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Abstract. Many software compilers for embedded processors produce machine code of insu�-
cient quality. Since for most applications software must meet tight code speed and size constraints,
embedded software is still largely developed in assembly language. In order to eliminate this bot-
tleneck and to enable the use of high-level language compilers also for embedded software, new code
generation and optimization techniques are required. This paper describes a novel code generation
technique for embedded processors with irregular data path architectures, such as typically found
in �xed-point DSPs.The proposed code generation techniquemaps data ow graph representation
of a program into highly e�cient machine code for a target processor modeled by instruction
set behavior. High code quality is ensured by tight coupling of di�erent code generation phases.
In contrast to earlier works, mainly based on heuristics, our approach is constraint-based. An
initial set of constraints on code generation are prescribed by the given processor model. Further
constraints arise during code generation based on decisions concerning code selection, register al-
location, and scheduling. Whenever possible, decisions are postponed until su�cient information
about a good decision has been collected. The constraints are active in the "background" and
guarantee local satis�ability at any point of time during code generation. This mechanism per-
mits to simultaneously cope with special-purpose registers and instruction level parallelism. We
describe the detailed integration of code generation phases. The implementation is based on the
constraint logic programming (CLP) language ECLiPSe. For a standard DSP, we show that the
quality of generated code comes close to hand-written assembly code. Since the input processor
model can be edited by the user, also retargetability of the code generation technique is achieved
within a certain processor class.

Keywords: code generation, embedded processors, phase coupling, constraint logic programming

1. Introduction

Embedded systems are frequently implemented as mixed hardware/software sys-
tems. The software parts of a system are executed on embedded processors, while
hardware parts are mapped to dedicated non-programmable hardware (ASICs).
The assignment of pieces of system functionality to either software or hardware is
guided by given time, area, or power consumption metrics.
As compared to ASICs, embedded processors show signi�cant advantages. First

of all, processors o�er a high degree of exibility. This allows for accomodating
late changes in the system speci�cation by re-programming. Moreover, software
implementation facilitates reuse of system components: Software written in a high-
level language (HLL) may be reused for other applications. If a processor exists
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in the form of a core model (e.g., in VHDL or as a physical layout), also the
core itself is reusable. Due to these bene�ts, a general goal in hardware/software
codesign systems is to implement as much of the system functionality as possible
in software, whenever exibility and reuse are of primary concern.
Whether or not a software implementation is possible, i.e., a software implemen-

tation meets the speed and size constraints, critically depends on the quality of the
machine code. If an HLL like C is used, the compiler is responsible for code quality.
Unfortunately, currently available compilers for embedded processors (in particular
for DSPs and microcontrollers) generate code of insu�cient quality. This has been
con�rmed by numerous system designers as well as by empirical studies [65, 53].
As a consequence, a large part of embedded software is still written manually at
the assembly-language level. Due to the growing complexity of both embedded
software and embedded processors, this approach obviously will no longer be viable
in the future, but the use of HLL compilers will become compulsory. Therefore,
more e�cient compilers for embedded processors are highly desirable. If most of a
system is implemented in software rather than in hardware, then a good compiler
may be more important for the overall costs of a system implementation than a
good hardware synthesis tool.
Besides code quality also the exibility of compilers is an important issue. Since

embedded processors in general must be very e�cient, even standard, o�-the-shelf
processors exist in a large variety. In addition, there are more and more application-
speci�c processors (ASIPs), intended to serve only a very narrow range of di�erent
applications. In order to avoid the necessity of a huge number of di�erent compilers
for embedded processors, the concept of retargetability has been introduced. Re-
targetable compilers are capable of mapping HLL code to di�erent target machines
within a certain processor class. Retargetable compilers facilitate the migration
from one target processor to another. Furthermore, retargetable compilers are im-
portant in HW/SW codesign, since they permit a more �ne-grained exploration of
the HW/SW trade-o�.
Usually, retargetability and high code quality are contrary goals. Nevertheless, at

least a certain degree of retargetability should be a goal in compiler construction,
since developing target-speci�c code optimization techniques for each di�erent ASIP
is not economically reasonable.
In the following, we will outline some general di�culties in code generation for a

speci�c class of embedded processors, namely �xed-point DSPs, and we will present
a novel solution approach. Since this approach is based on a target processor
modelling formalism, retargetability is achieved for a large range of processors.

1.1. Constraints in irregular data paths

One main challenge in high quality code generation for DSPs is caused by the ir-
regular data path architecture of these processors, i.e., there are distributed and
specialized register �les (RFs) and functional units (FUs). This causes strong mu-
tual dependencies between RFs and FUs, due to restricted interconnections between
these resources. In turn, this leads to strong dependencies between di�erent code
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Figure 1. ADSP-210x data path, RTs, and instruction types
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generation phases. Furthermore, a certain degree of instruction level parallelism
(ILP) is usually available which should be exploited in order to generate high-
quality code. On the other hand, ILP in DSPs is often restricted to parallelization
of only certain instructions due to strongly encoded machine instruction formats.
Currently, there is a lack of techniques and tools capable of simultaneously handling
restricted ILP and irregular data paths, because it is di�cult to obey the resulting
large amount of constraints during code generation.
Throughout the paper, we will generally talk of storage resources (SRs), which

comprise RFs and memories. We only talk of RFs, if it is important to distinguish
between register �les and memories.

Example: In order to exemplify typical constraints, we consider the ADSP-210x
�xed-point DSP [16]. The primitive entities of instruction behavior in our model are
register transfers (RTs). A RT reects the operation (+, -, *, . . . ) performed, the
SR where the result of the operation is stored, and the SRs where the operands of
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the operation have to reside. In �g. 1 a partial data path of the ADSP-210x and the
corresponding RTs are shown. Furthermore, a classi�cation of instruction types is
given1. Each type accounts for a certain permissible combination of RTs (operations
and moves) within one machine instruction. The data path consists of two FUs
(ALU and MAC), and the SRs consist of the set far; ax; ax; af;mr;mx;my;mfg
of RFs, and the two memories d and p. The operands of RTs are required to be in
special SRs. For an addition, for instance, the left operand is required to be in one
of the SRs ax; ar;mr and the right operand has to be in ay or af . The result is
stored either in the accumulator ar or the feedback register af .
On the ADSP-210x, at most one FU operation and two move operations from

memory to registers can be executed in parallel (this corresponds to the machine
instruction type "typ1" in �g. 1). This requires, that one of the move values be
located in p and the other one in d. The destination of the move from d must be ax
or mx and the destination of the move from p must be ay or my. The destination
of the result of the operation, executed on one of the FUs ALU and MAC, is then
restricted to the accumulators ar or mr, respectively.

1.2. Phase coupling problems

Figure 2. Code generation phases
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In �g. 2 a very coarse grain structure of a compiler is illustrated. The front-end
checks the source program for syntactical and semantical correctness and generates
an intermediate representation (IR) of the program. Code generation (frequently
called the back-end) is concerned with mapping the IR to a sequence of machine
instructions (MIs) of the target processor, typically in assembly or binary code.
Each machine instruction comprises a set of one or more RTs that are executed in
parallel.
Traditional code generators execute a set of phases strictly sequentially. Fig. 2

shows a possible ordering of the basic code generation phases:
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� Code selection (CS) is typically performed as the �rst phase. It is concerned
with mapping the operations in the IR to RTs of the target machine.

� Register allocation (RA) decides which values should reside in registers and
which should reside in memory at each point of time during program execution.

� Instruction scheduling (IS) in one sense it is concerned with �nding a sequential
ordering for the selected RTs. Goals are to reduce register usage or to prevent
pipeline stalls in RISC like architectures. In the context of ILP, IS is also used to
denote the parallelization of RTs, so as to increase code speed (frequently called
code compaction). Unless mentioned explicitly, we will use the latter meaning
of instruction scheduling in the remainder of this paper.

