
A Genetic Algorithm based Approach for
Multi-Objective Data-Flow Graph Optimization

Birger Landwehr

Dept. of Computer Science XII,
University of Dortmund, Germany
landwehr@ls12.cs.uni-dortmund.de

Abstract: This paper presents a genetic algorithm based
approach for algebraic optimization of behavioral system
specifications. We introduce a chromosomal representation
of data-flow graphs (DFG) which ensures that the correct-
ness of algebraic transformations realized by the underlying
genetic operators selection, recombination, and mutation is
always preserved. We present substantial fitness functions
for both the minimization of overall resource costs and crit-
ical path length. We also demonstrate that, due to their
flexibility, genetic algorithms can be simply adapted to dif-
ferent objective functions which is examplarily shown for
power optimization. In order to avoid inferior results caused
by the counteracting demands on resources of different ba-
sic blocks, all DFGs of the input description are optimized
concurrently.

Experimental results for several standard benchmarks
prove the efficiency of our approach.

1 Introduction

One of the first steps in the design-flow of digital systems is
concerned with formulating the behavioral specification in
an appropriate hardware description language (e.g. VHDL).
This behavioral description serves as a basis for the sub-
sequent design steps starting with high-level synthesis which
is generally understood as a mapping of operations of the
data-flow graph to control steps and to suitable components
of a given library. Even though much effort has been spent
during the last years in this research area (e.g. see [10] for
an overview of recent publications) the actual question of
how to suitably formulate the behavioral description such
that synthesis can produce efficient results has been often
underrated. However, it seems obvious that even optimal
synthesis algorithms can only produce results as good as
the given behavioral specification allows (the same applies
to conventional software compilers for which the presented
approach is applicable, too).

Apart from the classical domain of high-level language
compilers, the main area of research and application of algeb-
raic optimization methods has been extended to high-level
synthesis during the recent years. Algebraic optimization
techniques have been employed for improving resource util-
ization [11], tree height minimization [4, 5], maximization of
data throughput [7][6] and minimization of power consump-
tion [2] (see [11] for a comprehensive overview). Although
all published approaches are very powerful in their own do-
main, most of them have certain restrictions concerning the
set of supported transformation rules (commutativity, as-

sociativity, distributivity, and some special domain-specific
rules are usually exploited) and the objective function to be
optimized. I.e. these approaches are rather specialized as
compared to general-purpose methods and hence difficult to
adapt or to extend. Another drawback is their restriction to
single basic blocks. Although all basic blocks of input de-
scription can be optimized sequentially, this procedure can
potentially lead to inferior results due to conflicting demands
on resources.

The remainder of this paper is organized as follows: In the
next section, we introduce the genetic algorithm based on [8]
including the chromosomal representation, the genetic oper-
ators and fitness functions. Section 3 describes the extension
of the basic algorithm for the concurrent DFG optimization
and section 4 concludes the paper with experimental results.

2 Data-flow graph optimization by a
genetic algorithm

Genetic algorithms (GAs) have been proven as robust and
powerful methods for searching vast solution spaces. Due
to their capability of overcoming local optima, solutions
found by genetic algorithms are usually close to the global
optimum. Its general principle is to optimize a population’s
fitness in the course of generations driven by a randomized
process of recombination, mutation, and selection1.

The very first step in adapting genetic algorithms to a cer-
tain task is to find a suitable chromosomal representation
for the given problem. A general problem in transforming
algebraic expressions or DFGs is to represent their tree or
graph structure by a linear data structure: the chromosome.
This is particularly relevant since all transformations per-
formed by the GA should be correctness preserving. In the
next section we describe how to cope this problem with a
novel chromosomal representation.

2.1 Chromosomal representation

Each chromosome of the population represents one se-
mantically equivalent formulation of the original DFG. Each
gene (or to be precise: its position on the chromosome) rep-
resents the functionality of one subexpression. We denote
genes by Greek letters �; �; 
, etc.

1Due to the lack of space we assume that the reader is familiar with the
principle of genetic algorithms. For a comprehensive introduction see e.g.
[3].



