A Genetic Algorithm based Approach for
Multi-Objective Data-Flow Graph Optimization

Birger Landwehr

Dept. of Computer Science X,
University of Dortmund, Germany
landwehr @I s12.cs.uni-dortmund.de

Abstract: This paper presents a genetic algorithm based
approach for algebraic optimization of behaviora system
specifications. We introduce a chromosomal representation
of data-flow graphs (DFG) which ensures that the correct-
ness of algebraic transformationsrealized by the underlying
genetic operators sdlection, recombination, and mutation is
always preserved. We present substantia fitness functions
for both the minimization of overall resource costs and crit-
ical path length. We aso demonstrate that, due to their
flexibility, genetic algorithms can be smply adapted to dif-
ferent objective functions which is examplarily shown for
power optimization. Inorder to avoid inferior results caused
by the counteracting demands on resources of different ba
sic blocks, all DFGs of the input description are optimized
concurrently.

Experimental results for several standard benchmarks
prove the efficiency of our approach.

1 Introduction

One of thefirst stepsin the design-flow of digital systemsis
concerned with formulating the behavioral specification in
an appropriate hardware description language (e.g. VHDL).
This behavioral description serves as a basis for the sub-
sequent design steps starting with high-level synthesiswhich
is generdly understood as a mapping of operations of the
data-flow graph to control steps and to suitable components
of agiven library. Even though much effort has been spent
during the last years in this research area (e.g. see [10] for
an overview of recent publications) the actual question of
how to suitably formulate the behavioral description such
that synthesis can produce efficient results has been often
underrated. However, it seems obvious that even optimal
synthesis algorithms can only produce results as good as
the given behavioral specification alows (the same applies
to conventiona software compilers for which the presented
approach is applicable, too).

Apart from the classical domain of high-level language
compilers, themain areaof research and application of ageb-
raic optimization methods has been extended to high-level
synthesis during the recent years. Algebraic optimization
techniques have been employed for improving resource util-
ization[11], tree height minimization [4, 5], maximization of
datathroughput [7][6] and minimization of power consump-
tion [2] (see [11] for a comprehensive overview). Although
all published approaches are very powerful in their own do-
main, most of them have certain restrictions concerning the
set of supported transformation rules (commutativity, as-

sociativity, distributivity, and some special domain-specific
rules are usualy exploited) and the objective function to be
optimized. |.e. these approaches are rather speciaized as
compared to genera -purpose methods and hence difficult to
adapt or to extend. Another drawback istheir restriction to
single basic blocks. Although all basic blocks of input de-
scription can be optimized sequentially, this procedure can
potentially lead to inferior results dueto conflicting demands
0N resources.

The remainder of thispaper isorganized asfollows: Inthe
next section, weintroducethe genetic agorithmbased on [8]
including the chromosomal representation, the genetic oper-
atorsand fitnessfunctions. Section 3 describesthe extension
of the basic algorithm for the concurrent DFG optimization
and section 4 concludes the paper with experimental results.

2 Data-flow graph optimization by a
genetic algorithm

Genetic agorithms (GAs) have been proven as robust and
powerful methods for searching vast solution spaces. Due
to their capability of overcoming local optima, solutions
found by genetic agorithms are usualy close to the global
optimum. Itsgenera principleisto optimize a populaion’s
fitness in the course of generations driven by a randomized
process of recombination, mutation, and selection?.

The very first step in adapting genetic agorithmsto a cer-
tain task is to find a suitable chromosomal representation
for the given problem. A genera problem in transforming
algebraic expressions or DFGs is to represent their tree or
graph structure by alinear data structure: the chromosome.
This is particularly relevant since all transformations per-
formed by the GA should be correctness preserving. Inthe
next section we describe how to cope this problem with a
novel chromosomal representation.

2.1 Chromosomal representation

Each chromosome of the population represents one se-
mantically equivalent formulation of theoriginal DFG. Each
gene (or to be precise: its position on the chromosome) rep-
resents the functionality of one subexpression. We denote
genes by Greek letters o, 3, 7, €tc.

1Dueto the lack of space we assume that the reader is familiar with the
Fr]i nciple of genetic algorithms. For a comprehensiveintroduction see e.g.
3.