Figure 3. A DFT cover
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The disadvantage of a sequential phase ordering is that the decisions made in
one phase can severely constrain the following phases. As an example, consider the
following dependence between CS and IS: Most current code selectors are based on
tree covering and operate on data ow tree (DFT) based IRs of basic blocks. RTs
are represented by tree patterns, where each pattern is assigned a cost value. Code
selection is performed by covering DFTs with tree patterns, while minimizing the
total costs. An example of a covered DFT is shown in �g. 3. Tree coverers are
able to select locally optimal covers, but optimality refers to a sequential execution
model. The underlying computation model for determining optimal covers does
not permit modeling of ILP. The selection of a cover implies a certain selection
of SRs for the operands and results of the selected RTs. ILP can be prevented
by unfavorable CS decisions. In �g. 4 an optimal cover of the example DFT by
ADSP-210x RTs (or tree patterns) is shown. However, the selected RTs can hardly
be parallelized, because they conict with the constraints on ILP for the ADSP-
210x. As will be shown later, a shorter schedule can be achieved, if a di�erent DFT
cover were selected during CS.
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Figure 4. Optimal DFT cover when neglecting ILP
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Figure 5. Representation of multiple RTs by a FRT
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1.3. Our phase coupling approach

In order to improve code quality for irregular architectures, a tight integration (or
phase coupling) of the code generation phases is required. For good exploitation of
potential ILP, many decisions have to be postponed until IS. Thus, code selection
and register allocation should be integrated into instruction scheduling. In order to
enable the integration of code selection we use a covering technique that computes
the set of all possible covers for a given data ow graph (DFG) representation of
basic blocks e�ciently in a single pass. We do not reduce the set of covers to a
locally optimal solution, but retain a set of alternative covers in the remaining code
generation process.

To represent the covers, all RTs matching a node in the DFG are combined to a
factorised RT (FRT) (�g. 5). FRTs concisely represent a set of "similar" RTs. In
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FRTs, the locations for the result and the operands are given as a set of alternative
SRs (separated by a "j" character). The set of all alternative covers are represented
by an FRT cover of a DFG, which we denote by DFGFRT . Fig. 6 shows the
DFGFRT for the DFT from �g. 4. There are di�erent options for constructing the
DFGFRT : We have implemented techniques to generate optimal covers with respect
to a sequential execution model. We may also use faster techniques, that partially
reduce the set of initial covers for code generation: An example is to enforce the
use of chained operations (e.g. the MAC operation) whenever possible.

Figure 7. Integrated code generation based on FRTs
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Based on the DFGFRT representation, we have developed a fully integrated tech-
nique for code selection, register allocation and instruction scheduling. The basic
concepts are illustrated in �g. 7, where the scheduling of FRTs of the DFGFRT

from �g. 6 for the ASDP-210x (�g. 1) is shown.

Example: After scheduling the data transfers for variables a and b in the �rst
machine instruction, the corresponding FRTs have been reduced. Reducing a FRT
means to delete members of the set of RTs represented by the FRT, so as to meet
the constraints on ILP according to the restrictions for the resources feasible for
the instruction types. On the ADSP-210x, typ1 is the only one allowing parallel
execution of two data transfers from memory into registers (cmp. �g. 6). Only
RTs with sources d or p and destinations ax or ay are feasible for the + opera-
tion. Therefore, the SRs af and ar are eliminated from the destinations of the
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FRTs. The remaining exibility is due to the commutativity of the addition (see
schedule 1,2,5). The decision, which of the variables a and b will be loaded to
ax or ay, is postponed. Generally, this may generate higher exibility for subse-
quent decisions. The scheduling for variables c and d again leaves some freedom
(schedule 3,4) for their locations but reduces the possible locations of the addition
result to ar in order to meet the ILP conditions. The locations of variables c
and d are determined immediately after scheduling the subtraction (schedule 6).
Schedule 7 �nally determines the result location of the subtraction (node 6).

For the implementation of our code generator we have used the constraint logic
programming (CLP) language ECLiPSe [52].

1.4. Overview of the paper

The following section is concerned with related phase coupling approaches. Section
3 gives an overview of our constraint-based programming framework and of our
code generation system ICG. In section 4 the internal machine model of the code
generator and the retargeting mechanism are described. Section 5 describes the
concepts of tree covering and our approach of FRT covering for generating the
sets of DFG covers. The integrated register allocation technique is described in
section 6 followed by its integration into instruction scheduling in section 7. This
section also comprises a complexity analysis of our approach. Section 8 describes
post-processing steps required to generate executable code as well as experimental
results. The last section gives conclusions and mentions future work.

2. Related work

Traditional standard techniques for homogeneous architectures are described in
the "Dragon Book" [6]. Advanced techniques for general purpose processors are
presented in [45]. An early contribution emphasizing phase ordering problems in
the context of microcode generation is [60].
In order to compare existing phase coupling approaches, we give a classi�cation

of phase coupling approaches according to the following cases:

� Only regular architectures are considered; we further distinguish whether or not
ILP is considered. In case of ILP, orthogonal VLIW-like parallelism is assumed,
and mutual dependencies between SRs and FUs are neglected.

� Irregular architectures are of primary concern. We will di�erentiate the follow-
ing classes:

{ Approaches neglecting ILP.

{ Approaches considering ILP based on heuristic techniques.

{ Approaches considering ILP based on exact techniques.
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As distributed resources are of concern, we will further classify these approaches
by the sets of resources which are simultaneously captured. This will reect the
coupling degree of CS, RA and IS.

As tree covering is very important in the context of phase coupling problems for
DSPs, we �rst give an overview of existing approaches. We then describe phase
coupling approaches according to the given classi�cation.

2.1. Tree covering techniques

Much e�ort has been put into the design of e�cient tree pattern matchers and
e�cient code selector generators. Initiated by the work of Graham{Glanville [27]
LR-parsing techniques were used for pattern matching, where the target machine
speci�cation was de�ned by a context free grammar. A parser generator was used
for generating the code selector 2. The basic problem of these approaches is the
potential ambiguity of the required instruction-set grammars. Tree pattern match-
ing with dynamic programming [3, 2] constituted a solution to this problem. Code
selector generators map a speci�cation of the target instruction set to a dedicated
code selector. The speci�cation techniques used are based on weighted regular tree
grammars [23]. Tree grammars are represented by a set of tree reduction rules3

of the form X  pattern[cost] : action. The action part de�nes the output of the
code selector. The generated code selectors make two passes over expression trees.
The �rst pass is bottom-up and �nds a covering with minimum costs. The second
pass is top-down and emits the code. Examples for code generator generators based
on this model are: BEG [18], Twig [2], burg [21], iburg [20]. BEG's and iburg's tree
pattern matchers are hard coded and mirror the tree patterns like recursive descent
parsers mirror their input grammars. Twig matchers use a table-driven variant of
string matching. Other table driven approaches, based on �nite tree automata [23],
move dynamic programming to compile-compile time [55, 32, 30, 31, 23].

The tree pattern matching technique is capable of handling distributed SR and
FUs. Tree pattern matchers are capable of computing the set of all covers, which
is required for delayed resource binding. There are several DSP related approaches
based on the application of code selector generators [19, 4, 5, 37].

CBC [19] is based on a machine description in the hardware description language
nML. The machine speci�cation is transformed to an iburg speci�cation and the
code selector is generated by an extended version of iburg. CBC has been developed
for irregular architectures. Instruction level parallelism is supported by delayed
binding of FUs. CBC tries to take into account common subexpressions that cross
basic block boundaries by means of heuristic node duplication. A control data ow
graph is modi�ed in order to create more complex RTs across basic block boundaries
by node duplication. In [5] edges of DFGs are pruned in order to provide faster
code selection for the DFTs of a basic block for architectures satisfying the so-
called "RTG criterion". Code selectors are generated by the code selector generator
OLIVE [8]. A technique for constructing spill free schedules for machines satisfying
the "[1;1] model" and the RTG criterion, is given in [4].
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2.2. Phase coupling for regular architectures

Early approaches of coupling code selection, sequential instruction scheduling and
register allocation are given in [3] yielding optimal solutions for trees and architec-
tures with a homogeneous register �le and without ILP.

The following approaches are concerned with coupling register allocation with
scheduling. They consider ILP but neglect irregularities in the target architecture.
Register allocation tries to reuse as many registers as possible, therefore adding
many additional false dependencies that constrain the instruction scheduler's ability
to reorder machine instructions. Instruction scheduling tries to parallelise as many
RTs as possible. This results in high register pressure which drastically increases
the amount of interferences.

Some approaches are based on the exchange of information between phases.
Goodman and Hsu [26] manipulate the scheduler's data dependence graph, such
that its width is not larger than the number of registers available. In a second
method (integrated pre-pass scheduling (IPS)) a local scheduler is restricted to use a
�xed number of registers for local values. If register limits are reached, the scheduler
tries to free some of the registers or to increase the register limit. The subsequent
local register allocation can generate spill code which enforces rescheduling. Bradlee
compares two strategies with graph coloring followed by scheduling [9, 12, 11]. The
�rst strategy is an improvement of IPS. The second one called RASE �rst per-
forms initial passes of the instruction scheduler for estimating local schedule costs,
�rst for a very limited number of registers and then with the maximum number of
available registers. The computed estimations are used in the priority scheme of
graph coloring, followed by a local list scheduler. Freudenberger [22] describes a
method that integrates greedy register allocation into trace scheduling in order to
provide global optimisation. In Bersons approach [10] the data dependence graph
is incrementally sequentialised with respect to global aspects of over-utilised and
under-utilised regions of resource requirements. Register allocation is performed
on-the-y, together with appropriate spilling. Approaches like [41, 51, 46] start
with an initial register allocation. During instruction scheduling false dependencies
are eliminated using dynamic renaming [15].

