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Abstract: This paper describes the hierarchical test-generation method STAR-DUST, using self-
test program generator RESTART, test pattern generator DUST, fault simulator FAUST and
SYNOPSYS logic synthesis tools. RESTART aims at supporting self-test of embedded processors.
Its integration into the STAR-DUST environment allows test program generation for realistic fault
assumptions and provides, for the �rst time, experimental data on the fault coverage that can be
obtained for full processor models. Experimental data shows that fault masking is not a problem
even though the considered processor has to perform result comparison and arithmetic operations
in the same ALU.

1 Introduction

Test generation methods have traditionally focussed very much on gate level descriptions. Ad-
vantages of this approach include the availability of well-de�ned fault models and a good fault
coverage. Disadvantages include the growing complexity of gate-level descriptions, resulting in
large tool execution times and the lack of applicability of these techniques during early design
phases.

As another extreme case, test generation methods based on purely behavioural circuit descriptions
(for example, on instruction set descriptions) have a rather weak relation to possible physical
defects.

Consequently, in our earlier work we have focussed on test generation methods based on circuit
descriptions at an intermediate level. More precisely, we have chosen the RT structural level since
physical defects can easily be represented at this level. In particular, we have focussed on exploiting
programmability of processors such as DSP processors [Lee88], core processors [Adv95, LSI96], and
ASIPs [Wou94, HD95]. Such processors are amenable to self-testing by running self-test programs
on the processors themselves. It has been shown, that such self-test programs can be generated
automatically from test speci�cations for each of their components [Kr�u91, BM95].
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So far, there has been neither a full integration of self-test program generation into standard test
environments nor has there been any proof of the good fault coverage expected for this approach.
Introducing such a full integration and demonstrating the achievable fault coverage are the main
goals of this paper. We will show that self-test programs provide a good fault coverage not only
for the data path (which was expected) but also for the controller. For the testing the ALU of
processor having just a single ALU, the same ALU has to perform also the result comparison. This
could potentially lead to fault masking e�ects. Our experimental data shows that fault masking
can be avoided, even for the simple processor which we will consider.

In the appendix, we will also include an example demonstrating the limitations of the approach
and draw conclusions for the type of modelling required for obtaining good fault coverages. In
addition, we will mention how STAR-DUST can be used in a design procedure leading to a high
fault coverage.

This paper is structured as follows: section 2 describes related work, section 3 explains the procedure
used in STAR-DUST and section 4 contains an example. In section 5 we will present our results,
and section 6 provides �nal remarks. In the appendix, we demonstrate why a purely behavioural
modelling approach would not work.

2 Related Work

Test generation based on RT-level descriptions has been tried in a number of cases. For example,
WHISTLE [RSS89] focusses on library-based designs. Application of such approaches still seems
to be limited.

Some authors have tried to exploit the presence of complex resources in modern data paths for test
generation and compression. For example, Kunzmann [Kun94] and Rajski [RT96] have published
papers in this area.

Some authors have proposed to exploit programmability of digital processors. A very well-known
approach for testing processors is that of Abraham et al. Abraham's [BA84] approach is based
on instruction set models. This modelling paradigm is both a strength and a limitation of the
approach. The strength is that is does not require information other than the information available
in instruction set manuals. However, this information is not su�cient for obtaining a strong relation
between the model and physical faults.

Consequently, Lee and Patel have proposed the ARTEST system [LP92a, LP92b], which is based
on RT-level descriptions and is able of generating instructions resulting in the justi�cation and
propagation of test vectors. However, the generation of full self-test programs seems to be beyond
the scope of ARTEST.

Being able to generate full self-test programs performing all the essential operations is the main
strength of RESTART [BM95] and its predecessor MSST [Kr�u91]. RESTART (retargetable com-
pilation of self-test programs using constraint logic programming) is the tool used for this paper.
RESTART is the very �rst tool which has incorporated ideas employed in retargetable compilers
(see [MG95] for survey).
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3 Structure of STAR-DUST test generation process

The work described in this paper is directed at using RESTART for the automatic generation of a
comprehensive processor test program based on realistic fault models. This requires the availability
of both RT-level and gate-level models for the same processor. These models are used by the tools
implementing the essential tasks of our current approach:

1. synthesis of gate-level descriptions for each of the RT-level components,

2. test pattern generation for each of the RT-level components from their gate-level descriptions,

3. generation of machine instructions implementing justi�cation and response propagation for
each of the test patterns,

4. fault simulation computing the fault coverage achieved by running self-test programs.

