
Generation of Interpretive and Compiled

Instruction Set Simulators

Rainer Leupers, Johann Elste, Birger Landwehr�

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract{ Due to the large variety of di�erent em-
bedded processor types, retargetable software develop-
ment tools, such as compilers and simulators, have re-
ceived attention recently. Retargetability allows to han-
dle di�erent target processors with a single tool. In this
paper, we present a system for automatic generation of
instruction set simulators for a class of embedded pro-
cessors. Retargetability is achieved by automatic gen-
eration of simulators from processor descriptions, given
as behavioral or RT-level HDL models. The presented
system is capable of bit-true simulation for arbitrary
processor word lengths, and it generates both interpre-
tive or compiled simulators. Experimental results for
di�erent processors indicate comparatively high simula-
tion speed.

1 Introduction

Today, the core functionality of many embedded systems
is implemented by software running on embedded pro-
grammable processor cores, while dedicated ASIC hard-
ware is mainly used for accelerating the execution of
time-critical functions. Due to its high 
exibility and
its potential for reuse, embedded software usually pro-
vides a shorter time-to-market as compared to ASIC
implementations.

The trend towards software implementation of em-
bedded systems creates a need for appropriate devel-
opment tools, e.g., C compilers and processor simula-
tors. Since embedded software is typically developed
on a workstation or PC host, such tools have to be
designed as cross-compilers or cross-simulators, respec-
tively, which generate and simulate code for target pro-
cessors di�erent from the host CPU. One major problem
in this context is the large variety of embedded processor
architectures that might need to be considered as a tar-
get machine for a particular application. While there is
already a large amount of o�-the-shelf microcontrollers,
RISCs, and DSP cores available, many applications re-
quire even more customized architectures (application-
speci�c instruction-set processors, ASIPs), so as to meet

�Publication: ASP-DAC, Hong Kong, Jan 1999, c
IEEE

given performance or power consumption constraints.
In order to keep pace with the increasing number

of di�erent embedded processors, retargetable software
development tools have been proposed. Retargetabil-
ity denotes the capability of supporting a whole family
of embedded processors with a single tool. An exam-
ple are retargetable optimizing compilers, which have
received signi�cant interest during the last years (see
[1, 2] for overviews). Retargetable tools enable the study
of hardware-software trade-o�s at the processor level.
This is important, since many ASIPs may still be con-
�gured or parameterized, e.g., with respect to the word
length, the number of functional units, or the register �le
sizes. Obviously, retargetable compilers are very useful
to identify a good processor con�guration for a particu-
lar application.

However, less e�ort has been spent so far on retar-
getable instruction set simulators, which are necessary
for validation of embedded software. Besides 
exibil-
ity, also high simulation speed is very important for
such tools. Currently, there are two main techniques
for processor cross-simulation: The classical interpre-
tive simulation approach, which in each step decodes
a target processor instruction and simulates it by host
instructions, and the more recent compiled simulation
approach [3], which generates an executable simulation
program for a �xed application program, thereby mov-
ing the instruction decoding overhead to simulator gen-
eration time. While the compiled approach achieves
signi�cantly higher speed, its disadvantage is that the
simulation program needs to be re-generated after each
change in the application program. Furthermore, it ex-
cludes the simulation of self-modifying code, which is,
however, rather rare in practice.

In this paper, we present a retargetable instruction-
level simulator generator for a family of �xed-point
DSPs, which provides several improvements as com-
pared to previous work:

� Simulators are automatically generated from HDL
processor models. There is no need to write target-
speci�c simulator functions or to model the target
processor in a simulator-speci�c language.

� Both interpretive and compiled simulators can be



generated.

� Simulators can be generated for arbitrary target
processor word lengths. This allows for bit-true
simulation independent of the simulation host word
length.

The organization of the paper is as follows. In sec-
tion 2, we discuss related work in more detail. In sec-
tion 3, a system overview is given, which also outlines
the cooperation with a retargetable compiler. Section
4 describes the generation of simulators from processor
models. Experimental results are provided in section 5.