There are several works based on graph coloring register allocation while consid-
ering aspects of parallelism: Norris and Pollok [48] add edges to the interference
graph to estimate the re-ordering e�ect of instruction scheduling. Pinter [54] also
constructs an interference by adding additional edges. She �rst constructs a graph
from the data dependence graph, where the transitive closure of all dependence
edges are placed into a graph as undirected edges. Target machine resource con-
icts are added that restrict the parallel execution of machine operations. From
this resulting graph, the graph's complement is constructed and the union with the
register allocator's interference graph is constructed (called the parallel interfer-
ence graph). Brasier [13] proposes a method based on late register allocation and
limits the additional interferences to false dependencies that will limit the instruc-
tion scheduler. Only if spilling becomes necessary during late register allocation
it is switched back to early register allocation. The "early" interference graph is
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augmented with edges that are exclusively found in the "late" interference graph
and which are colored with the same color in the early interference graph. Further
works based on graph coloring are [1, 49, 50].

Mutation scheduling [47] takes into account distributed FUs. It integrates code
selection and register allocation into instruction scheduling. Each value in the
program is associated with a set of alternative (functionally equivalent) expressions
called "mutations", each using a di�erent set of resources of the target architecture.
During scheduling one of the alternatives is selected. If the resources are occupied,
another mutation is selected. The mutation sets can change dynamically during
scheduling. When a value is moved to a register, a reference to that register is
added to the mutation set. If a value is spilled, a load entry with the corresponding
location is added. Initial register allocation is performed like in [41, 51, 46]. But
in contrast to these approaches spilling is also integrated. Also re-computation of
a value is considered as a mutation [47]. In contrast to rematerialization every
equivalent expression can be selected. Issues of irregular register sets and ILP
conditions are not considered.

2.3. Phase coupling for irregular architectures

2.3.1. ILP not considered In [36] an approach for combined code selection and
register allocation for DFGs is represented. The approach is based on binate cov-
ering and addresses accumulator-based architectures. It yields optimal results in
acceptable time for small basic blocks. The approach of Paulin [56] performs tree
pattern matching and dynamic programming, but delays the binding of locations
for result and operands (due to register class speci�cations associated with the
patterns). Interdependencies between the locations are not considered. Register
allocation is performed by using the left edge algorithm. If a free location for a
value is found, this location is bound. Register allocation does not take ILP into
account. Instead, there is a postpass compaction phase.

2.3.2. ILP and heuristic approaches Data routing incorporates register alloca-
tion for distributed register �les and instruction scheduling. The aimof data routing
is the selection of good routing paths for values. The BULLDOG Compiler of Ellis
[17] performs local scheduling together with greedy register allocation on-the-y.
Data routing is performed in order to support ILP. Good spill decisions are not
considered. An approach combining delayed binding of FUs with consideration of
di�erent data routes is proposed in [29]. Distributed register sets together with �ne-
grain parallelism are taken into account. Storage resources are composed to more
abstract storage resources, so as to enable the delayed binding of SRs. The code
selector performs traditional tree pattern matching with dynamic programming. A
trace scheduler is generated from a machine speci�cation to guide the order of the
choices the trace scheduler has to make with respect to the requirements of the
target machine. The trace scheduler performs register allocation on-the-y.
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Rimey and Hil�nger [57] perform local scheduling together with greedy binding
of FUs and register allocation on-the-y. Pattern matching of RTs is performed
during scheduling. For each RT they try to �nd data routes from the de�nitions
of uses of the RT, such that the RT can be scheduled in the current instruction
cycle. The data routes must be compatible with the current schedule. Hartmann's
approach [28] is a re�nement of Rimey's and Hil�nger's work, extended by deadlock
detection. There, FUs are bound in advance. The approach proposed in [35]
determines data routes, taking ILP into account. It examines various data routes
while also considering global spilling and re-computation. Selection of data routes
for each value is guarded by a cost model based on distribution graphs. The FUs
for each operation have to be bound in advance.

The retargetable code generator MSSQ [40] embedded in the MIMOLA software
system simultaneously performs binding of FUs and local instruction scheduling,
thereby considering a set of machine instruction types. Variables are pre-allocated
to certain SRs, de�ned by the user. Temporary values are allocated to register cells
on-the-y during pattern matching. Algebraic transformation rules are considered,
while spill code generation is not.

2.3.3. ILP and exact approaches The following approaches are based on strate-
gies yielding optimal solutions. Code generation phases are described in the form
of constraints (generally linear equations and inequations). The complete solution
space is explored while all constraints are considered simultaneously, leading to a
complete phase integration. The approach in [39] performs instruction scheduling
based on an Integer Programming (IP) approach yielding optimal solutions. Code
selection and register allocation are performed in advance, based on iburg-generated
code selectors. This results in the binding of SRs. Binding of FUs is delayed to
scheduling. Complete integration of code selection, register allocation and instruc-
tion scheduling based on IP are given in [62, 24]. Wilson's approach [62] leads to
very high runtimes due to large IP models. The approach of Gebotys [24] takes
advantage of describing constraints based on horn clauses. This can be mapped to
Linear Programming problems, which can be solved more e�ciently than IP prob-
lems. However, only restricted classes of architectures can be handled e�ciently
by these approaches. Architectures comprising register �les with multiple registers,
like the ADSP210x, typically lead to an explosion of the generated models. In [34]
a covering approach for DFGs for �nding a minimal set of (VLIW) instructions
(taking ILP into account) is speci�ed. The approach is based on binate covering.
Detailed register allocation has to be performed in a post processing phase.

2.4. Non-phase-coupling approaches for irregular architectures

An exact scheduling method for architectures with highly constrained ILP, based
on bipartite graph matching, is described in [59]. The search space is pruned
in advance { but without eliminating any feasible schedules { such that for many
benchmarks results are found in acceptable time. All resources are �xed in advance,
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so that the quality of generated code depends on earlier phases. In [44] an approach
for loop pipelining based on constraint analysis is described. Resources are bound
in advance. Resource constraints are mapped to dependency relations and if a
feasibility check holds, schedules can be generated by any conventional scheduler.
Infeasibility leads to a re-binding of registers (by means of register assignment)
if possible, and to the generation of new sequencing constraints. The approach
iterates until a feasible schedule is found or no re-binding of registers is possible. An
approach for DFG covering based on BDDs is given in [64]. Covering is extended to
yield a certain binding of operations to FUs. A single covering, where all resources
are �xed, is selected. No underlying cost criterion for the selection is given. In a
second phase a list scheduling algorithm, extended by spill code insertion, generates
the �nal schedule. Due to �xed resource binding, this phase heavily depends on the
covering phase.

2.5. Main di�erences of our approach

We address irregular architectures with ILP, as well as register �les with capacity
larger than one. Our code selection approach generates all DFG covers with re-
spect to a given set of RTs (actually: FRTs). These covers also contain associated
resource information and all mutual dependencies between resources in the form of
constraints. The basic di�erence between our approach and the work mentioned
above is a new concept for delayed SR and FU binding. In contrast to the existing
approaches we do not �x resources unless we are forced to. We keep alternatives
solutions as long as possible and reactivate decision procedures only when more
information has become available. We have also integrated a exible spilling strat-
egy. In this approach spilling is not restricted to loads and stores from/to memory.
In order to avoid exhaustive runtimes, we do not consider the complete solution
space like IP based approaches. However, as will be shown in the following, there
is a tight integration of code generation phases, which allows for generation of high
quality code.

3. The constraint-based code generator ICG

This section begins with an overview of constraint programming and an outline of
our constraint-based implementation. Then, an overview of the components of our
code generator (the ICG system), their functionality and the data ow between
them is given. The section ends with some remarks on the benchmark set we used
for evaluating the system.