The tools and data formats currently used for these four tasks are shown in �g. 1.
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Figure 1: STAR-DUST test generation process

We start with an RT-level structural description of the processor under test. Input formats currently
available for this purpose include VHDL [IEE92] or MIMOLA [BBH+94].
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From this speci�cation, we have to obtain equivalent gate level descriptions. For this purpose, we
run the SYNOPSYS logic synthesis tools [Syn95] for each of the RT-level components. In �g. 1 it
is assumed that our processor consists of just four components: register �le reg file, an ALU, an
ALU multiplexer, and a controller.

Gate-level descriptions for each of the components are required for the tool implementing task 2.
An overall 
attened netlist for the entire processor is required for fault simulation (task 4). Gate-
level descriptions generated by SYNOPSYS tools have to be translated into the ISCAS benchmark
format required for ATPG and fault simulation tools.

Next, we select a heuristic order for processing RT-level components. (in �gure 1, components
drawn in front are processed �rst). Respecting that order, we do the following for each RT-level
component:

� We use the DUisburg Sequential Test generator DUST [GK91a] for obtaining test pattern
sets for the current component (e.g. the register �le). DUST is an enhanced implementation
of the BACK algorithm [Che88].

Concerning a certain RT component, there may be some restrictions on the input vectors X(t)
and state vectors Z(t) of the current component which can be justi�ed. These restrictions
may be imposed e.g., by encoding restrictions or the connections of the processor in which
the RT component is embedded. For all but the �rst iteration of the loop, faults covered by
already generated test program segments are also taken into account. If all faults are covered
by such segments, the component is e�ectively skipped.

Test pattern produced by DUST have to be translated into the test code language (TCL)
accepted by the next tool. This translation is straightforward.

� Self-test programs are synthesized using RESTART. RESTART produces programs justifying
test patterns and evaluating test responses. Evaluation of test responses is done by conditional
jumps.

Example: Consider a test pattern for an ALU. Suppose control code \10\ activates the add
operation of the alu, and assume that binary values \0111\ and \0001\ have been selected
as test patterns by DUST. Then, a test for the add operation is speci�ed in TCL by the
following statement:

TEST alu(0111,0001,10);

The result should be 1000. RESTART generates code, which activates (i.e. justi�es) the +
operation and checks the result by a conditional jump:

IF 0111 + 0001 = 1000

THEN increment program counter

ELSE jump to error label;

Every TEST statement is compiled to a conditional jump. If no error occurs, the program
continues with the execution of the next instruction of the self-test program, otherwise a
jump to an error procedure is performed. TCL allows the speci�cation of all kinds of tests
including memory test loops.

The following requirements must be met by processors to be tested with code generated by
RESTART:
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1. The processor to be tested must be able to perform a comparison operation and to
perform a conditional jump.

2. The processor must be programmable.

3. The program counter must be observable (on the other hand, a scan path is not neces-
sary).

4. A single instruction cycle is required.

Details on the code generation technique in RESTART can be found in recent papers and
books [BM95, Bie95b, Bie95a].

� Programs generated by RESTART are then used as initial stimuli for fault simulation at the
gate-level. This way, the coverage of the programs produced by RESTART can be computed.
Fault simulation is based on the gate-level stuck-at fault model.

In our �rst approach we use FAUST (FAult Simulation Tool), a very e�cient single pattern,
single fault propagation method. FAUST has been extended to handle a ROM, assuming
faults only on the data and address line of the ROM. The instruction memory itself is assumed
to be fault free. To speed up the fault simulation process we will replace FAUST by PARIS
(PARallel Iterative Simulator), a parallel pattern single fault propagation simulator [GM93,
GK91b].

Information about covered faults is exploited in the next cycle of the loop in order to reduce
the size of the required test pattern set.

The loop terminates if all RT-level components have been considered.

RESTART, DUST and FAUST are the essential ingredients of this test generation process. Hence,
we call this process STAR-DUST.

4 An Example

In order to demonstrate the test generation 
ow, let us use the CPU SIMPLECPU depicted in �g. 2.
SIMPLECPU is a small programmable microprocessor consisting of eight modules. The SIMPLECPU

controller (shaded area) consists of a program counter, an instruction memory, an incrementer, and
a multiplexer.

