
AR1 -= 3
AR1 += 2

AR1 ++
AR1 -= 2
AR2 ++
AR1 += 2

AR2 --

Figure 1: Chromosomal representation for SOA and
GOA

before the next separator (�g. 1). Since there are k � 1
separators, one obtains an o�set assignment for k ARs.
The chromosomal representation is exempli�ed in �g. 1.

3.2 Mutation

Since any chromosome must represent a permutation of
f1; : : : ; n + k � 1g, mutation operators have to be per-
mutation preserving, i.e., they must only generate new
permutations of f1; : : : ; n+k�1g. This can be achieved
by using transpositions for mutation of chromosomes.
A transposition denotes the exchange of the contents
of two genes in a chromosome. The positions of the
two genes are randomly chosen. A transposition can ei-
ther modify the o�sets of two variables or change the
AR assignment in GOA. Since any permutation can be
composed by series of transpositions, all GOA solutions,
in particular the optimal one, can be reached by using
only transpositions as mutation operators.

3.3 Crossover

In order to accelerate the convergence of the GA, also
crossover operations are applied to generate new indi-
viduals in the GA population. Just like mutations, the
crossover operator has to be permutation preserving,
so as to obtain only valid solutions. In our approach,
we use the standard order crossover operation (�g. 2),
which generates two o�spring individuals from two par-
ent individuals as follows:

1. Randomly choose two gene positions in the par-
ents' chromosomes A and B. These positions in-
duce a three-partitioning A = (A1; A2; A3) and
B = (B1; B2; B3).

2. Mark the genes occurring in A2 in B and the genes
occurring in B2 in A.

3. Generate a new chromosome A0 from A: Starting
with the leftmost position of interval A2, in left-to-
right order, write the non-marked genes of A into
A1 and A3, while leaving interval A2 as a gap. Gen-
erate a new chromosome B0 from B analogously.

7 3 4 6 0 2 1 958

6 0 2 87 1 9 4 3 5

7 3 4 6 0 2 1 958

6 0 2 87 1 9 4 3 5

A

B

B’

A’

step 1

step 2

step 3

step 4

A1 A2 A3

B3B2B1

4 5 6 0 8 7 3

1 2 9 8 3 7 0

2 9

5

4 5 6 0 8 7 3

1 2 9 8 3 7 0

1

64

Figure 2: Permutation preserving order crossover

4. Copy the center interval from B to A0, and copy
the center interval from A to B0.

3.4 Fitness function

The �tness function Z is a metric for the quality of an
individual I in the population. For a given variable
access sequence S = (s1; : : : ; sm), function Z decodes
a chromosome (w.r.t. o�set and AR assignment) and
counts the number of address computations that can
be implemented either by switching the AR index or
by auto-increment. Like auto-increment, switching the
AR index does not require an extra machine instruction.
Thus, higher �tness corresponds to a cheaper o�set as-
signment. Each individual I induces a partitioning of
the variable set V into disjoint subsets V1; : : : ; Vk, as
well as k "local" o�set functions F1; : : : ; Fk. Each vari-
able v in a subset Vi is addressed by AR number i and
has a global o�set of

F (v) = jV1j+ : : :+ jVi�1j+ Fi(v)

In summary, the �tness function is de�ned as

Z(I) =
m�1X
i=1

d(i)

with

d(i) =

8>>>><
>>>>:

1; if jF (si)� F (si+1)j � 1 and
si and si+1 are in the same variable
subset Vj 2 fV1; : : : ; Vkg

1; if si and si+1 are
in di�erent variable subsets

0; else

3.5 GA and parameters

The initial population consists of a set of randomly gen-
erated permutations, where exactly one individual is
computed by a GOA heuristic [9], so as to provide a
"seed" to the GA, which accelerates the convergence to-
wards the optimum. In each iteration (generation) of
the GA, the �tness of all individuals in the population
is evaluated. The "strong" individuals (i.e., a fraction
of the total population with highest �tness) are selected

for crossover. On a fraction of the o�spring generated
by crossover, a mutation is performed. Finally, the o�-
spring replaces the "weak" individuals in the popula-
tion. This is iterated until a termination condition is
satis�ed. After termination, the �ttest individual in the
�nal population is emitted as the best solution.