3.1. Constraint programming

We model phase coupling of code generation in the form of constraint satisfaction
problems (CSPs) [33]. Therefore, a short and informal explanation is given here.
CSPs are represented by a set of variables and a set of constraints, describing
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dependencies between the variables. Variables are associated with certain domains,
i.e., sets of values. A CSP solution is a mapping of each variable to a certain
member of its domain, which meets all constraints. The goal is to �nd one valid
solution or an optimal solution according to an objective function. An algorithm for
determining the satisfaction for a set of constraints is called a constraint solver. For
certain application domains there exist dedicated solvers. A general technique used
in many solvers is to rewrite constraints into so called "solved form", for which it is
clear, that a solution exists (e.g. by Gauss-Jordan elimination for linear arithmetic
constraints).
ICG is written in the constraint logic programming (CLP [43]) language ECLiPSe

[52, 63]. ECLiPSe is based on PROLOG and comes along with a set of domains
together with dedicated constraints, solvers, and search- and optimization strate-
gies. A basic technique used in CLP systems is that of constraint propagation [61].
Constraints, occurring in a constraint logic program, are collected in constraint
store when executing the program. Adding new constraints generally leads to the
reduction of certain domains. Collected constraints operate in the background, and
they locally check the feasibility of the domains and also eliminate members of
the domains, which will lead to invalid solutions. As an example we consider the
variables X and Y , both associated with the domain f1; ::; 10g. If we now impose
the constraint X < Y , the domain of X is reduced to f1; ::; 9g, because there is
no legal assignment of Y meeting the constraint, if X is set to 10. As there is no
feasible solution if Y = 1, the domain of Y is reduced to f2; ::; 10g. A setting of X
to 5 leads to a reduction of Y 0s domain to f6; ::; 10g. In the following we will call
variables like X and Y domain variables. If the domain of a variable is reduced,
we will call this a reduction of the variable. Solving is performed in a second phase
and consists of labeling the variables with certain members of their domains. Again
the constraints guide the feasible labeling of variables. An assignment which does
not meet the given set of constraints is rejected and leads to backtracking.
ECLiPSe is designed for solving di�cult combinatorial problems in the area of

planing, scheduling and resource allocation. The ECLiPSe system o�ers several
prede�ned search strategies, w.r.t. the ordering of selecting variables and members
of the domains, and provides direct control over search strategies for the user. In
addition to costraint propagation, techniques based on Mixed Integer Program-
ming (MIP), and stochastic techniques (like Simulated Annealing) are supported.
ECLiPSe enables the user to mix these techniques in order to build hybrid search
strategies. It provides powerful mechanisms to de�ne new domains and constraints,
and new search strategies and solvers directly in ECLiPSe. In our implementation
we made e�ective use of the �nite domain (FD) library (the alternative resource
sets are implemented as �nite domains). The library provides predicates for set-
ting up the domains together with prede�ned constraints over �nite domains. Also
access to the domains of variables is given together with predicates for creating
new domains from existing ones (via well known set operations) and for updating
domains of variables. These features were extensively used in the speci�cation of
new constraints, needed for our system. New, complex constraints were de�ned

� based on a set of existing elementary constraints, provided by the library,



15

� using low level predicates for direct domain access and modi�cation, and

� making usage of a generalized propagation approach (cf. library manuals of
ECLiPSe [52]).

ECLiPSe allows specifying conditions and priorities for reactivating constraints, in
order to prevent unnecessary reactivations.

3.2. ICG System Overview

An overview of the components of our code generation system ICG and the com-
munication between these components is shown in �g. 8. C source programs are
mapped to control data ow graphs (CDFGs). For these, basic blocks of a program
are represented by data ow graphs (DFGs). In the current version, only data ow
oriented parts of a program are supported. Therefore we will focus on DFGs as the
input of ICG in this paper. The second input is a model of the target machine for
which code is to be generated. The output of ICG is a sequence of machine instruc-
tions in the form of a set of parallel FRTs. The system comprises the following
basic components:

1. FRT covering: A DFG is mapped to the initial DFGFRT , representing the set
of all covers of the input DFG. This comprises setting up the domains of the
variables, representing the alternative resources of variables, and generating
the constraints specifying mutual dependencies between resources. These con-
straints guide the concise reduction of variables throughout the remaining code
generation phases, leading to only legal covers (section 5).

2. Pruning of covers: A set of strategies is provided, which allow to prune the set
of all covers in advance. This includes reduction to the set of optimal covers for
DFTs and also for DFGs. It also allows to reduce certain domains in advance,
e.g., it is possible to specify the locations allowed for common subexpressions
(CSEs). These strategies include labeling and optimization strategies. The
result is a smaller set of alternative covers, in the form of reduced domains.

3. Integrated register allocation (IRA): Integrates code selection and register al-
location, which comprises techniques for data routing and spilling (section 6).
Integrated instruction scheduling (IIS) extends the concepts developed in IRA to
instruction scheduling with regards to ILP (section 7). IIS maps a DFGFRT to
sequence of compacted machine instructions represented as sets of FRTs. Both,
IRA and IIS set up new domain variables and constraints. For data routing
and spilling, data moves have to be inserted. Constraints, which guarantee that
the data moves are feasible in the context of the current covers, and provide
guidance such that no register �le resources are exceeded, are inserted. For ILP,
constraints are added that guide the concise reduction of variables in order to
meet the ILP conditions.

4. Labeling: Generates a certain mapping of variables to resources. This also serves
as a feasibility check. Since constraints only check local feasibility, it may still
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Figure 8. System overview
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happen, that there exists no solution which satis�es all constraints. In case
there exists no solution, we allow certain constraints to be violated and we have
to insert correction code4.

Additionally, there are two post-processing phases: address generation and post-
compaction. In these phases, in which executable code is generated, we apply
techniques developed earlier in the RECORD compiler project [37].

3.3. Remarks on benchmarks and run-times

To evaluate our system we have used benchmarks from the DSPStone benchmark
set [65] which evolves to a standard benchmark set in the DSP compiler community.
Since ICG is currently only able to generate code for the data ow components of
programs (i.e. DFGs of basic blocks), we have selected programs which are basi-
cally data ow oriented (complex multiply, complex update, and iir �lter, biquad
and biquad n and a lattice �lter). The basic blocks of the selected benchmarks
represent realistic and representative examples with regards to other basic blocks
in the DSPStone benchmark set. Additionally, a set of internal benchmarks was
tested, with very large basic blocks (DFGs with upto 100 nodes and 200 edges).
We have compared the generated sequences of machine instructions of the DSP-

Stone benchmarks with hand written code and the results of the dedicated GNU C
compiler for the ADSP-210x. As a metric we have used code size. For basic blocks,
this also indicates code performance5.
The primary goal of our approach is to generate high quality code. Compilation

speed is of secondary concern as long it is in an acceptable range. This is feasible,
since compilation times are of minor concern for embedded software, and even
run-times of hours are acceptable in certain cases.

4. Internal machine model

This section describes the internal model of the target machine used for the code
generator. This model is based on FRTs. Understanding of our internal machine
model is quite essential for the understanding of the code generation techniques
described in the following section. The internal machine model comprises the de-
scription of the instruction set in the form of the available set of RTs, constraints on
ILP, and information about address generation units and speci�c control functions.
In this contribution we concentrate on the set of RTs and the modeling of ILP. Our
code generator can be re-targeted by exchanging the internal machine model, since
none of the techniques is dedicated to a certain processor model.
There are several approaches for modeling instruction sets with strongly con-

strained ILP and with provisions for retargeting all major phases of code generation
[40, 58, 59, 37, 34, 64]. Our approach is based on constraints and allows a very
concise and compact speci�cation methodology. We introduce a new concept for
modeling highly constrained ILP based on instruction types6 which allows a very
intuitive speci�cation method.
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We use the following notations: The set SR denotes the available SRs. FU is
the set of FUs, and the set T denotes a set of machine instruction types, used for
modeling ILP.

4.1. Register transfers

The model for RTs are RT patterns together with extended resource information
(ERI). A RT pattern reects the operation and the SRs where the result is stored
and the SRs where the operands are expected. For example, if SR = fa; b; cg, then
the RT c := a + b denotes an addition where the �rst and second operand must
reside in SRs a and b, respectively. The result is stored in SR c. We call c the
de�nition of the RT and a; b the uses. We de�ne two functions def and use such
that for a RT rt given as D := op(U1; ::; Ui; ::; Un), def(rt) denotes D, and use(rt; i)
denotes Ui

7 (also written as usei). Transfer operations (TOs) are speci�c RTs of
the form c := a. They denote the transfer of a value from SR a to SR c. In section
1 (�g. 1) some of the RTs of the ADSP-210x have been shown.
The triple ERI = (t; fu; c) of extended resource information denotes the type

t 2 T , the consumed FU fu 2 FU , and the cost c of a RT. Costs are given by means
of instruction cycles necessary for executing the RT. The ERI is very important for
meeting the scheduling constraints of RTs in the resulting code. Types and FUs are
used to model potential parallelism between RTs. Two RTs can be only executed
in parallel, if they can be encoded in the same instruction type t 2 T and if they
do not consume the same fu 2 FU .