2 Related work

Cross-simulators/debuggers are available from semicon-
ductor vendors for many standard DSPs. Since these
simulators are based on the interpretive simulation ap-
proach, they achieve a comparatively low simulation
speed, typically in the order of several kilo-instructions
per host CPU second. However, this speed is insu�cient
for bit-true evaluation of DSP algorithms on large test
data sequences, which may require simulation times in
the order of hours and days [4]. Furthermore, current
commercial tools do not allow for retargetable proces-
sor simulation. In the following, we mention recent ap-
proaches to accelerate simulation and to provide retar-
getability.

The Insulin instruction-set simulator is part of the
FlexWare system [5]. It is based on a con�gurable
VHDL model of a "generic" processor. The target pro-
cessor machine code is translated into assembly code for
the generic processor. Execution of the generic assem-
bly code is simulated by a standard VHDL simulator.
This approach provides retargetability to a certain ex-
tent, but permits only rather slow simulation, typically
less than 1 K instructions per second.

There are several approaches to retargetable simu-
lation based on the nML processor modeling language.
The Sigh/Sim system [6] automatically generates inter-
pretive simulators from nML models. This is done by
composing simulation functions for basic operations to
more complex functions for complete machine instruc-
tions. Each time an instruction is fetched, its corre-
sponding simulation functions are inserted into a queue
of events to be simulated. This work has been extended
in the CHECKERS system [7]. However, due to the
interpretive simulation technique, both systems su�er
from limited simulation speed. In [8], generation of com-
piled simulators from nML models has been proposed,
so as to achieve higher simulation speed. For an ARM7
RISC, for instance, a speed of 150 K instructions per
second has been achieved, as opposed to 22 K instruc-
tions obtained through the interpretive technique. How-
ever, several shortcomings of the nML language have
been identi�ed, e.g., missing support for speci�cation
of signed/unsigned arithmetic operators and local regis-
ters.

The SuperSim technique described in [3, 4] aims at
maximizing simulation speed through compiled simula-
tion. The target machine program is translated into an
equivalent C simulation program, which is then com-
piled and executed on a simulation host. Since the in-
struction decoding is completely performed at simulator
generation time, the simulation speed is very high and
ranges from several hundred K instructions to several
million instructions per second. The disadvantage, how-
ever, is the necessity to re-generate and re-compile the
(possibly large) simulation program after each change
in the application code. Therefore, compiled simulation
is more useful, if the application code is already largely
�xed. Furthermore, the generation of the C simulation
program is done by processor-speci�c tools. Therefore,
SuperSim cannot be classi�ed as a retargetable system.

3 System overview

In order to overcome some limitations of previous work,
we have implemented the Jacob system, which gen-
erates compiled and interpretive instruction-level sim-
ulators from processor models given in the MIMOLA
HDL [9], which is similar to structural VHDL. The HDL
model contains an integrated description of the proces-
sor controller and the data path. Jacob cooperates
with the Record system, a retargetable compiler for
a class of �xed-point DSPs (�g. 1). This processor class

RECORD
compiler

source 
program

machine
program

simulator
JACOB

generator

stimuli
file

program

interpretive
C simulation

C compiler
executable
simulation
program

compiled
mode

interpretive
mode

instruction set
extractor

HDL processor
model

or

compiled
C simulation

program

Figure 1: System overview

is characterized by a VLIW-like controller, single-cycle
instructions, and a DSP-speci�c generic address gener-
ation unit (AGU) architecture (cf. [10] for a more de-
tailed description of Record and the accepted proces-
sor class), while the data path and instruction format,
including instruction-level parallelism, can be arbitrar-
ily modeled by the user. The HDL processor model,
which may comprise structural components like regis-
ters, functional units, or busses, is �rst preprocessed,
so as to extract an internal instruction-set (i.e. purely
behavioral) model of the target processor, while elimi-
nating unnecessary structural details. This model is also
used for code generation in the Record compiler [11].



In interpretive mode, Jacob reads the instruction-
set model and generates a C simulation program, which
is compiled onto the simulation host with a standard
C compiler. The simulation program in turn reads a
compiled or manually written target machine program
and simulates it. In compiled mode, Jacob reads both
the instruction-set model and a target machine program,
and generates a program-speci�c C simulation program,
which, as opposed to the interpretive mode, does not
incur any instruction decoding overhead at simulation
time. In the following, we describe the generation of
simulators in more detail.

