
Interface Synthesis for Embedded Applications

in a CoDesign Environment

Anupam Basu � R. S. Mitra P. Marwedel
Dept. of Computer Sc. & Engg. Informatik XII

I.I.T. Kharagpur University of Dortmund
India Germany

Abstract

In embedded systems, programmable peripherals
are often coupled with the main programmable
processor to achieve the desired functionality.
Interfacing such peripherals with the processor
quali�es as an important task of hardware soft-
ware codesign. In this paper, three important as-
pects of such interfacing, namely, the allocation
of addresses to the devices, allocation of device
drivers, and approaches to handle events and
transitions have been discussed. The proposed
approaches have been incorporated in a codesign
system MICKEY. The paper includes a number
of examples, taken from results synthesized by
MICKEY, to illustrate the ideas.

1 Introduction

The software in an embedded system may be
loosely said to consist of two parts: the applic-
ation software and the system software, where
the former achieves the functionalities delegated
to software (by hardware-software partitioning),
and the latter provides the interface between the
former and the hardware counterpart of the over-
all system. Thus, the objective of the system
software is to (a) implement the desired react-
ive behavior, by initiating state changes in re-
sponse to incoming events, and (b) drive the ac-
cessory hardware devices of the system, in order
that they perform the functionalities delegated to
them. In this paper, we propose techniques for
developing event-handlers and device-drivers for
embedded systems.
Frameworks for automated design of micro-

controller based systems have been proposed in

�Presently at the University of Dortmund on Hum-

boldt Fellowsh ip

[1, 2, 3, 4]. The thrust of recent research in
hardware software interfacing has been in the
�eld of synthesizing interfaces for devices. An
early work on the development of interfaces for
available devices [5] described techniques for im-
plementing the interface by hardware elements
alone. A later work [6] extended this technique
to include software implementations of the inter-
face as well, through a manual partitioning of the
interface functionalities into hardware and soft-
ware implementable partitions. This issue has
also been addressed in [7].

In embedded systems, events are either polled
by software or treated as interrupts to the nor-
mal processing of the microcontroller. In the lat-
ter case, the interrupt service code (ISC) gen-
erates the necessary response to the incoming
event. In many cases, the interrupt method is the
preferred way of handling events, since the mi-
crocontroller is then free to perform other tasks.
Hence, the development of the ISCs is a key is-
sue in the development of microcontroller based
systems. However, to our knowledge, no system-
atic methodology has yet been proposed for the
automated development of ISCs.

The work presented in this paper is a part of
the systemMICKEY- a system for hardware soft-
ware codesign of microprocessor based systems
[8]. In MICKEY, we accept the user speci�ca-
tion in the form of statecharts and re�ne them ,
using rules, to arrive at a control and data ow
graph (CDFG). The leaf level elements of the
CDFG, thus obtained designate primitive func-
tions (pfs), for which either hardware or soft-
ware implementations are known to exist in the
design library. The CDFG is then subjected to
hardware software partitioning, which allocates
implementations (either hardware or software),
to the primitive functions. A schedule of the op-



erations is also obtained in the course of parti-
tioning. The partitioning is achieved using con-
straint satisfaction techniques, so that the over-
all cost of the system is minimized and the time
constraints are met. This paper concentrates on
the interface design task, that follows hardware
software partitioning. This task synthesizes the
interface between the CDFG and the allocated
implementations, and thus addresses another im-
portant aspect of hardware software codesign.

Since, during the hardware software partition-
ing phase, some of the functionalities may have
been mapped to programmable devices, and some
tasks may have been assigned to be executed by
the processor in an asynchronous mode (interrupt
driven), the aspects considered in this paper for
interface synthesis are i) Allocation of noncon-
icting addresses to the devices placed on the sys-
tem bus; ii) Re�nement of the CDFG, to accom-
modate event-based and conditional transitions;
and iii) Re�nement of the CDFG, to accommod-
ate device drivers.

We assume uniprocessor environment and do
not allow any software concurrency for the pur-
pose of this paper.