Example: We use expression ((a � 2) + (b � 2)) + 1 as a
running example. Even though this example is quite simple, it is
useful to clearly demonstrate the chromosomal representation and
the particular genetic operators. Figure 2 depicts its chromosomal
representation �! � ! 
 ! � with genes � : � + 1, � : 
 + �,

 : a � 2, and � : b � 2.

Figure 1: Chromosomal representation of
expression ((a � 2) + (b � 2)) + 1

In order to express that a certain subexpression can be
represented and substituted in the end by an equivalent one
(e.g. a � 2 = a + a) we introduce alleles: an allele is one
(of several) phenotypes of a certain gene. We distinguish al-
leles of the same gene by roman numbers I, II, etc.2 The set
of alleles for a specific gene represents the set of function-
ally equivalent expressions which are mutually replaceable
without changing the semantics of the entire DFG. Neverthe-
less, the resulting DFG can be distinguished by potentially
different hardware realizations.

Figure 2 shows new alternative alleles for gene �. Ob-
viously, each allele of gene � can be replaced by any other
allele without changing the semantics of this expression. In
the same way, algebraic transformations can be applied to
other genes of the chromosome.

alternative
alleles

Figure 2: Alternative alleles

Figure 3 presents the gene pool for our running example
after applying the associativity and distributivity laws and
the simplification of multiplications3. Due to the fact that

2Operations of the original DFG are thus represented by the alleles
�I; �I; 
I etc.

3inc means the increment operation,cadd stands for the ternary carry-add
operation.

each chromosome implicitly represents the structure of a
data-flow graph, the creation of any DFG can be performed
very efficiently. For instance, chromosome �II ! �III !

III ! �IV ! �II ! �I represents expression a shl 1+ inc
(b & 0)4.

I II III IV V
� � + 1 
 + � inc(�) cadd(
;�; 1)
� 
 + � � � 2 shl(�;1) � + � � & 0

 a � 2 a+ a shl (a; 1) a& 0
� b � 2 b+ b shl (b; 1) b& 0
� � + 1 inc(�)
� a+ b

Table 1: Extended gene pool for the running example

At the beginning, this gene pool serves as a basis for the
creation of the initial population. Later in the course of
the genetic algorithm it will be extended during so-called
"epochs" (see section 2.2) by applying transformation rules
to a subsequent population in order to enable new variants
of DFGs.

2.1.1 Genetic operators

The chromosomal representation introduced in the last sec-
tion guarantees that alleles at the same gene position can
be interchanged without changing the semantics of the en-
tire DFG. This property is necessary for defining the main
genetic operators, namely crossover and mutation.

Crossover: During crossover the genetic information of
(usually) two parents is recombined and transmitted to the
offspring. The desired effect of crossover is to combine all
positive properties of the parents onto a new individual in
order to increase its fitness. In the meaning of transforming
algebraic expressions, crossover recombines the subexpres-
sions of the parental data-flow graphs. In our approach we
use the uniform crossover scheme which has lead to the best
optimization results. Uniform crossover can be sketched as
follows:

Figure 3: Crossover

At each gene position �; �; 
 etc. two alleles are inter-
changed with a probability pc(0 � pc � 0:5) among the
parental chromosomes ch1 and ch2.

Mutation: Generally, the crossover operator is only able
to recombine the parental properties whereas mutation is cap-
able of providing the offspring with new genetic information
(or to be precise: alleles). Its principle has been implicitly
shown in figure 3: a data-flow graph can be transformed
without changing the semantics by substituting an existing
allele by another one at same gene position. For example,
the substitution of gene �I by �IV leads to the transformation
(a � 2) + (b � 2) + 1) (a � 2) + (b & 0) + 1 (cf. table 1).

4Consider that chromosomes may also contain redundant genes which
have no direct influence to the created DFG but can be reactivated instantly
by small mutations or crossover.



Figure 4: Concurrent basic block optimization

Selection: Selection favors individuals with a higher fit-
ness compared to other individuals of the population to
survive ("survival of the fittest") and thus become the co-
founders the next generation. We presume the probability
of an individual to be selected is proportional to its fitness.
This enables to a certain extent even individuals with a lower
fitness to survive and hence to transmit their gene informa-
tion to the offspring. The method used in our approach is
so-called tournament selection [1] which has been proven to
be very efficient.