A crucial aspect in the applicability of GAs are
the parameters that guide the optimization procedure.
Based on extensive experimentation, we have selected
the following parameters:
Mutation probability per gene: 1=(n+ k � 1)
Population size: 30 individuals
Replacement rate: 2/3 of the population size
Termination condition: 5,000 generations or 2,000
generations without a �tness improvement

For GOA problem sizes of practical relevance (jV j �
90; jSj � 100), we have measured maximum runtimes of
12 CPU seconds on a 300 MHz Pentium II PC. This
is about 10 times more than for previously published
heuristics. However, as shown in the following, the GA
procedure achieves better solutions, so that the addi-
tional computation time is justi�ed.

3.6 Results

We have statistically evaluated the performance of the
above genetic optimization, as compared to the GOA
heuristic described in [9]. For di�erent problem param-
eters (k, jSj, and jV j) we have measured the average
quality of computed GOA solutions over 100 random
variable access sequences2 . The results are summarized
in table 1 which gives the average number of extra in-
structions for address computations for each parameter
combination, as well the percentage of the GA as com-
pared to the heuristic.

The results show, that the proposed GA on the av-
erage outperforms the heuristic by 18 %. The general-
ization described in the next section, however, provides
even higher improvements.

4 Inclusion of modify registers

As explained in section 1, also auto-modify operations
can be exploited to avoid code overhead for address
computations. Auto-modifys permit to implement some
address computations in parallel which cannot be cov-
ered by auto-increments. This requires that MRs be
loaded with appropriate values, i.e., o�set di�erences.
While previous GOA algorithms neglect auto-modifys,
exploitation of such operations may lead to reduced ad-
dress computation code.

So far, few approaches have been reported to ex-
ploit MRs during o�set assignment. Wess [15] consid-
ered the AGU architecture of an ADSP-210x, which con-
tains m = 4 MRs. In his technique, these MRs are stat-
ically loaded with the values f-2,-1,1,2g. Conceptually,
this approach is equivalent to an increase in the auto-
increment range l, which will be discussed in section 5.

2Text �les containing all detailed problem instances and com-
puted o�set assignments can be obtained from the authors.

k jSj jV j GOA [9] GA %

2 50 10 14.3 11.9 83
2 50 20 18.0 16.3 91
2 50 40 10.4 9.8 94
2 100 10 33.0 29.3 89
2 100 50 41.6 41.0 98
2 100 90 11.2 11.0 98
4 50 10 5.7 4.3 75
4 50 20 10.7 7.0 65
4 50 40 9.5 7.1 75
4 100 10 9.8 6.6 67
4 100 50 29.0 27.5 95
4 100 90 9.5 8.2 86
8 50 10 5.0 4.2 84
8 50 20 9.0 5.7 63
8 50 40 11.9 7.1 60
8 100 10 5.0 5.0 100
8 100 50 20.6 15.9 77
8 100 90 12.7 9.0 71

average 82

Table 1: Experimental results: Genetic optimization for
GOA

In [9], we have argued that dynamic loading of MRs
yields a higher optimization potential, since a larger
search space is explored. It has been shown, that an
extension of a page replacement algorithm (PRA) for
operating systems [12] can be applied to determine the
best values of m MRs at each point of time. The main
idea of the PRA is, that a new o�set di�erence d should
be loaded into a MR currently storing a value d0 6= d,
whenever the next use of d in the remaining sequence of
address computations precedes the next use of d0. The
e�ect of the PRA, as compared to a pure GOA solu-
tion, is exempli�ed in �g. 3 a) and b). The algorithm
is not a�ected by orthogonality or signed-ness of MRs
(cf. section 1). In fact, the PRA yields optimal results,
but needs to be applied as a post-pass optimization after
solving GOA. Thus, its potential optimization e�ect is
already reduced by the computed o�set assignment.