2 Address Allocation

The selected microprocessor de�nes the available
address space and also imposes restrictions on
how the devices have to be mapped to it. For
example, for Intel 8085, ROM addresses should
start from 0, whereas for Motorola 6800, the start
address of ROM is not speci�ed { instead, the
ROM is constrained to end at address FFFF16.
The address allocation subtask assigns noncon-
icting addresses to the devices that are to be
placed on the system bus, such that these ad-
dress space constraints are satis�ed.

The algorithm for address allocation is shown
below. The algorithm �rst determines the
memory address space partitioning. For some
devices, like the Intel 8155, which require both
memory address space and I/O address space,
allocation of the memory address space will im-
pose a constraint on the I/O address allocation.
In such cases, I/O space is also allocated for that
device, immediately after memory address alloca-
tion. Then, the partitioning algorithm is applied
to the I/O space keeping in mind the already al-
located address ranges so that no address space
conict occurs.

allocate address
f
1. Partition memory space
2. Allocate memory blocks to constrained devices
3. Allocate memory blocks to remaining
memory-space devices
4. Partition I/O space
5. Allocate I/O blocks to remaining
I/O-space devices
g
partition address space
f

s = total address space
n = number of devices
for i=1 to n do
f bloxi = 1; sizei = address space of device i g
while (n� s � total address space) do
f

for all devices i having s=2 < sizei � s do
f

n = n+ bloxi;
bloxi = bloxi � 2;
sizei = sizei � 2;

g
if (s == 1) terminate with failure
s = s � 2

g
/* Each device (i) can now be allocated an address

space of size (bloxi � s). */
g

Example 1 As an example, consider the ad-
dress allocation for a 8085-based system hav-
ing the following hardware devices which need
a memory or I/O address space. The results are
given in Table 1. All I/O devices are connected
in I/O mapped I/O mode.
1. A ROM chip - 2716
2. An ADC chip - AD574
3. A timer chip - 8253
4. A general purpose I/O chip - 8155

2

For the peripheral devices that we have en-
countered so far, we have found that backtracking
can be avoided in the address allocation steps, by
considering the most constrained devices �rst. In
general, however, this may not be the case, and
backtracking may result in [6] when a wider range
of devices are considered.



Memory Space
Device Reqd. Space Alloc. Space
2716 80016 000016 - 7FFF16

8155 10016 800016 - FFFF16

I/O Space
Device Reqd. Space Alloc. Space
8253 416 016 - 3F16

AD574 116 4016 - 7F16

8155 816 8016 - FF16

Table 1: Addresses allocated for an example
problem

3 Handling Transitions

This subtask re�nes the CDFG, by transform-
ing the event based transitions and conditional
transitions into their detailed implementations.
Event based transitions are characteristic of re-
active systems, and thus this subtask forms a core
of the synthesis of software for microprocessor
based systems.

One way of implementing reactive systems is
to have a single forever-loop in the main process
and one subsidiary process for each event, and
implement the ow of control by call-and-return.
In this implementation, as eventsi (say e1 and e2
keep owing in, the system alternates between
the ISR for e1 and the ISR for e2, and the main
process becomes a dummy after the �rst occur-
rence of e1. Since the alteration is implemented
as a call-and-return, the system will ultimately
malfunction due to stack overow. MICKEY al-
leviates this problem by adopting the method de-
picted in Fig 1(a). Here the return addresses are
popped out of the stack, preventing the overow.
The duplicate codes of activity A can be removed
by making a jump from ISR-e2 to the main pro-
cess (see Fig 1(b))

However, for concurrent processes a di�erent
strategy is used in MICKEY. Consider two pro-
cesses (A,B) and (C,D) operating concurrently
(Fig 2(a)). Since we are considering unipro-
cessor target systems and no coroutines, A, B,
C, and D cannot all be simultaneously imple-
mented by software. Let us assume that C and
D are implemented by hardware which are star-
ted and stopped appropriately by the micropro-
cessor. Hence, the modi�ed process is as shown

POP POP

POP POP

A B A

Main ISR-e1 ISR-e2

(a)

ISR-e1

A B

Main ISR-e2

(b)

Figure 1: Implementing event-transitions by
jumps

in Fig 2(b). Here, the atomic actions for starting
and stopping the hardware devices have been at-
tached along with the respective transition arcs,
and the modules wait::1 and wait::2 are instances
of the pfs wait-for-event. For example, wait::1 is
waiting for an external event e3. On this event,
a transition to wait::2 will be made, after stop-
ping C and initiating D. The method adopted in
MICKEY for implementing such concurrent pro-
cesses is to implement each wait of the hardware
implementable process as a Return, thus return-
ing control to the other process. The ISRs for
the events of these hardware implementable pro-
cesses do not pop the stack, and since there is a
corresponding return at the end, stack size does
not grow inde�nitely. Hence, the implementation
is as shown in Fig 3.