4.2. Factorised RTs

The usage of factorised RTs (FRTs) in our code generator is twofold. As explained
in the introduction, FRTs are used to represent the set of covers for DFGs (cf.
section 1.2). We will also use FRTs as a concise speci�cation and internal represen-
tation for the set of RTs of the target machine, from which the matching FRTs are
derived during covering. We consider a subset of RTs implementing the addition
in the ADSP-210x: far := ar+ ay; ar := mr+ ay; ar := ax+ ayg. There are three
alternatives for the location of the �rst operand, i.e. ar;mr; ax. We combine these
RTs to a single representation by means of factorising, in this example use1. The
result is the FRT ar := arjmrjax+ ay, where use1 represents a set of alternative
SRs.
We model FRTs by an RT-pattern and a set of constraints. In the RT pattern the

de�nition and each use are representing domain variables. The domain variables
are associated with a certain set of SRs. The set of constraints de�ne the domains
of the variables and certain dependencies between them. For instance, the FRT
ar := arjmrjax+ay is given by (D := U1+U2, C), where C is the set of constraints
fD = ar; U1 2 far;mr; axg; U2 = ayg). In the following we will call a domain
variable of a RT-pattern a location, and dom(L) denotes the domain of the domain
variable L (e.g. dom(U1) = far;mr; axg). A substitution for the locations of a FRT
is an assignment of a certain SR to each location.
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The feasible RTs represented by a given FRT can now be obtained by the set
of substitutions of a FRT. We say that a FRT is orthogonal if any substitution
of its locations yields a feasible RT. A FRT is called constrained, if there exist
dependencies between the locations. Consider the set of RTs fc := a+b; a := c+bg
and the FRT (D := U1 + U2,D 2 fc; ag; U1 2 fc; ag; U2 = b). We need a constraint
in order to describe the dependencies between D and U1. This could be formulated
as D = c � U1 = a (D 6= U1 would also be su�cient). If we now set D to c, this
leads to the reduction of U1 to a, in order to meet the constraint. By adding new
constraints to a FRT, the domains of variables may be reduced. In turn, this may
imply a further reduction of the set of RTs.

We will use the following notation for FRTs: Dd :=C op(Ud1
1 ; ::; Udn

n ), where C is
the set of constraints and d = dom(D); d1 = dom(U1); :::; dn = dom(Un). We will
also use d := op(d1; ::; dn) if we are not interested in denoting the variables.

We apply factorization also to the ERI. This is achieved by adding constraints
for the domain variables T;R, and C. This also allows to de�ne dependencies
between locations and resource information. In this way we obtain a very compact
speci�cation of target machine models. We also allow to compose a FRT from a
set of FRTs having the same RT pattern.

4.3. Factorised machine instructions

A machine instruction is a set of RTs which can be executed in parallel. For a
given set of RTs R, a RT rt is called compatible to R, if R [ rt is a legal machine
instruction. The concept of factorization is extended to machine instructions by
means of representing these as a set of FRTs and a set of constraints guiding
reduction of FRTs, so as to obtain only feasible machine instructions.

4.4. Example: Analog Devices ADSP-210x

Example: In �g. 9 the FRTs of the ADSP-210x are shown in the form of tree pat-
terns. The FRTs for + and - are merged since they are isomorphic. The factorised
extended resource information is given for the types and consumed resource (FU).
Costs are not mentioned since the costs are equal to 1 for each of the shown FRTs.
The RTs modeled by frt1::3 can be executed in any machine instruction of type
typ1::4. The given constraints model the ILP condition for typ1, which enforces,
that the result of the RT will be located in an accumulator (and not in a feedback
register af or mf). The constraint also denotes, that if the result of a RT is located
in a feedback register, the RT cannot be included in a machine instruction of typ1
(i.e. T 6= typ1). The FRTs modeling the parallel transfer operations are explicitly
given by frt4 and frt5.

ILP is modeled by the extended resource information plus a resource description
for each type of machine instruction. The resources are speci�ed according to the
instruction �eld consumed by a RT in a machine instruction (machine instruction
types in �g. 9). Thus the resources for the instruction type typ1 are given by
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Figure 9. FRTs of the ADSP-210x
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alujdbusjpbus. It is su�cient to model both FUs in a single resource alu, as RTs
executed on FUs cannot be performed in parallel on the ADSP-210x.

4.5. Retargeting of the code generator

A speci�cation of the machine model is given as an input to the code generator.
Parts of the speci�cation of the ADSP-210x are shown in �g. 10. Each FRT is spec-
i�ed by the quintuple (O;D; [U1; ::; Un]; ERI;Constraints): O;D;U1; ::; Un are do-
main variables denoting the operation O, the de�nition D, and the uses [U1; ::; Un];
ERI = (Typ; FU;Cost) are the domain variables denoting the extended resource
information, and Constraints is the set of constraints specifying the dependencies
of the variables8. Transfer operations are given explicitly. Resource declarations
permit to introduce macros for sets of resources (e.g., mems(X)) and de�ne the
sizes of SRs. The machine type declaration part relates the machine types with the
available FUs for each type.
Retargeting of the code generator is performed by generating a set of constraints

from the speci�cation, which eventually yields the internal machine model:

� From the FRTs a constraint match(o;D; Uses; T;R;C) is derived. For a given
operation o it will derive the domains and the constraints for the input variables.
The operands Uses are given in form of a list [U1; ::; Un] of domain variables.

� The relation S !1 D is derived from the transfer operations. S !1 D holds, if
a value can be transfered from S to D by a single transfer operation.

� The binary relation !� denotes the reexive, transitive closure of transfer op-
erations. Therefore, S !� D holds, if S = D or a value can be transfered from
S to D by a sequence of transfer operations.

� S !+ D holds, if a value can be transfered from S to D, by a sequence of at
least one transfer operations.

� The constraints intf and ilp are derived from the declarations of machine in-
struction types. They guide the correct reduction of machine instructions (given
by a set of FRTs), in order to meet the ILP conditions of the target machine.

Furthermore, functions yielding resource information (e.g., sizes of SRs) are pro-
vided as part of the machine speci�cation. All techniques of our code generator
make use of these constraints and functions as the only interface to the internal
machine model. So far we are able to handle target machine classes with single
cycle instructions.
The speci�cation of FRTs in �g. 10 almost represents the high-level speci�cation

methodology for de�ning constraints provided by ECLiPSe (except that certain
mathematical symbols are represented by strings available in most text editors; e.g.
2 is denoted by "::"). For most of the derived constraints, used by FRT covering,
we used a generalized propagation approach [52]. The constraints intf and ilp are
generic and make extensive usage of low level predicates for domain access which
is also provided by the �nite domain library of ECLiPSe.
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Figure 10. Partial internal machine model of the ADSP-210x

Operations

frt(Operation,Result,[X,Y],(Typ,alu,1), C = f
Operation 2 [+,-],

Result 2 [ar, af],
X 2 [ax, ar, mr],
Y 2 [ay, af],
Instr 2 [typ1, typ4,typ5,typ8],
Result=af #=> Typ6=typ1 g).

frt('*',Result,[X,Y],(Typ,alu,Cost), C = f
Result 2 [mr,mf,'*(X,Y)'], Virtual SR'*(X,Y)' for MAC operation.
X 2 [mx, ar, mr],
Y 2 [my, mf],

Cost 2 [0,1], Cost=0 for MAC operation.
Typ 2 [typ1,typ4,typ5,typ8],
Result=mf ) Typ6=typ1,
Result='*(X,Y)' , Cost=0g).

frt(Operation,mr,[mr,'*(X,Y)'],(Typ,alu,1), C = f
Operation 2 [+,-],
Typ 2 [typ1,typ4,typ5,typ8]g).

frt(Operation,Result,[X,'1'],(Instr,alu,1), C = g
Operation 2 [+,-],
Result 2 [ar,af],
X 2 [ay, af],
Typ 2 [typ1,typ4,typ5,typ8],

Result=af ) Typ6=typ1g).
...

frt(const(1),'1' ,[],(Typ,alu,0),Typ 2 [typ1,typ4,typ5,typ8]g).
frt(const(_),Result,[],(Typ,bus,1),Typ 2 [typ4,typ5]g,regs(Result)).
...

Transfer Operations

transfer(Src,Dst,typ4,1,fDst=d,regs(Src)g).
transfer(Src,Dst,typ5,1,fDst=p,regs(Src)g).
transfer(Src,Dst,typ8,1)fregs(Dst),regs(Src)g.
...

Resource Declarations

all_srs(faf,mf,ar,mr,ax,ay,mx,my,p,dg). Resource classes used in FRTs.
regs(far,mr,ax,ay,mx,myg).
mems(fp,dg).
...

size(ar,1).
size(ax,2).
...