4 Simulator generation

It is assumed that the target processor executes one in-
struction per cycle. Each instruction is a set of one ore
more parallel register-transfers (RTs). The instruction-
set model extracted from the HDL model consists of
RT templates, that capture all di�erent RTs the tar-
get processor can execute. An RT template speci�es
the assignment of some value to a destination (register,
memory, or I/O port). The value itself is typically an
(arithmetic or logic) expression on register contents or
constants. For instance, a multiply-accumulate (MAC)
operation could be described as:

ACCU := ACCU + (X * Y)

The expressions are in turn composed of primitive HDL
operations (*, +, {, AND, OR, >>, etc.). The RT tem-
plates also contain information about argument and des-
tination bit widths.

4.1 Primitive operations

While the number of di�erent RT templates that may
occur in instruction-set models is in�nite, the number of
primitive operations is limited. Therefore, a key compo-
nent in Jacob is a �xed library of simulation functions
written in C, each of which simulates one primitive oper-
ation. The simulation functions are generic with respect
to the target processor word length, which may be di�er-
ent from (and in particular may exceed) the host word
length. For each target processor word, a su�ciently
long list of 32-bit simulation host words are allocated.
The primitive simulation functions traverse the list of
subwords and perform the correct actions on these.

If a �xed maximum word length can be assumed
for all target processors to be simulated, the simula-
tion functions can be replaced by (faster) macros, since
in this case also the list length is �xed, so that the re-
quired number of simulation host words can be statically
allocated.

4.2 Register transfers

When reading the instruction-set model, Jacob gener-
ates a C macro for each RT template, that consists of

calls to the appropriate simulation functions. In case of
the above MAC operation, for instance, the simulation
macro would be

#define MAC Mult(X,Y,z); Add(ACCU,z,ACCU)

where Mult and Add are the generic simulation functions
for "*" and "+", respectively, and "z" is an auxiliary
variable.

All macros for RT templates are stored in a C
header �le, which is included when compiling the gen-
erated simulation program. The macro �le needs to be
generated only once for each target processor model.
This speeds up the generation of the simulation pro-
gram, which mainly consist of macro instances.

4.3 Instructions

The machine program to be simulated is given as a list of
instructions. When reading the machine program, each
instruction is decoded, i.e., the set of RTs to be sim-
ulated in the current instruction are determined. De-
pending on the selected simulation mode (interpretive
or compiled), decoding takes place at simulation time or
simulator generation time. Since the parallel RTs must
be simulated by a sequential program, �rst a correct
sequential simulation schedule has to be found, which
does not violate possible read/write dependency con-
straints between RTs executed in the same instruction.
The schedule is determined by topological sorting of the
parallel RTs according to the dependencies. If a valid
schedule does not exist due to cyclic dependencies, aux-
iliary variables are inserted that temporarily store reg-
ister contents, so as to break the cycles.

4.4 Interpretive simulation

The generated C simulation program in both interpre-
tive and compiled mode is a loop that terminates af-
ter a given amount of instruction cycles. In interpre-
tive mode, each iteration of the main loop �rst deter-
mines a valid sequential simulation schedule for all RTs
in the current instruction (i.e., the instruction currently
pointed to by the program counter), and then iteratively
passes control to the appropriate RT simulation macros
until all RTs in the schedule have been processed. The
general scheme looks as follows:

while (simulation not finished)
{ currentInstr = programMemory[PC];
sch = DecodeAndSchedule(currentInstr);
for (all RTs r in sch)
{ switch(r)
{ ...
case "multiply_accumulate": MAC; break;
...
case "pc_increment": INCR_PC; break;
...

}
}

}



Note, that the modi�cation of the program counter PC
(increment or jump) is also simulated by a special macro
in each instruction, so that after termination of the for
loop the correct next instruction is fetched and simu-
lated.

4.5 Compiled simulation

Similar to the above case, the C simulation program
in compiled mode also consists of a while loop and a
switch statement. However, the switch statement di-
rectly selects simulation code based on the current pro-
gram counter contents. Each case label tags a sequence
of RT simulation macros, i.e., the simulation schedule
for the current instruction. Suppose, an instruction ex-
ecuting a MAC, an address register increment, and a
PC increment in parallel is located at program address
0x0005. Then, the corresponding fragment of the simu-
lation program would look as follows:

while (simulation not finished)
{ switch(PC)
{ ...
case 0x0005: MAC; INCR_AR;

INCR_PC; break;
...