A 16 x 4 register �le, a 4-bit ALU and a second multiplexer make up the datapath. The register �le
and the program counter are synchronized by a clock. Control signals are denoted by "c" followed
by an index range. The 8-bit program counter addresses the 256 x 22 bit instruction memory. The
ALU computes a condition output that enables the controller multiplexer to perform conditional
jumps.

The gate-level description of SIMPLECPU can be synthesized. The resulting circuit consists of 467
gates and 72 D-
ip-
ops.

Let us now explain the experimental procedure for generating a test program for SIMPLECPU. We
start by developing the self-test program for testing the register �le (1st iteration) and catenate
self-test program segments for the other RT-components.
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Figure 2: SIMPLECPU

1st iteration: We assume D-
ip-
ops have neither a set nor a reset input. Therefore, we can
not detect faults which prevent the initialization of the D-
ip-
ops. DUST marks such faults as
untestable. In total, SIMPLECPU has 6 untestable faults.

Using test frames [GK91a], we prune the search space of the test generator. Faults which can not
be detected because of a test frame are called functionally untestable. We found 4 faults in the
register �le and 2 faults in the controller to be functionally untestable.

As example for a test frame we consider the register �le, which is embedded in the complete circuit.
If a certain register cell should be tested, the signal wr enable must be `0` (read mode) and the
ALU must perform a comparison operation in order to compare the output value of the register �le
with the expected value. The comparison is done by a subtract operation and a comparison with
zero, i.e. (outdata - expected value) = `0`. Therefore, in the non-faulty case the output of the ALU
which feeds the data input of the register �le is restricted to the binary value 0000. To summarize,
in the context of self-test programs generated by RESTART, wr enable = `0` implies indata =
0000. This restriction concerning test patterns of the register �le is speci�ed as test frame.

2nd iteration: By applying the abovementioned 193 test patterns to the register �le we achieve
a fault coverage of 49:08% for alu. To detect the remaining faults of alu, DUST generates 17 test
patterns. The resulting self-test code consists of 51 instructions, i.e., 3 instructions are necessary
to apply an ALU test pattern and to check the test response. We illustrate such a test cycle by an
example.

One of the 17 generated test patterns activates the + operation of the ALU with data \0000\ and
\1111\. The according TCL statement is:

TEST alu(0000,1111,10);

The expected test response of the ALU output signal result is \1111\. Table 1 shows the resulting
code for above TCL statement.

Additionally, we expect the test pattern \1111\ at every instruction cycle at the primary input.
The �rst instruction loads register 0 with the binary value \0000\ which has to be applied to the
�rst input port of the ALU. Value \0000\ directly originates from the instruction memory (signal
c(21:17)). The second instruction applies the generated test pattern and activates the + operation
of the ALU (\1111\ originates from the primary input). Instruction 3 �nally checks the result of
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21 20:17 16:9 8:7 6:5 4 3:0 Comment

1 0000 X� � �X 00 01 1 0000 REG[0] := 0000

0 XXXX X� � �X 00 10 1 0000 REG[0] := REG[0] + 1111

0 XXXX 11111111 10 11 0 0000 IF (REG[0] - 1111) = 0 THEN
PC := PC+1 ELSE PC := 255

Table 1: Code for an alu test cycle

the ALU by activating the comparison operation of the ALU and performing a conditional jump.
In case of a fault, the program jumps to the user de�ned error addres 255 (the program counter
must be observable). Otherwise the self-test program continues with the execution of the next test
statement. A fault in the comparison unit of the ALU is detected by di�erent conditional jumps
and therefore can be observed at the program counter.

An additional reset pin exists to initialize the program counter with 0. Therefore, the �rst instruc-
tion of the generated self-test program is located at address 0.

3rd iteration: Test generation for alumux is e�ectively skipped, because the test program segments
generated for reg file and alu already provide a 100 % fault coverage for this component.

4th iteration: Testing the controller is mainly implicitly done by the self-test program developed
so far. Adding 6 (conditional and unconditional) jump instructions results in a fault coverage of
98:36% for the controller. Currently, these 6 TCL statements have to be added manually, but
automation of this step can be added to RESTART.