Machine Instruction Declaration

instr(typ1,[alu,dbus,pbus]).
instr(typ4,[alu,bus]).
instr(typ5,[alu,bus]).

instr(typ8,[alu,bus]).
instr(typ6,[bus]).
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5. Code selection and FRT covering

In this section we �rst review the traditional approaches of code selection by means
of tree pattern matching and dynamic programming. Then we introduce our con-
cept of generating and representing the set of covers by means of FRT covering.
FRT covering is one of the central issues of ICG. The goal is to provide a representa-
tion of the set of alternative covers, so as to be able to integrate code selection into
the other code generation phases. So our goal is not to select a certain cover, but to
generate a set of alternative covers, which should enable more exibility for making
up good decisions for the subsequent phases. Our approach is extended to DFGs,
by means of taking into account the data routes between the de�nitions of CSEs
and their multiple uses. Additionally, we have also derived techniques for pruning
the set of alternative covers. One strategy is the generation of optimal covers for
DFTs as well as for DFGs, when neglecting ILP. These techniques are based on
the labeling and optimization strategies of ECLiPSe. We also used information of
optimal covers to partially reduce the initial set alternative covers. An overview is
given at the end of the section.

5.1. Tree pattern matching and dynamic programming

Most of the current tree covering approaches are based on tree pattern matching
combined with dynamic programming. Tree pattern matchers are used to deter-
mine a set of possible covers for a DFT. In order to select a (locally) cheap cover
from the set of possible covers, tree pattern matching is combined with dynamic
programming.

Figure 11. Tree patterns
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RTs are represented as tree patterns. In �g. 11 the tree patterns of the ADSP-
210x are shown in a factorised form. Edges of tree patterns are associated with
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the SRs required for the result and operands. These SRs have to be taken into
account during covering. Consider the operation of node 1 in �g. 3. The nodes
2 and 3 are matched by the tree patterns rt1 and rt2. Generally, a tree pattern
D := op(U1; ::; Un) matches a node with operation op, if def(rti) = Ui or if there
exists a sequence of transfer operations to move the value in def(rti) to Ui (i 2
f1; ::; ng). Consider the tree pattern depicted for node 1. The matching for the
second operand is feasible as there exists a data transfer from ar to my (my := ar).
Most approaches are based on bottom-up tree pattern matching. In a bottom-up

tree traversal all possible covers w.r.t. a given set of RT patterns can be constructed
simultaneously. Each node of the tree is labeled with a set of matching tree patterns.
Selection of a certain cover from the set of possible covers is mostly done by dy-

namic programming. This is a very e�cient technique to create locally optimal
code for DFTs. A nice feature of such code selectors is that they can be gener-
ated automatically by code selector generators (CSGs). Thus, retargetability is
supported. CSGs require a formal description of the target instruction set given as
a tree grammar9. Each tree pattern is represented as a rule of the tree grammar,
where the SRs are represented by the nonterminals of the grammar. Each rule is
associated with a cost and an action. The action describes the emission of code
corresponding to the rule10.
The main drawback of approaches based on dynamic programming is that ILP

cannot be taken into account, since this would contradict the paradigm of dynamic
programming: Optimal solutions for a tree must be computed from the optimal
solutions of its subtrees, and solutions for subtrees must be independent of each
other. Additionally, in the case of inhomogeneous SRs, spill costs cannot be taken
into account.

5.2. FRT covering

In this subsection the generation of the set of all alternative covers for DFGs is
described. Our pattern matching approach is based on labeling each DFG node i
with a FRT that denotes the set of all RTs matching i. In the following we will
denote the operation associated with node i of a DFG as opi. We will refer to the
value generated by this operation as value i, or as operand i (if i is an argument of
another operation opj). The FRT associated with node i is denoted as frti. Each
frti is represented by the set of domain variables DVi = fDi; Ui;j1 ; : : : ; Ui;jng [
ERIi. Di denotes the de�nition of frti. Ui;j denotes a use of frti, i.e. the required
location of operand j. ERIi is the set of domain variables fT;R;Cg, corresponding
to the extended resource information of frti.
The set of matching RTs is determined based on the FRTs of the internal machine

model. We perform matching at a node i by applying the constraint match (cf.
section 4.5) which yields a FRT frti. This is performed through a bottom-up
traversal of the DFG. For each operand j of frti we apply constraint Di !

� Uj;i,
in order to take into account distributed SRs. This ensures, that there exists a
path from each de�nition Di to a use Uj;i. The constraint eliminates each d from
dom(Di) and each u from dom(Uj;i), for which no sequence of operations for moving



25

a value from s to d exists. The reduction of domains may lead to further reductions
of frti or frtj , dependent on the associated constraints.
There is special handling of DFG nodes for program variables (leaves) and com-

mon subexpressions (CSEs). With each node denoting a program variable a set of
possible initial locations at the beginning of a basic block is associated. Therefore,
during covering, no FRT is associated with these nodes, but only a domain variable
D denoting the location. This location is then considered as the de�nition D in
the remaining covering process. With each common subexpression CSEi we asso-
ciate an extra variable D0

i. Covering of common subexpressions rooted at node i is
handled by de�ning the !� relation between D0

i and each use Uk;i. The machine
speci�cation formalism allows to de�ne certain allocations for the values of CSEs
given by a special constraint cse loc(L). Di !

� D0
i and cse loc(D0

i) are generated
for each CSEi. Uses of CSEs are handled like any other uses of operands. For each
frti using CSEj , D

0
j !

� Ui;j is generated.
Only legal covers are left after pattern matching. Code generation now consists

in reducing the domains of the domain variables such that each FRT reduces to a
single RT. The constraints associated with the FRTs guide the correct reduction
of domains, in order to yield only feasible RTs. In our CLP framework ECLiPSe,
constraints are activated automatically whenever domains of variables are being
reduced.

Example: In �g. 12 the covering and reduction process is exempli�ed. The re-
duction of a partial DFG with some of the essential domain variables is shown in
the left column of �g. 12. New generated constraints and their re-activations are
shown in the right column and the e�ects of the constraints are described. The rows
depict the matching process for the DFG nodes 1,2 and 3, respectively. For sake
of simplicity, only data move constraints between the CSE and its uses are shown,
which are generated by the application of !�. The handling of the extra variable
D0 of CSEs is also omitted. Constraints which are known to be ful�lled and which
will not cause any further reduction on variables never have to be reactivated again
and are "killed".
Row1 shows the situation after matching node 1. The result location of node 1

may be one of the locations fmr;mf; �(X;Y )g, where �(X;Y ) denotes the virtual
resource to handle chained operations (cf. section 4.5). The second row Row2
shows the situation after matching node 2. New data move constraints C1 and C2
were generated. C1 speci�es that there exists no possibility to move data from mf
to any other SR. If D1 is mapped to mf , then all uses also have to be mapped
to mf . C2 denotes a constraint used for modeling chained operations (cf. section
4.5). Since the equality in C2 cannot hold for U2;2, �(X;Y ) is removed from D1's
domain, in order to meet the equivalence constraint of C2. Row3 shows the results
of matching node 3. The new generated data move constraint C3 eliminates mf
from D1 since mf is no member of the alternative SRs of U3;1. The modi�cation
of D1's domain reactivates C1, which now removes mf from U2;2's domain. Both
C3 and C1 are ful�lled now and are "killed". C4 is ful�lled, since �(X;Y ) is not a
member of D1 and U3;1.
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Figure 12. FRT covering
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In table 1 the run-times of FRT covering for the selected DSPStone benchmarks
are shown. All run-times in this paper are given in SPARC-20 CPU seconds.
The runtime data indicate that FRT covering is e�cient. FRT covering for our
internal benchmarks was in the range of a few seconds. The table also shows some
characteristics of the benchmarks: the number of DFG nodes, DFG edges, and the
number of CSEs.
In the following a coarse worst case analysis of the complexity of FRT covering

is given. The complexity depends on the following factors. We assume we have
N DFG nodes and that for each node, a maximum of C constraints are activated.
Each constraint uses at most V variables and the maximal size of the domains is
D. The complexity of the constraints we used for specifying FRTs depends on
the number of variables and domain sizes, therefore denoted as c(V;D). In most
cases c(V;D) � O(V �D) holds. C, V and D are of limited sizes. V is in the range
1 < V < 8. C andD depend on the machinemodel: C also depends on the maximal
uses of CSEs but was less than 10 on average for the benchmarks used so far. D is
limited to the maximal amount of FUs, SRs and instruction types. The constraints
we use and generate are not disjunctive. Reactivation of constraints is triggered
by the reduction of domain variables. Thus, each constraint can be reactivated no
more than V �D times. In total we have (V �D) � (C � N ) � c(V;D). If we take
the maximal ranges for V and C into account and assume that c(V;D) = O(V �D)
then we get a complexity of O(N �D2), where D is constant for a given machine
model. Another important result of this analysis is, that a generally exponential
number of alternative covers is given by a representation of linear size (w.r.t. to
the number of DFG nodes N ), by means of FRT covers.