Example: We use expression ((a * 2) + (b 2)) + 1 asa
running example. Even though this example is quite simple, it is
useful to clearly demonstrate the chromosomal representation and
the particular genetic operators. Figure 2 depictsits chromosomal
representationo — f — v — S withgenesa : §+ 1,3 : v + 6,
yiax2,andé : b« 2.

ol P
i
30
- - -
| T oy
»
- N
Hs $ v 99
S| =
Chromosome |

Figure 1: Chromosomal representation of
expression ((a + 2) + (b*2)) + 1

In order to express that a certain subexpression can be
represented and substituted in the end by an equivalent one
(eg. a*2 = a+ a) weintroduce dléles. an dleleisone
(of several) phenotypes of acertain gene. We distinguishal-
leles of the same gene by roman numbers|, 11, etc.? The set
of alleles for a specific gene represents the set of function-
aly equivalent expressions which are mutually replaceable
without changing the semantics of the entire DFG. Neverthe-
less, the resulting DFG can be distinguished by potentialy
different hardware redlizations.

Figure 2 shows new aternative alees for gene 6. Ob-
vioudly, each alele of gene é can be replaced by any other
allele without changing the semantics of thisexpression. In
the same way, algebraic transformations can be applied to
other genes of the chromosome.

alternative
alleles

Figure2: Alternative alleles

Figure 3 presents the gene pool for our running example
after applying the associativity and distributivity laws and
the simplification of multiplications®. Due to the fact that

2Operations of the original DFG are thus represented by the alleles
a1, Biy, m EtC.

3in_cmeanstheincrement operation, cadd standsfor theternary carry-add
operation.

each chromosome implicitly represents the structure of a
data-flow graph, the creation of any DFG can be performed
very efficiently. For instance, chromosome o, — Gy —
Y — &y — € — ¢ represents expression a shl 1+ inc
(b & 0)*.

L m WV V
al B+1] v+e inc(f) cadd(~,6, 1)
Bl v4s| oz | ey | | ko
|| ax2 | a+a | shl(a,1) a& 0
5| b2 | bbb | shi(s1) b& 0
€ || 6+1 | inc(s)
¢ a-+b

Table 1: Extended gene pool for the running example

At the beginning, this gene pool serves as a basis for the
cregtion of the initia population. Later in the course of
the genetic algorithm it will be extended during so-called
"epochs’ (see section 2.2) by applying transformation rules
tof a suGbsequent population in order to enable new variants
of DFGs.

211 Geneticoperators

The chromosomal representation introduced in the last sec-
tion guarantees that aleles at the same gene position can
be interchanged without changing the semantics of the en-
tire DFG. This property is necessary for defining the main
genetic operators, namely crossover and mutation.

Crossover: During crossover the genetic information of
(usually) two parents is recombined and transmitted to the
offspring. The desired effect of crossover isto combine al
positive properties of the parents onto a new individual in
order to increase itsfitness. In the meaning of transforming
algebraic expressions, crossover recombines the subexpres-
sions of the parental data-flow graphs. In our approach we
use the uniform crossover scheme which haslead to the best
?pltli mization results. Uniform crossover can be sketched as

ollows:

cadd (a & 0,b*2,1) ashl 1 +inc (b *2)

Chll Ay - Bm “Yv - 8\ S g ‘;\ = o - Bm “ Yo - 6| S g - C\

4 1

ch,: oy - Bu-vu-0y-&-C = ay-Bu-vw-0v-8-§

ashl 1 +inc (b & 0) cadd(a& 0,b & 0, 1)

Figure 3: Crossover

At each gene position «, 3, v etc. two aleles are inter-
changed with a probability p.(0 < p. < 0.5) among the
parental chromosomes ch, and chs.

Mutation: Generally, the crossover operator is only able
torecombinetheparenta propertieswhereasmutationiscap-
able of providing the offspring with new genetic information
(or to be precise: alleles). Its principle has been implicitly
shown in figure 3: a data-flow graph can be transformed
without changing the semantics by substituting an existing
allele by another one a same gene position. For example,
the substitution of gene 4, by 8,y leadsto the transformation
(ax2)+(b*x2)+1 = (a*2)+ (b & 0)+ 1 (cf. table 1).

4Consider that chromosomes may also contain redundant geneswhich
have no direct influence to the created DFG but can be reactivated instantly
by small mutations or crossover.

u=a—(b*c)—d
Z»ui=a—((bxc)+d)
—» u:=a—mac (b, c,d)

u=a—(b*xc)-d) |-~~~ -~~~ =

basic block 2

vi=inc(e*f)—g

vi=inc(e*f)—g
S vi=(xf)+1-¢g
2= v:=mac (e, f,1)-g

basic block 3

___>

Zw»wi=h+i—]

i

w:=h+1+inc (j)

- w:=mac(1,h,i)—]

a) CDFG

b) applied transformations

commonly required
resources

¢) required resources

Figure 4: Concurrent basic block optimization

Selection: Selection favors individualswith a higher fit-
ness compared to other individuals of the population to
survive ("survival of the fittest") and thus become the co-
founders the next generation. We presume the probability
of an individual to be selected is proportiond to its fitness.
Thisenablesto acertain extent even individua swith alower
fitness to survive and hence to transmit their gene informa-
tion to the offspring. The method used in our approach is
so-called tournament selection [1] which has been proven to
be very efficient.