}
}

Besides the pure simulation code, some additional
code is inserted, which counts the simulation cycles and
checks for breakpoints. Both in interpretive and com-
piled mode, the generated simulation programs are com-
piled onto the simulation host with a regular C compiler.

5 Results

The current version of the Jacob system is implemented
in C++ on a UNIX workstation environment. The gen-
erated simulation programs are linked to a common
graphical user interface, which supports usual simula-
tor functions, e.g. stepping through a machine program,
setting breakpoints, or editing register contents. Ja-

cob has been applied to di�erent ASIPs and a Texas
Instruments TMS320C25 standard DSP. For the 'C25,
we have simulated several DSP programs, such as digi-
tal �lters, from the DSPStone benchmark suite [12] on
a SPARCstation 20 with 256 MB main memory.

In interpretive mode, an average simulation speed
of 115K instructions per CPU second has been achieved.
In compiled mode, the measured simulation speed was
240K instructions per second. Using macros instead of
calls to the primitive simulation functions (see section
4.1) lead to about 300K instructions per second. For
ASIPs architectures less complex than the 'C25, a speed
of up to 500K instructions per second could be achieved
in compiled simulation mode.

6 Conclusions

We have presented a retargetable instruction-set simu-
lation system for a class of embedded DSPs. One main
aspect of this work is that bit-true simulators are di-
rectly generated from behavioral or RT-level HDL pro-
cessor models. Since HDL models can also be used for
processor synthesis and code generation, the amount of
di�erent models of the same processor required during
the system design process is reduced. The presented sys-
tem is 
exible with respect to di�erent instruction sets
and processor word lengths, and it permits to select be-
tween interpretive and compiled simulation, dependent
on the intended application. Experimental results in-
dicate a comparatively high simulation speed. Further-
more, the system o�ers a large degree of 
exibility which
{ in combinationwith a retargetable compiler { supports
the �ne-tuning of processor architectures towards a cer-
tain application program.

Future work will focus on further practical appli-
cations of the compiler/simulator tool set, as well as
extensions of the supported processor class.

References
[1] P. Marwedel, G. Goossens (eds.): Code Generation for Em-

bedded Processors, Kluwer Academic Publishers, 1995

[2] C. Liem: Retargetable Compilers for Embedded Core Pro-
cessors, Kluwer Academic Publishers, 1997

[3] V. Zivojnovic, S. Tjiang, H. Meyr: Compiled Simulation of
Programmable DSP Architectures, IEEE Workshop on VLSI
Signal Processing, 1995

[4] V. Zivojnovic, H. Meyr: Compiled HW/SW Co-Simulation,
Design Automation Conference (DAC), 1996

[5] P. Paulin, C. Liem, T. May, S. Sutarwala: FlexWare: A
Flexible Firmware Development Environment, in [1], 1995

[6] A. Fauth: Beyond Tool-Speci�c Machine Descriptions, in
[1], 1995

[7] W. Geurts, D. Lanneer, G. Goossens, et al.: Design of DSP
Systems with CHESS/CHECKERS, Handouts of the 2nd
Int. Workshop on Code Generation for Embedded Proces-
sors, Leuven/Belgium, 1996

[8] M. Hartoog, J. Rowson, P. Reddy, et al.: Generation
of Software Tools from Processor Descriptions for Hard-
ware/Software Codesign, Design Automation Conference
(DAC), 1997

[9] S. Bashford, U. Bieker, et al.: The MIMOLA Language V4.1,
Technical Report, University of Dortmund, Dept. of Com-
puter Science, September 1994

[10] R. Leupers: Retargetable Code Generation for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[11] R. Leupers, P. Marwedel: Retargetable Generation of Code
Selectors from HDL Processor Models, European Design &
Test Conference (ED & TC), 1997

[12] V. Zivojnovic, J.M. Velarde, C. Schl�ager, H. Meyr: DSP-
Stone { A DSP-oriented Benchmarking Methodology, Int.
Conf. on Signal ProcessingApplicationsand Technology (IC-
SPAT), 1994