2.1.2 Fitness functions

The fitness of an individual is obviously crucial for the trans-
mission of its gene information to the next generation. We
now present suitable fitness functions for minimization of
the critical path length and resource costs. We also show
how the fitness function for resource optimization can be
adapted for the minimization of power consumption. All
presented fitness functions can be applied separately or (for
multi-objective optimization) weighted to each individual of
the population.

Minimization of critical path length
The fitness of a chromosome ch is equivalent to the critical
path length CP of its data-flow graph DFG (ch). The critical
path can be efficiently computed by a simple ASAP (or
ALAP) scheduling.

ftime (ch) = CP (DFG (ch)) (1)

Minimization of resource costs
Since an exact computation of resources required for im-
plementing a design is known to be NP-complete, we have
to estimate the expected costs by heuristics. In order to
keep computation times of the GA small, we employ an ex-
tended ASAP scheduling approach controlled by a priority
list (operations on the critical path are scheduled first, then
operations depend of their mobility).

farea (ch) =
X

k2K

bk � ck (2)

The fitness of an individual is defined as sum over all costs
ck for a number of bk components of a type k. In our case,
all necessary component information including functionality

and costs of each type are defined in a given library and thus
available to the underlying scheduling approach.

Minimization of power consumption
Equation 2 can be directly taken over for estimating the
power consumption. Since the power consumption of an
implemented DFG is depend of the number and the types
of the operations, it is sufficient to perform the direct com-
pilation method, i.e. each operation of the DFG is mapped
to a separate component ck which is associated with certain
power consumption bk.

2.2 Genetic algorithm

Figure 3 presents the genetic algorithm for algebraic optim-
ization that takes pattern from the standard GA in [3].

1 initialize individuals of the population p
2 FOR EACH epoch e DO
2.1 apply transformation rules to the current population p
2.2 FOR EACH generation g DO
2.2.2 compute fitness of all individuals of p
2.2.2 select individuals according to their fitness
2.2.3 create offspring by crossover
2.2.4 mutate offspring
2.2.5 replace individuals of the current population by the offspring
2.2.6 exit loop, if criterion Tg is fulfilled
2.2’ END
2.3 terminate, if criterion Te is fulfilled
2’ END

Figure 3 : Outline of the genetic algorithm

The algorithm consists of an outer and an inner loop: The
inner loop repeats the tasks of fitness computation, selection,
crossover, mutation and replacement of individuals of the
current population by the offspring as long as the loop exit
criterion is not fulfilled which is in out case controlled by the
state of a generation counter. The outer loop is required in
order to extend the gene pool by new genes along with their
alleles. For our initial gene pool (s. table 1), we created the
two new genes � and � along with their alleles �I; �II and �I
by applying the associativity law to our initial expression.
The entire algorithm terminates if criterion Te is fulfilled
either controlled by reaching a certain number of epochs or
a maximum size of the gene pool (Te is also fulfilled if the
gene pool cannot be extended any longer).



3 Extension to concurrent optimiza-
tion

Up till now, we restricted our approach for the sake of a
better understanding to single data-flow graphs. In this sec-
tion we describe how the chromosomal representation and
the genetic operators must be extended in order to optimize
all basis blocks concurrently and thus to lay the founda-
tions for solutions optimized for the entire input description.
However, the example depicted in (figure 4) makes clear that
algebraic transformations can potentially result in increasing
resource requirements for a single basic block, but decrease
the implementation costs for the entire design5 at the same
time: if we observe the required resources for the single
basis blocks during optimization, the implementation costs
increase temporarily. The final result of one multiplier-adder
and one subtractor can obviouslybe reached only if the entire
demand of resources is estimated concurrently for all basic
blocks. The extension for a current DFG optimization only
affects marginal modifications of the representation and the
genetic operators:

Representation: We have to extend the notion individual
that have been associated so far with one chromosome to a
set of chromosomes. Since each of it represents one basic
block of the input description, the entire individual contains
all DFGs (without control-flow information).

Genetic operators: The particular genetic operators must
be handled differently: mutation can be applied to each ba-
sic block (chromosome) of the individual separately without
any risks of side effects. However, crossover must be applied
to so-called homologous chromosomes which represent the
same basic blocks of the individuals to be recombined. The
selection operator must be also extended from single chro-
mosomes to individuals.