5 Results

5.1 Results for SIMPLECPU

The entire self-test program for SIMPLECPU consists of 250 instructions and the achieved fault
coverage for SIMPLECPU (including data path and controller) is 99:63%.

Table 2 gives information and results concerning the example processor SIMPLECPU.

RT- gates DFF's 
t's det untest f untest aborted fault e�ciency
component coverage

reg file 316 64 2256 2252 0 4 0 99.82% 100.00%
alu 70 0 436 436 0 0 0 100.00% 100.00%
alumux 13 0 76 76 0 0 0 100.00% 100.00%
controller 68 8 488 480 6 2 0 98.36% 100.00%

SIMPLECPU 467 72 3256 3244 6 6 0 99.63% 100.00%

Table 2: SIMPLECPU results

For every RT component and the entire processor, table 2 shows the number of gates, the number of
D-
ip-
ops, the number of stuck-at faults, the number of detected faults, the number of untestable
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faults, the number of functional untestable faults, the number of aborted faults, the fault coverage
for the stuck-at fault model, and the e�ciency.

To illustrate the abovementioned iterations consider table 3. It shows the number of generated
test patterns and the resulting fault coverage for the di�erent components iteration by iteration.
Initially, we generated 193 test patterns for the register �le. The resulting test code for these 193
patterns already detects e.g., 81:35% of the controller faults. The �nal self-test program consists
of 193+ 3 � 17+ 6 = 250 microinstructions. With the help of the 6 jump instructions of step 4, we
detected 82 remaining faults of the controller.

additional reg file alu alumux controller

patterns

1st iteration 193 99,82 % 49,08 % 100 % 81,35 %

2nd iteration 17 99,82 % 100 % 100 % 81,55 %

3rd iteration 0 (skipped) 99,82 % 100 % 100 % 81,55 %

4th iteration 6 branches 99,82 % 100 % 100 % 98,36 %

Table 3: Course of development of self-test program and fault coverage

The results show, that the self-test program approach can achieve high fault coverages for the data
path as well as for the controller. Interestingly enough, fault masking can be avoided even for this
simple processor.

DUST RESTART FAUST

CPU seconds 4.12 93.56 5.77

Table 4: CPU times measured on a Sparc 20

Table 4 shows the CPU times for the di�erent tools for SIMPLECPU. For DUST the sum of
CPU times required to generate test patterns for all RT components is given. The hierachical
test approach divides the complex test problem for the entire processor in several less complex
subproblems. Therefore, we are able to generate a test within minutes.

For this example, RESTART is the tool consuming most the computing time. To some extend, this
is caused by focussing on the functionality of RESTART, rather than on its speed. RESTART is
implemented in a non-standard programming paradigm, called constraint logic programming, which
might have caused some runtime penalty.

5.2 Results for Tanenbaum Example

As a slightly more complex example, we have studied an architecture described by Tanenbaum
[Tan90]. For this example, the gate-level description contains 1936 gates and 296 D-type 
ip-

ops. There are 6803 possible stuck-at faults, of which 38 are untestable. Using the STAR-DUST
procedure, a fault coverage of 95.88 % is obtained, corresponding to an e�ciency of 96.44 %. The
resulting self-test program requires 246 instructions. The architecture allows up to 255 instructions.
A higher fault coverage could have been achieved without the limit on the number of instructions.
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For this example, automatic code generation for loops was not possible due to the limited support
of loops in the particular architecture. Hence, a loop for testing the register �le was manually
speci�ed leading to a total of 54 static instructions. All other instructions were synthesized from
automatically generated TCL statements.

6 Final Remarks

6.1 Characteristics of the STAR-DUST approach

STAR-DUST meets a large number of di�erent objectives:

� STAR-DUST is the �rst test generation process computing the fault coverage which can be
achieved by self-test programs.

Computed coverage is implicitly based on the assumption that the synthesized gate-level
description is the one actually implemented.

� STAR-DUST is a hierarchical test generation process reducing the complexity of generating
test patterns for the entire processor to that of generating test patterns for each of the
components.

Test generation proceeds at a high level of abstraction (using RESTART) while at the same
time preserving the high fault coverage through gate level fault modelling.

� STAR-DUST reduces the length of the test program by considering faults covered by tests
generated for one component during subsequent generation of test patterns.