Considering auto-modifys during o�set assignment
gives much higher opportunities for optimization. As
illustrated in �g. 3 c), better and completely di�erent
memory layouts than with the pure GOA approach may
be computed when simultaneously considering auto-
modifys.

We can exploit this additional optimization poten-
tial in the GA technique from section 3 by integrating
the PRA into the �tness function Z. Using an appro-
priate implementation, the PRA takes only linear time
in jSj and thus hardly increases the runtime required to
compute Z(S), which also takes linear time. The inte-
gration works as follows: The PRA is executed on each
o�set assignment represented by an individual I in the
population. It returns the numberM (I) of address com-
putations that can be saved (besides application of auto-
increment) by optimal exploitation of auto-modifys for
the represented o�set assignment. The �tness function

*
*
*

*
*
*

*

*

AR1 = 2
AR1 --
AR1 += 3
AR1 ++
AR1 -= 2
AR1 --
AR1 ++
AR1 --
AR1 += 3
AR1 -= 3
AR1 +=2
AR1 --
AR1 += 0
AR1 += 0
AR1 -= 2
AR1 ++
AR1 --
AR1 ++
AR1 += 0
AR1 += 3

1
2
3
4
5

v4
v0
v2
v1
v3

offs.
ass.

*

*

*

*

* AR1 = 2
AR1 --
MR1 = 3
AR1 += MR1
AR1 ++
AR1 -= 2
AR1 --
AR1 ++
AR1 --
AR1 += MR1
AR1 -= MR1
MR1 = 2
AR1 += MR1
AR1 --
AR1 += 0
AR1 += 0
AR1 -= MR1
AR1 ++
AR1 --
AR1 ++
AR1 += 0
AR1 += 3

1
2
3
4
5

v4
v0
v2
v1
v3

offs.
ass.

1
2
3
4
5

v3
v2
v1
v0
v4

offs.
ass. *

*

*

AR1 = 4
AR1 ++
MR1 = 2
AR1 -= MR1
AR1 -= MR1
AR1 ++
AR1 += MR1
AR1 -= MR1
AR1 += MR1
MR1 = 3
AR1 -= MR1
AR1 += MR1
AR1 --
AR1 --
AR1 += 0
AR1 += 0
AR1 += MR1
AR1 --
AR1 ++
AR1 --
AR1 += 0
AR1 -= MR1

S = (v0, v4, v1, v3, v2, v0, v2, v0, v3, v0,
v1, v2, v2, v2, v4, v0, v4, v0, v0, v3)

V = {v0, v1, v2, v3, v4}

a) c)b)

Figure 3: Example for exploitation of modify registers
(k = 1;m = 1), "*" denotes address computations
not implemented by auto-increment or auto-modify: a)
GOA solution, b) post-pass utilization of auto-modifys
with PRA, c) integrated GOA and MR exploitation (op-
timality can be shown for this example)

from section 3 is replaced by

Z(I) =
m�1X
i=1

d(i) +M (I)

This approach uses the PRA no longer as a post-pass
procedure, but as an additional means to measure the
quality of an o�set assignment during the GA. There-
fore, the potential optimization due to MRs in
uences
the computed o�set assignment itself.

We have compared the performance of the GA using
the new �tness function to a "conventional" approach
that uses the PRA only as a post-pass optimization after
GOA. The results are shown in table 2. The parameters
are like in table 1. The number m of MRs (unsigned
values assumed) has been set equal to k. The GA based
technique yields better results than the previous tech-
nique for all parameter combinations, with an average
reduction of costly address computations of 32 %.