Table 1. Run-times for FRT covering

source runtime DFG Nodes DFG Edges CSEs

complex multiply 0.85 13 14 4
complex update 0.96 17 18 4
iir �lter 0.62 17 19 2
lattice �lter 1.52 23 27 8

5.3. Pruning the set of alternative covers

As a special application of FRT covering, we have developed techniques for pruning
the set of alternative covers. This comprises:

� Reduction of certain variables, e.g., the SRs for CSEs can be speci�ed the target
processor.

� Generation of optimal DFG covers when neglecting ILP. The FRT covering pro-
cedure can thus also be used as a stand-alone optimal code selection technique
for DFTs and also for DFGs. It should be noted that the result is the set of all
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optimal covers, in contrast to the traditional approaches, where only a single
optimal cover is produced.

� Using information from optimal covers in order to partially reduce the set of all
alternative covers. For the ADSP-210x we copy all chained operations (MAC
operations) occurring in the optimal covers into the initial set of all alternative
covers.

The techniques for generating optimal covers for DFTs and DFGs can consume
exponential run-times in the worst case. This is due to the fact, that a FRT
cover may represent an exponential number of alternative covers (w.r.t. to number
of DFG nodes). In worst case, the complete search space has to be explored in
order to �nd an optimal solution. Experiments have shown that optimal DFT
covers can be generated e�ciently and that they are not time critical at all. It
should be noted, that techniques based on dynamic programming are faster by one
order of magnitude in average. Experiments for DFGs have shown that optimal
DFG covers can be generated for small to medium size (up to 25-30 nodes) DFGs
within reasonable amounts of computation time (cf. table 2). We have developed
a suboptimal strategy for larger DFGs, which leads to acceptable run-times. In
this strategy, the labeling of domain variables of the roots of DFTs, which are
CSEs or last uses in the basic block, is postponed until its �rst usage is labeled.
This generally leads to better results compared to the accumulated optimal costs of
DFTs, and comes close to the optimal solution for DFGs. Results are shown in table
2. The costs shown in this table denote the accumulated costs for all DFTs occurring
in the basic blocks. The column denoted DFT shows the results for optimal covering
for each DFT, column CSEs shows the suboptimal and column DFGs the optimal
results for DFGs. Run-times are all given in CPU seconds. Since uses of CSEs
may occur in di�erent DFTs, di�erent orderings in optimizing the DFTs of a basic
block also lead to di�erent results (this only occurred in some internal test cases).
All internal benchmarks were sub-optimally covered within a minute for the DFT
strategy and within �ve minutes for the CSE strategy. Optimal covers for DFGs
could not be computed for the larger internal benchmarks in acceptable time.
In our experiments we made use of the suboptimal strategy in order to determine

chained operations. The resources of the corresponding DFG nodes were only
reduced as much as necessary.

Table 2. Optimization strategies

source DFTs time1 CSEs time2 DFGs time3

complex multiply 14 0,17 10 0,46 10 6,90
complex update 16 0,30 12 0,95 12 4,80
iir �lter 16 0,41 13 0,58 13 1,73
lattice �lter 39 0,75 25 4,49 24 235,37
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6. Integrated register allocation

In this section the integration of code selection and register allocation is described.
This includes the tasks of spill code generation and data routing:

� Spilling is required, when the number of live values located in a certain SR
exceeds the SR capacity. In this case values have to be selected, which are moved
to other SRs. Spill code has to be inserted by means of transfer operations to
the spill location, and for reloading it for later uses.

� Data routing determines the SR paths which a value will take from its de�nition
to its uses. This includes also the selection of resources and transfer operations
to implement the paths.

Figure 13. Sequentialization of DFGFRT

ba dc

+

+ -

1: ar  := d 2: ay := d 3: ar  := d 4: ay := d

5: ar := ar + ay 6: af := ar -ay

 7: ar := ar + af

ba dc

+

+ -

5: ar|af:=ar|ax|ay|af +ar|ax|ay|af

7: ar|af:=ar|ax|ay|af +ar|ax|ay|af

6: ar|af:=ar|ax -ay|af

1: d|p 2: d|p 3: d|p 4: d|p

5: ar := ar + ay

2: ay := d

1: ar  := d

6: af := ar -ay

4: ay := d

3: ar  := d

7: ar := ar + af

7: ar|af:=ar|ax|ay|af +ar|ax|ay|af

LVS = {1: d|p 2: d|p 3: d|p 4: d|p, , , }
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6,5,7
order of FRTs

schedule of the optimal cover

input to IRA

IRA expects a sequence of FRTs, i.e., a sequential schedule of a given DFGFRT .
Note that this sequence does not yet contain transfer operations (cf. �g. 13).
These are inserted only by the register allocator by means of data routing. The
second task of the register allocator is to include necessary spill code. The register
allocator has to keep track of the locations of live values. This information is given
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by means of a live value set (LVS). Each lv 2 LVS is a tuple (i; pl) where pl denotes
the current location of value i. The initial LVS of the register allocator contains
the locations of the variables live at the beginning of the basic block(cf. �g. 13).
With respect to a given live value set LVS, we denote an FRT as data ready, i�
all operands j have an entry in LVS, and use ready, i� all operands are in their
required locations (denoted by the predicate use ready(frt; LV S)). All use ready
FRTs are also data ready by de�nition.
The sequence of FRTs is generated based on a schedule of an optimal cover of

the DFG. The schedule is generated by heuristic (sequential) instruction scheduling
technique ([37]) for irregular data paths. As this approach is tree based, the optimal
DFGFRT is decomposed into a sequence of FRT trees. Instruction scheduling is
performed subsequently on each of these trees. This ordering is then reconstructed
for the DFGFRT representing the set of alternative covers (�g. 13).
The register allocator traverses the FRT sequence. For each frti it inserts a new

live value for the de�nition to LVS, in order to provide the subsequent FRTs with the
locations of their operands. If an operand is not in its location, transfer operations
have to be inserted. The new locations have to be inserted to the LVS (see also �g.
14). We now give an informal description of the algorithm of IRA. A more detailed
description is given in the following subsections. Sequences are represented as lists
l = [l1; l2; ::; ln], where @ denotes the concatenation of lists. [] represents the empty
list. head(l) = l1 gives the �rst element of l and tail(l) = [l2; ::; ln]:

� input: the FRT sequence frtsin of a basic block and the initial set LVS, con-
taining the locations of the variables live at the beginning of the basic block.

� output: the FRT sequence frtsout.

� algorithm:
While frtsin <> [] do

1. frti := head(frtsin)

2. operands use ready: For each operand j of frti, which is not use ready,
generate the necessary transfer operations toj . This may induce spilling
and we have to insert spill code in the form of a list of transfer operations
scj . This results in the list of transfer operations dmj := scj@toj for
operand j. The �nal list of transfer operations for operands is given by
dm := dmj1@::@dmjn .

3. last uses: Eliminate all last uses from LVS. These are all live values which
are not referenced by any of the FRTs in frtin and which are not live at
the end of the basic block.

4. add de�nition:

{ Check if spilling is necessary when inserting a new live value for the
de�nition of frti.

{ If spilling is required generate the necessary spill code sc.

{ Insert a new live value (i; def(frti)) for the de�nition of frti to LVS.
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5. frtsout := frtsout@dm@sc@[frti]

6. frtsin := tail(frtsin)

The algorithms in this paper are represented in an imperative style11. For sake
of simplicity, they do not reect the backtracking features given by the original
implementation in ECLiPSe. Aspects of backtracking will be mentioned when
required in the following descriptions.

Figure 14. Insertion of transfer operations and spill code

frt i

frt i

inserted data moves

for operands

frt ispill code for 

in_frts out_frts

sc
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6.1. Data routing of operands

The current location Lj of an operand j is given by the LVS. The required locations
for the operands of frti are given by the the list of uses Ui;j1 ; ::Ui;jn . The register
allocator performs the following strategy to check if operands are in their required
locations:

1. First all uses are determined for which the operands are in the required locations,
i.e. for which the condition Lj = Ui;j holds.