� Errors during logic synthesis usually result in error reports during fault simulation. Hence,
fault simulation is e�ectively used for validating the consistency of RT-level and gate-level
models. STAR-DUST can be employed for model validation! In particular, logic synthesis
results can be validated this way.

� Processor testability can be improved with the help of additional redesign cycles.

6.2 Future Work

Ongoing research is extending the work of the current paper into the following directions:

� Experimentation with larger processor models.

� Optimization of the sequence in which RT-components are considered.

� More sophisticated testing of the branching logic.

� More sophisticated fault models for the controller.

� More detailed control over hierarchy expansion/hierarchy preservation.

� Code size reduction through more e�cient usage of loops.
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� Tighter integration of the tools.

� Attempts to avoid the 
at netlist currently required by FAUST.

� Analysis of the bene�t of additional redesign cycles.

� Use of the approach for validating HDL descriptions.

Several of these directions are expected to be promising.

6.3 Conclusion

In this paper, we have described a hierarchical approach to testing, combining a high level of
design abstraction with precise fault modelling and we have demonstrated that self-test programs
can achieve a high coverage of gate-level stuck-at faults. This is the very �rst time, detailed
information about the characteristics of this approach is available. Experimental data shows that
fault masking can be avoided even for the very simple architecture that we considered.

Also, the current approach opens opportunities for testability improvements and model validation.
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Appendix: Why a behavioural test would not work

As an example for the insu�ciency of a behavioural test, we consider the register �le of our example.
The behavior of the register �le is described as follows:

ENTITY RegFile IS

PORT (address : IN UNSIGNED (3 Downto 0);

indata : IN UNSIGNED (3 Downto 0);

wr_enable: IN UNSIGNED (0 Downto 0);
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c : IN bit; -- clock

outdata : OUT UNSIGNED (3 Downto 0));

END RegFile;

ARCHITECTURE behavior OF RegFile IS

TYPE rfile IS ARRAY (15 Downto 0)

OF UNSIGNED (3 Downto 0);

SIGNAL register_file: rfile;

BEGIN -- 16 x 4 register file

p: PROCESS (address, indata, wr_enable, c)

BEGIN -- PROCESS p

IF ( (c = '1') and (not c'stable) ) THEN

IF (wr_enable = CONV_UNSIGNED(1,1) ) THEN

register_file(CONV_INTEGER(address)) <= indata;

END IF;

END IF;

END PROCESS p;

outdata <= register_file(CONV_INTEGER(address));

END behavior;

This behavior can be implemented by RT structures as shown in �g. 3a) and �g. 3b).
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c: clock
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Figure 3: Register File

Both structures have the same functionality. However, because of the bypass register the register
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�le in �g. 3a) is much faster than the simple structure of �g. 3b). Additional bu�er registers store
indata and address in �g. 3a). The multiplexer is controlled by a comparator and selects from the
latch for indata and the output of the 16 x 4 register �le. Every latch comes with 4 additional D-

ip-
ops. Of course, testability of the structure shown in �g. 3b) is much better than the testability
of the structure shown in �g. 3a).

In our �rst approach a behavioural standard test loads, reads and checks every register of �g. 3a)
with two test patterns: \1010\ and \0101\. This is speci�ed by the following TCL statement:

FOR address := 0 TO 15 DO TEST register file := 1010;

The generated code has 64 instructions and requires 64 test patterns. The resulting fault coverage
is disappointing: Only 13:25%.

The reason for the low fault coverage is quite simple: A pattern which is written into a register cell
and read immediately in the next instruction cycle is bu�ered in the bypass register. A behavioural
test writes and checks only the bu�er register. Possible solutions to this problem include:

1. a redesign of the register �le, possibly leading to a larger cycle time,

2. expanding reg file down to the next level of the hierarchy before attempting test generation,

3. manually specifying a TCL program interleaving the tests of the di�erent locations within
reg file. applying a set of test patterns generated by an ATPG tool at the gate level.

To achieve a high fault coverage, DUST has been used in the actual experiments to generate test
patterns for the gate-level model synthesized by SYNOPSYS. This corresponds to implicitly using
solution 2. DUST generates a sequence of 193 test patterns for the embedded register �le. This
compares with 755 test patterns generated by SYNOPSYS for the same hardware. The 193 test
patterns are compiled by RESTART and the resulting fault coverage of the code is 99:82% for the
register �le.