5 Inclusion of larger auto-incre-
ment ranges

So far, we have considered a �xed auto-increment range
(AIR) of l = 1, which is, for instance, given in the TI
'C25 and the Motorola 56000 DSPs. Other machines,
such as the TI 'C80 or the AMS Gepard have an AIR of
l = 7, i.e., much larger o�set di�erences can be covered
by auto-increment operations.

k = m jSj jV j post-pass integrated %

2 50 10 5.9 3.6 61
2 50 20 11.4 6.5 57
2 50 40 9.1 6.9 67
2 100 10 12.6 4.0 32
2 100 50 38.6 28.7 74
2 100 90 11.0 9.5 86
4 50 10 5.0 4.0 80
4 50 20 7.6 5.1 67
4 50 40 9.0 6.2 69
4 100 10 5.2 4.1 79
4 100 50 17.3 9.3 54
4 100 90 8.7 7.2 83
8 50 10 5.0 4.0 80
8 50 20 8.9 5.2 58
8 50 40 11.7 7.3 62
8 100 10 5.0 4.1 82
8 100 50 15.0 9.9 66
8 100 90 12.2 8.6 70

average 68

Table 2: Experimental results: GOA including auto-
modify optimization

An optimization technique for AGUs with an ar-
bitrary AIR l � 1 has been given in [13]. It is an ex-
tension of the graph-based heuristic reported in [6], and
actually considers the AIR only when solving the SOA
problem, i.e., after the variables have been assigned to
ARs. Therefore, its optimization e�ect for GOA is pre-
sumably very limited. Furthermore, the potential use of
MRs is neglected.

As already mentioned in section 4, Wess' technique
[15] uses static MR values to achieve an AIR of l = 2.
The o�set assignment is computed by simulated anneal-
ing. Similarly, also the technique in [14] only works for
a �xed AIR of l = 2.

Our GA approach permits to accommodate arbi-
trary l values during GOA by a minor modi�cation
of the �tness function. Instead of checking jF (si) �
F (si+1)j � 1 during computation of the d(i) values from
section 3.4, we check, whether jF (si) � F (si+1)j � l.
Thereby, an address computation is only considered
"costly", if the o�set distance exceeds l.

Since this extension is completely independent of
the MR utilization technique from section 4, our GA
technique actually considers the trade-o� between auto-
increments and auto-modifys (with dynamicMR reload-
ing) when optimizing the o�set assignment. As com-
pared to an approach with static MR contents, this pro-
vides better solutions.

For experimental evaluation, we have compared our
generalized GA technique to Wess' approach. The pa-
rameter combinations and results are taken from [15],
while the AGU con�guration corresponds to that of an
ADSP-210x DSP. Table 3 summarizes our results.

Column 3 gives the results (number of extra in-
structions for address computations) achieved by Wess'
technique. Since in that approach, the 4 available MRs
are statically loaded with the values -2, -1, 1, 2, no fur-
ther MRs are left (m = 0), and the e�ective AIR is

(jV j; jSj) k Wess GA % GA %
l = 2 l = 2 l = 0

m = 0 m = 0 m = 4

(15,20) 1 1.8 2.2 122 0.9 50
(10,50) 1 11.9 14.1 118 10.2 86
(10,50) 2 1.8 1.2 67 1.0 56
(25,50) 2 6.7 7.6 113 6.7 100
(40,50) 4 3.0 1.1 37 0.8 27
(50,100) 4 15.6 17.4 112 13.9 89
average 95 68

Table 3: Experimental results: Generalized GA

l = 2. Column 4 shows the GA results for the same
con�guration, i.e., l = 2;m = 0, while column 5 shows
the percentage. The results are of similar quality on the
average. This is no surprise, since the simulated anneal-
ing technique is known to produce results of a quality
comparable to GAs.