If both the processes are allocated hardware
implementations, possibly in order to satisfy tim-
ing constraints, as shown in Fig 4(a), then this
method would derive the implementation shown
in Fig 4(b). Here, the wait of the Main CDFG is
not implemented as a Return, but as an explicit
wait-for-event.

The approach of using di�erent schemes for
software and hardware implementable processes
as well as for sequential and concurrent pro-
cesses results in relatively simpler CDFGs. These
strategies have been implemented in MICKEY as
transformation rules.



A B

Wait:1 Wait:2
Init C

Init D
e3/Stop C

e4/ Stop D
Init C

A B

C D

(a)

(b)

Figure 2: Concurrent processes with event-
transitions

In the above discussion, we have considered
transitions which are �red on the occurrence of an
event. Guard conditions can also be associated
with the transitions. Moreover, some events may
have to be disabled or enabled depending on the
current state. If an event causes several trans-
itions, they have to be taken care of. Conditions
may also be associated with transitions without
any associated event. In such cases the condition
has to be made explicit on the CDFG during re-
�nement. The re�nement rules in MICKEY ex-
plicitly handle all these di�erent situations.

4 Re�nement for Device

Drivers

A software may need to interact with hardware
devices for device initialization , reading/writing
values from/to a device, and stopping a device.
In general a hardware device may require a se-
quence of instructions for initialization, data in-
put, data output, and halting. For simple devices
like the ADC chip 7574, only an IN instruction
is required at the allocated address to read the
relevant data from the device. However for pro-
grammable devices, such as the Intel 8259 In-
terrupt Controller, a sequence of instructions is
required to initialize the device to the required

ISR-e1

POP

B

ISR-e3

Stop C
Init D

Ret

ISR-e4

Stop D

Init C

Ret

MAIN

Init C

A

ISR-e2

POP

Figure 3: Implementation of event-transitions in
concurrent processes by call-and-return

mode of operation. Further, for implementa-
tions that require additional data transforma-
tions, such as for implementing a Counter by a
timer of the Intel 8155 chip, these computations
have to be performed after the data is accessed
from the device.
Fig 5(a) shows the CDFG re�nement for driv-

ing hardware devices that execute till a request
for termination. Here, the hardware implement-
able state (Y) is replaced by actions for starting
and stopping the device, and a wait state. Such
re�nements are needed for functions such as a
square wave generator, or a counter. The re�ne-
ment for functions that terminate on their own,
such as a timer, require a di�erent re�nement is
shown in Fig 5(b), where the hardware device is-
sues an event indicating its termination, and this
event is used to make the necessary transition.
The further re�nement of the device's com-

mands (i.e. start and stop) is dependent on
the speci�c implementation that has been selec-
ted. These implementation speci�c re�nements
also modify the data ows of the CDFG. An ex-
ample is shown below for the implementation of
a Counter by the Intel 8253.

Example 2 Consider the implementation of an
up-counter by an Intel 8253, in Mode 0. The
counter (see Fig 6(a)) is initiated by a pf, say X,
on the event e1. On the event e2, the counter



(b)

ISR-e3 ISR-e4

Stop C

Init D

Ret

Stop D

Init C

Ret

Main ISR-e2 ISR-e1

Init A

Init C

Wait

Stop B

Init A

Stop A

Init B

RetRet

Init A
Wait:1 Wait:2

Wait:3 Wait:4

Init C

Init A
e2/Stop B

e1/Stop A
Init B

Init D
e3 /Stop C

e4/Stop D
Init C

(a)