2.1.2 Fitnessfunctions

Thefitnessof anindividual isobvioudly crucial for thetrans-
mission of its gene information to the next generation. We
now present suitable fitness functions for minimization of
the critical path length and resource costs. We also show
how the fitness function for resource optimization can be
adapted for the minimization of power consumption. All
presented fitness functions can be applied separately or (for
multi-objective optimization) weighted to each individual of
the population.

Minimization of critical path length

The fitness of a chromosome ch is equivaent to the critical
path length CP of itsdata-flow graph DFG (ch). Thecritica
path can be efficiently computed by a simple ASAP (or
ALAP) scheduling.

Jtime (Ch) = CP (DFG (ch))

Minimization of resource costs

Since an exact computation of resources required for im-
plementing a design is known to be NP-compl ete, we have
to estimate the expected costs by heuristics. In order to
keep computation times of the GA small, we employ an ex-
tended ASAP scheduling approach controlled by a priority
list (operations on the critical path are scheduled first, then
operations depend of their mobility).

Zbk*ck

The fitness of an individual is defined as sum over al costs
e, for anumber of b;, components of atype k. In our case,
all necessary component informationincluding functionality

1)

Jarea (Ch) = ()

and costs of each type are defined in agiven library and thus
available to the underlying scheduling approach.

Minimization of power consumption

Equation 2 can be directly taken over for estimating the
power consumption. Since the power consumption of an
implemented DFG is depend of the number and the types
of the operations, it is sufficient to perform the direct com-
pilation method, i.e. each operation of the DFG is mapped
to a separate component ¢;, which isassociated with certain
power consumption by, .

2.2 Geneticalgorithm

Figure 3 presents the genetic algorithm for algebraic optim-
ization that takes pattern from the standard GA in [3].

1 initialize individuals of the population p

2 FOR EACH epoche DO

2.1 apply transformation rules to the current population p
2.2 FOR EACH generation g DO

222 computefitness of al individualsof p

222 selectindividualsaccording to their fitness

223 createoffspring by crossover

224 mutate offspring

225 replaceindividualsof the current population by the offspring
2.2.6 exitloop, if criterion Ty isfulfilled

22 ND

2.3 terminate, if criterion 7. isfulfilled

2" END

Figure 3 : Outline of the genetic algorithm

The agorithm consists of an outer and an inner loop: The
inner |oop repeststhe tasks of fitness computation, selection,
crossover, mutation and replacement of individuas of the
current population by the offspring as long as the loop exit
criterionisnot fulfilled which isin out case controlled by the
state of a generation counter. The outer loop is required in
order to extend the gene pool by new genes along with their
alleles. For our initid gene pool (s. table 1), we created the
two new genes ¢ and ¢ aong with their aleles ¢, ¢, and (|
by applying the associativity law to our initia expression.
The entire algorithm terminates if criterion 7% is fulfilled
either controlled by reaching a certain number of epochs or
amaximum size of the gene pool (7% is dso fulfilled if the
gene pool cannot be extended any longer).

3 Extension to concurrent optimiza-
tion

Up till now, we restricted our approach for the sake of a
better understanding to single data-flow graphs. In this sec-
tion we describe how the chromosomal representation and
the genetic operators must be extended in order to optimize
al basis blocks concurrently and thus to lay the founda
tionsfor solutionsoptimized for the entireinput description.
However, the exampl e depicted in (figure 4) makes clear that
algebraic transformations can potentially resultin increasing
resource requirements for a single basic block, but decrease
the implementation costs for the entire design® at the same
time: if we observe the reguired resources for the single
basis blocks during optimization, the implementation costs
increasetemporarily. Thefinal result of onemultiplier-adder
and one subtractor can obviously bereached only if theentire
demand of resources is estimated concurrently for al basic
blocks. The extension for a current DFG optimization only
affects marginal modifications of the representation and the
genetic operators:

Representation: We have to extend the notion individual
that have been associated so far with one chromosometo a
set of chromosomes. Since each of it represents one basic
block of the input description, the entire individual contains
al DFGs (without control-flow information).