However, as indicated by the data in column 6
(percentage in column 7), the GA outperforms Wess'
technique, when the restriction of static MR contents
is removed, so that all 4 MRs become available for dy-
namic reloading. Since the ADSP-210x permits no auto-
increments without using MRs, we have set l = 0. As
can be seen, the larger
exibility in most cases results
in better solutions, since the GA itself decides whether
static or dynamic values of MRs are preferable for a cer-
tain instance of the o�set assignment problem. On the
average, the amount of extra instructions for address
computations is reduced to 68 %.

6 Conclusions

O�set assignment is a relatively new code optimization
technique for DSPs, which exploits the special address
generation hardware in such processors. We have pre-
sented a novel GA based approach to solve o�set as-
signment problems for di�erent AGU con�gurations of
DSPs. One main advantage of the proposed technique
is, that the functionalities of a number of previous tech-
niques are covered by a uniform optimization procedure,
which is only adjusted by parameters in the �tness func-
tion. In addition, as a consequence of its generality, the
GA yields signi�cantly better o�set assignments than
previous algorithms. Practical applicability in compil-
ers is ensured, because the GA is su�ciently fast and
comparatively easy to implement. We are currently in-
vestigating further generalizations of the GA technique,
such as incorporation of variable live range information
and o�set assignment in presence of multiple AGUs.

References

[1] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and
Optimizations for Address Computation in DSP Architectures, 9th
Int. Symp. on System Synthesis (ISSS), 1996

[2] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retar-
getable Compilation and Exploration of Instruction-Set Architec-
tures, 33rd Design Automation Conference (DAC), 1996

[3] C. Gebotys: DSP Address Optimization Using a Minimum
Cost Circulation Technique, Int. Conf. on Computer-Aided De-
sign (ICCAD), 1997

[4] R. Leupers, A. Basu, P. Marwedel: Optimized Array Index
Computation in DSP Programs, Asia South Paci�c Design Au-
tomation Conference (ASP-DAC), 1998

[5] D.H. Bartley: Optimizing Stack Frame Accesses for Processors
with Restricted Addressing Modes, Software { Practice and Ex-
perience, vol. 22(2), 1992, pp. 101-110

[6] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage
Assignment to Decrease Code Size, ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
1995

[7] N. Sugino, H. Miyazaki, S. Iimure, A. Nishihara: Improved Code
Optimization Method Utilizing Memory Addressing Operation
and its Application to DSP Compiler, Int. Symp. on Circuits
and Systems (ISCAS), 1996

[8] B. Wess, M. Gotschlich: Constructing Memory Layouts for Address
Generation Units Supporting O�set 2 Access, Proc. ICASSP, 1997

[9] R. Leupers, P. Marwedel: Algorithms for Address Assignment in
DSP Code Generation, Int. Conf. on Computer-Aided Design (IC-
CAD), 1996

[10] L. Davis: Handbook of Genetic Algorithms, Van Nostrand Rein-
hold, 1991

[11] B. Landwehr, P. Marwedel: A New Optimization Technique for
Improving Resource Exploitation and Critical Path Minimiza-
tion, 10th Int. Symp. on System Synthesis (ISSS), 1997

[12] L.A. Belady: A Study of Replacement Algorithms for a

Virtual-Storage Computer, IBM System Journals 5 (2), pp. 78-
101, 1966

[13] A. Sudarsanam, S. Liao, S. Devadas: Analysis and Evaluation
of Address Arithmetic Capabilities in Custom DSP Architec-
tures, Design Automation Conference (DAC), 1997

[14] N. Kogure, N. Sugino, A. Nishihara: Memory Address Alloca-
tion Method for a DSP with � 2 Update Operations in Indirect
Addressing, Proc. ECCTD, Budapest, 1997

[15] B. Wess, M. Gotschlich: Optimal DSP Memory Layout Gen-
eration as a Quadratic Assignment Problem, Int. Symp. on
Circuits and Systems (ISCAS), 1997