4 Experimental results

We applied the presented algorithm to several standard
benchmarks for optimizing the critical path length as well as
resource costs. The running times of the optimization routine
were for all examples approximately one minute (SparcSta-
tion 20)6. Table 2 shows the component requirement after
synthesis for the original and the optimized data-flow graph.
The underlying ILP-based synthesis system [9] guarantees
that all computed results for both the original and trans-
formed version are optimal with respect to the total costs of
components. All synthesis results have been produced for
the 1:0� component library from VLSI [12] with the follow-
ing associated component costs: add [vdp1add01] : 2405
k�2, sub [vdp1sub001] : 2433 k�2, mult [vdp3mlt004] :
14717 k�2.

For the examinated examples, we achieved a gain of up
to 30 % concerning the critical path length (FIRcp) and an
area gain of up to 53 % (Edgearea)) compared to the original
descriptions.

5We presume that each basic block can be executed exclusively thus
resource sharing among basic blocks becomes possible.

6On the basis of empirical tests we determined the following genetic
parameters: population size: 80 individuals; number of individuals in the
population to be replaced by the offspring: 60; number of generations: 40,
mutation rate: 0.1, crossover rate: 0.5.

benchmarka #cs resources gain
EWForig 14 3 +, 2 *
EWFcp 12 3 +, 2 * 14 %
EWFarea 14 3 +, 1 * 40 %
FIRorig 10 2 +, 1 *
FIRcp 7 3 +, 3 * 30 %
FIRarea 10 2 +, 1 * 0 %
BForig 14 3 +, 2 *
BFcp 12 3 +, 2 * 14 %
BFarea 14 3 +, 1 * 40 %
Edgeorig 10 2 +, 2 -, 4 *
Edgecp 9 2 +, 2 -, 3 * 10 %
Edgearea 10 1 +, 2 -, 2 * 53 %

Table 2: Optimization results

aEWF: elliptical wave filter, FIR: finite impulse response filter, BF:
bandpass filter, Edge: edge detection

References
[1] T. Blickle and L. Thiele. A Comparision of Selection Schemes

used in Genetic Algorithms. Forschungsbericht TIK Nr.
11, Version II, Computer Engineering and Communication
Networks Lab (TIK), Swiss Federal Institute of Technology,
Zürich, 1995.

[2] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. W. Brodersen. Optimizing Power Using Transformations.
IEEE Transactions on CAD, Vol. 14, No. 1, pages 12–31,
1995.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, 1991.

[4] R. Hartley and A. E. Casavant. Tree-Height Minimiza-
tion in Pipelined Architectures. Proceedings of the Inter-
national Conference on Computer-Aided Design, pages 112–
115, 1989.

[5] R. Hartley and A. E. Casavant. Optimizing Pipelined Net-
works of Associative and Commutative Operators. IEEE
Transactions on CAD, Vol. 13, No. 11, pages 1418–1425,
1994.

[6] S.-H. Huang and J. M. Rabaey. Maximizing the Throughput
of High Performance Applications Using Behavioral Trans-
formations. Proceedings of the EDAC, pages 25–30, 1994.

[7] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical Path
Optimization Using Retiming and Algebraic Speed-Up. Pro-
ceedings of the 30th Design Automation Conference, pages
573–577, 1993.

[8] B. Landwehr and P. Marwedel. A New Optimization Tech-
nique for Improving Resource Exploitation and Critical Path
Minimization. 10th International Symposium on System Syn-
thesis, pages 65–72, 1997.

[9] B. Landwehr,P. Marwedel, and R. Dömer. OSCAR: Optimum
Simultaneous Scheduling, Allocation and Resource Binding
Based on Integer Programming. Proceedings of the EURO-
DAC, pages 90–95, 1994.

[10] Y.-L. Lin. Recent Developments in High-Level Synthesis.
ACM Transactions on Design Automation of Electronic Sys-
tems, Vol. 2, No. 1, pages 2–21, 1997.

[11] M. Potkonjak and J. Rabaey. Optimizing Resource Utilization
by Transformations. IEEE Transactions on CAD, Vol. 13, No.
3, pages 277–292, 1994.

[12] VLSI Technology Inc. Library Manuals, 1993.