Genetic operators. The particular genetic operators must
be handled differently: mutation can be applied to each ba
sic block (chromosome) of theindividual separately without
any risksof sideeffects. However, crossover must be applied
to so-called homologous chromosomes which represent the
same basic blocks of the individualsto be recombined. The
selection operator must be also extended from single chro-
mosomes to individuals.

4 Experimental results

We applied the presented algorithm to several standard
benchmarks for optimizing the critical path length aswell as
resourcecosts. Therunning timesof the optimization routine
were for all examples approximately one minute (SparcSta-
tion 20)8. Table 2 shows the component requirement after
synthesisfor the original and the optimized data-flow graph.
The underlying ILP-based synthesis system [9] guarantees
that all computed results for both the origina and trans-
formed version are optimal with respect to the total costs of
components. All synthesis results have been produced for
the 1.0 component library from VLS| [12] with the follow-
ing associated component costs. add [vdpladdOl] : 2405
kA%, sub [vdplsub001] : 2433 kA2, mult [vdp3mit004] :
14717 kX2,

For the examinated examples, we achieved a gain of up
to 30 % concerning the critical path length (FIRp) and an
areagain of up to 53 % (Edgeyes)) compared to the original
descriptions.

5We presume that each basic block can be executed exclusively thus
resource sharing among basic blocks becomes possible.

60n the basis of empirical tests we determined the following genetic
parameters: population size: 80 individuals; number of individualsin the
population to be replaced by the offspring: 60; number of generations: 40,
mutation rate: 0.1, crossover rate: 0.5.

benchmark® | #cs | resources | gain |
EWForig 14 3 +, 2%

EWF¢p 12 3+,2* 14 %
EWFaea 14 3+ 1% 40 %
FIRorig 10 2+ 17

FIRcp 7 3+,3* 30%
FIRarea 10 2+,1* 0%
BForig 14 3 +, 2%

BF¢p 12 3+,2* 14 %
BFaea 14 3+ 1% 40 %
Edgeorig 10 2+,2- 47

Edgecp 9 2+,2-,3*% 10%
Edgearea 10 1+2-,2* 53%

Table 2: Optimization results

AEWF: elliptical wavefilter, FIR: finite impulse responsefilter, BF:
bandpassfilter, Edge: edge detection

References

[1] T.BlickleandL. Thiele. A Comparision of Selection Schemes
used in Genetic Algorithms. Forschungsbericht TIK Nr.
11, Version Il, Computer Engineering and Communication
Networks Lab (TIK), Swiss Federal Institute of Technology,
Zrich, 1995.

[2] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. W. Brodersen. Optimizing Power Using Transformations.
IEEE Transactions on CAD, Vol. 14, No. 1, pages 12-31,
1995.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, 1991.

[4] R. Hartley and A. E. Casavant. Tree-Height Minimiza-
tion in Pipelined Architectures. Proceedings of the Inter-
national Conference on Computer-Aided Design, pages 112—
115, 1989.

[5] R. Hartley and A. E. Casavant. Optimizing Pipelined Net-
works of Associative and Commutative Operators. |EEE
Transactions on CAD, \ol. 13, No. 11, pages 1418-1425,
1994,

[6] S.-H.HuangandJ. M. Rabaey. Maximizing the Throughput
of High Performance Applications Using Behavioral Trans-
formations. Proceedings of the EDAC, pages 25-30, 1994.

[7] Z.Igbal, M. Potkonjak, S. Dey, and A. Parker. Critical Path
Optimization Using Retiming and Algebraic Speed-Up. Pro-
ceedings of the 30th Design Automation Conference, pages
573-577,1993.

[8] B. Landwehr and P. Marwedel. A New Optimization Tech-
nique for Improving Resource Exploitation and Critical Path
Minimization. 10th International Symposiumon System Syn-
thesis, pages 65—-72, 1997.

[9] B.Landwehr, P.Marwedel, and R. Domer. OSCAR: Optimum
Simultaneous Scheduling, Allocation and Resource Binding
Based on Integer Programming. Proceedings of the EURO-
DAC, pages 90-95, 1994.

Y.-L. Lin. Recent Developments in High-Level Synthesis.
ACM Transactions on Design Automation of Electronic Sys-
tems, Vol. 2, No. 1, pages2-21, 1997.

M. Potkonjak and J. Rabaey. Optimizing Resource Utilization
by Transformations. IEEE Transactionson CAD, \ol. 13, No.
3, pages 277-292, 1994.

[12] VLSI Technology Inc. Library Manuals, 1993.

[10]

[11]