Figure 4: Special case: All concurrent processes
implemented by hardware

is stopped and control passes to another pf, say
Y. The counter scans a pulse stream generated
by a pf, say A. After the counter is stopped, the
count data (i.e. the number of pulses in the pulse
stream, in the duration when the counter was
active) is passed to a pf, say B.
The result of applying the re�nement step of

Fig 5(a) on the CDFG of Fig 6(a), is shown in Fig
6(b). The next re�nement, shown in Fig Fig 6(c),
is for expanding the start and stop actions and for
modifying the data ows. The start action of the
Counter involves programming the 8253 in Mode
0, and sending initial data to it. (The latter is
required in order to implement the up-counter by
the 8253's down-counter.) The stop action sends
a Latch command to the 8253, reads the down-

X

Z

X

Z

ev(Y-end)

Y(hw) Start Y

(b)

X

Z

e

Y (hw)

X

Wait

Z

e

Stop Y

Start Y

(a)

Figure 5: Re�nements for hardware implementa-
tions

count data, and stores the data after interpreting
it appropriately (to form the corresponding up-
count data).
The input data ow is simply a connection of

the output of A to the 8253's CLK input. The
output data ow is broken, and B now takes in-
put from the memory location that stores the
count data. 2

5 Conclusion

In this paper, we have presented methodologies
for addressing three important aspects of inter-
face synthesis during hardware software cosyn-
thesis of embedded systems. They are allocation
of nonconicting addresses to the devices, interfa
ced with the microprocessor system, accommod-
ating event based and conditional transitions by
re�nement of the Control and Data Flow Graph



X

P1

Wait

P2

Y

A

B

e2

e1

(b)

Counter

X

A B

Y

Counter

(a)

X

e1

S1

S2

Wait

e2

S3

S4

S5

S6

Y

(c)

M

B

A

D

Clk

S5: Convert Data

S6: Store Data
S3: Send Latch command
S4: Read Data

S1: Send Mode Data

S2: Send Init Data

M:Memory count data

D: Timer of 8253

P1: Start Counter

P2: Stop Counter
Data flow
Control Flow

Figure 6: Interfacing an Intel 8253, for imple-
menting an Up-Counter

and inclusion of device drivers through the re�ne-
ment of CDFGs. Achieving these tasks leads a
designer to the next phase - that of software syn-
thesis. The re�nement methodol ogies proposed
in this paper, are rule based and hence does not
guarantee optimality of the solution, but ensures
good and correct designs. We have illustrated the
methodologies by examples, which have been ex-
tracted from complete designs accomplished by
MICKEY - the hardware software codesign sys-
tem, which embodies the techniques presented.

References

[1] D. E. Thomas, J. K. Adams, and H. Schmit,
\A model and methodology for hardware
software codesign," IEEE Design and Test,
pp. 6{15, Sept, 1993.

[2] A. Kalavade and E. A. Lee, \A hardware soft-
ware codesign methodology for DSP applic-
ations," IEEE Design and Test, pp. 16{28,
Sept, 1993.

[3] K. Keutzer, \Hardware software codesign and
ESDA," in Proc 31st DAC, pp. 435{436, 1994.

[4] R. K. Gupta, Cosynthesis of Hardware and
Software for Digital Embedded Systems. PhD
thesis, Electrical Eng. Dept., Stanford Uni-
versity, 1993.

[5] G. Borriello, \A new interface speci�cation
methodology and its application to trans-
ducer synthesis," Tech. Rep. UCB/CSD-
88/430, Computer Sc. Divison, Univ. of Cali-
fornia, Berkeley, May, 1988.

[6] P. Chou, R. Ortega, and G. Borriello,
\Synthesis of hardware/software interface in
microcontroller-based systems," in Proc. Intl.
Conf. on CAD (ICCAD-92), pp. 488{495,
1992.

[7] J. S. Sun and R. W. Brodersen, \Design
of system interface modules," in Proc. Intl.
Conf. on CAD (ICCAD-92), pp. 478{481,
1992.

[8] R. Mitra, P. Roop, and A. Basu, \An over-
view of Mickey: An expert system for auto-
mating the design of microprocessor based
systems," SADHANA, Journal of the Indian
Academy of Science, vol. 21, no. 6, pp. 719{
739, Dec. 1996.