2. For operands j not in the required location, transfer operations from Lj to
Ui;j have to be inserted. This may result in a sequence of transfer operations
to1; ::; ton, where ton is the FRT Ui;j := L0j. For each toi = d := s, the single

step relation s!1 d must hold.
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Figure 15. Illustration of data routing

3:ar := 1:ar + 2:ay
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LVS1 = {1:ar, 2:p|d}

LVS2 = {3:ar}

frt3 transfer operation for 2:
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Example: We consider the example in �g. 15. The register allocator has reached
frt3 and checks the locations of the operands. The locations of the operands are
given by LVS1. The location of operand 1 is Lar

1 which means that it is located
in the accumulator ar. Operand 2 is located in one of the memories (p; d). It is
�rst checked if any operand is in its required location. This is the case for operand
1, since the condition L1 = U3;1 holds. This equality leads to the reduction of
dom(U3;1) to farg. In order to yield only feasible RTs, dom(U3;2) is reduced to
faf; ayg. Now operand 2 is not in the required location. Thus a transfer operation
has to be inserted. Therefore, the single step relation L2 !

1 U3;2 must hold. In

order to meet this constraint, the location U
ayjaf
3;2 is reduced to Uay

3;2 as af cannot
be reached in a single move from either memory p or memory d.
The equality L = L0 is a constraint which leads to the reduction of both domains

of the locations. In our example both domains of L1 and of U3;1 are reduced to ar.
Constraints like the equality have to hold throughout code generation. Therefore,
they are attached to the locations and guide all domain reductions. In case of
the equality Li = Lj , any reduction of one of the domains will enforce the same
reduction for the other domain.

For each data transfer a new live value must be inserted to the LVS. The insertion
of new live values can lead to spilling. Therefore, spill code has to be inserted before
the transfer operation which induced the spilling. The generation of spill code for
a transfer operation to of the form d := s has to save the value in location d. Thus
a spill operation d0 := d has to be performed before to, where d0 is the new location
for the spilled value. For irregular data paths, spilling may enforce the spilling of
other values. Thus a sequence spills of spill operations might need to be generated.
The code induced by a data move may have the form spills@[d := s].
After checking the operands, all last uses are eliminated from LVS. Last uses

are the live values, which have no further use in the remaining sequence of FRTs
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considered by the register allocator. In case that values are still live at the end of
the basic block (because they are used in subsequent basic blocks), they are kept
in LVS.
The above mechanism provides very exible data routing, because it leaves as

much freedom for the subsequent decisions as possible. Therefore, locations are

only reduced as much as necessary. If we have a use with the location U
arjaxjayjaf
i;j

and the current location of operand j is L
axjay
j , then it is su�cient to reduce both

locations to the domain faxjayg (achieved by the equality constraint Ui;j = Lj).
The same holds for any inserted transfer operation, e.g. arjaxjay := pjd. As a
result, our data routing technique yields a set of alternative data routes.
We use a speci�c data routing for CSEs. CSEs are required in more than one

SR, due to their multiple uses. Therefore, for CSEs more than one entry in LVS
may occur. This may support paths with common pre�xes in the paths of transfer
operations.

6.2. Spilling

When a new live range is inserted into LVS, it must be checked, that the SR
capacities will not be exceeded (only for RFs). Otherwise, spilling of a live value of
LVS has to be performed. As there is no �xed assignment of values to SRs, whether
or not capacities will be exceeded cannot be determined by simply counting the
values in each SR. To determine necessary spilling we use an extended notion of
interference, known from graph coloring register allocators [14, 7]. We say that
the live values Lj and Li interfere, if they have overlapping life times and if the
intersection of the domains of locations is not empty. Interfering live values have
to be assigned to di�erent registers.
If we insert a new live range nlr, the necessary condition for spilling is, that the

number of interfering members satis�es the condition jlri 2 LRsj � jdom(nlr)j.
The new live value in �g. 16a) does not interfere with the live value in LVS, as
the intersection of the domains is empty, i.e. their locations can never be reduced
to the same register. In the second example 16b) the two live values interfere but
they can be still reduced to di�erent SRs. In order to guarantee this, an inequality
constraint12 is generated for these live values. In example 16c) spilling has to be
performed, as any substitution of the three locations will result in at least two
identical locations.
The set of live values which interfere with a new live value nlv is called the set of

spill candidates. If the necessary spilling condition holds we apply the two following
strategies:

1. Reduction: The necessary condition for spilling will not always enforce spilling.
There are three situations when spilling can be prevented by means of reducing
the domains of locations.

(A) Try to reduce the domains of the locations of the spill candidates, such that
the necessary condition for spilling is violated, by reducing the number of
interfering live values.
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(B) Try to reduce the domain of the location of the new live value, such that
the necessary condition for spilling is violated.

(C) Select spill candidates with multiple entries in LVS (live values of CSEs).

2. Spilling: If reduction cannot be performed, select a spill candidate lvspill and a
spill location, and generate spill code. Spilling is not necessarily performed to
memory, but also free registers can be used for spilling.

Figure 16. Interference of live values
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Figure 17. Prevention of spilling by reduction
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6.2.1. Reduction strategy The basic idea of the reduction strategies is to reduce
the domains of live values, such that the intersection of the domains is empty. This
leads to reduction of interfering live values and may therefore violate the necessary
condition for spilling. We try three reduction strategies for a new live value lv:

� The �rst strategy applies, if there exists a spill candidate lvs with dom(lv) �
dom(lvs). In this case we reduce the domain of the corresponding spill can-
didate to the di�erence dom(lv)=dom(lvs). An example is shown in �g. 17
(Reduction1).

� The second strategy applies, if there exist spill candidates lvs with dom(lvs) �
dom(lv). In this case we reduce the domain of the new live value lv. An example
is shown in �g. 17 (Reduction2).

� Select a live value of a CSE j which has multiple entries in LVS and which is
not in one of its required locations.

The strategies to select a candidate for reduction are very simple. The �rst
candidate in the list of spill candidates, whose domain can be reduced, is selected.
The same applies to multiple LVS entries. The development of more powerful
selection functions is a potential for further improvements.
Backtracking guarantees, that if one of the strategies cannot be applied the next

one is automatically tried. Furthermore, if the code generation process in the sub-
sequent phases fails, backtracking enforces the selection of an alternative strategy.

6.2.2. Spilling strategy The selection of a spill candidate is driven by the follow-
ing order of criteria:

1. Select a candidate which is not in one of the required locations of one of its
uses. In this case no overhead is produced, as for these candidates a transfer
operation is necessary anyway.

2. Select a candidate with latest next use according to the occurrence in the re-
maining sequence frtin of FRTs.

3. Select a candidate with the smallest number of remaining uses in frtin.

Spilling is not necessarily performed to memory. A factorised transfer operation is
inserted denoting all possible locations that can be reached from the actual location
of lrspill in one move (�g. 18). The spilling to RFs has the advantage, that one
transfer operation can be saved, if the spill location Lj and a use of the operand
Ui;j satisfy the condition Lj = Ui;j. Further advantages will be mentioned later in
section 6.5.
Spilling may induce further spilling of values. In order not to spill one of the

required operands, we provide a mechanism to prevent certain live values in LVS
from being spilled. In case spilling is impossible due to constraints or locking of live
values, backtracking is enforced, leading to the selection of new spill candidates.
Also, the generation of certain transfer operations can be rejected.
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Figure 18. Spill routes
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6.3. Live values and the interference graph

We assume that insertion of live values is only performed, if this does not require
spilling of other values. Thus decisions for spilling have to be performed in advance.
Inserting a new live value lv with location L to LVS always implies generating the
constraint intf(L; [L1; :::; Ln]) for each location Lj of an interfering live value lvj 2
LVS. These constraints can be considered as an implicit representation of an inter-
ference graph. The constraints ensure, that the number of interfering live values
will never exceed the available register resources. Also, the reduction strategies
described above are integrated in this constraint, in order to enable the satisfaction
of the constraints (cf. the remarks on complexity in section 7.6).
It should be mentioned that in IRA two classes of deadlocks can occur:

1. Deadlocks caused by situations, where there exists no labeling of the domain
variables, such that all constraints are ful�lled.

2. Deadlocks due to data routing, as mentioned in [28]. Examples are deadlocks,
where spilling of values is required, which are located in SRs from which spilling
is impossible (e.g. SR mf).

To prevent deadlocks due to constraints which cannot be met, we perform relax-
ation of constraints. We delete interference constraints and perform a reallocation
where spill code has to be inserted for the corresponding values.
Deadlocks due to data routing can be solved by backtracking. However, we only

allow backtracking up to the decisions made for a single FRT (in the context of IRA,
these are the decisions made in on iteration of the main loop). We are currently
developing a deadlock model to identify deadlock conditions for certain machine
classes. The goal is the de�nition of constraints, that prevent the occurrence of
deadlocks, by means of reducing certain potential SRs which could denote deadlock
candidates. We have developed a set of constraints which prevent deadlocks, but
we still have to classify the set of all deadlocks which may occur. However, we did
not encounter deadlocks for all practical benchmarks considered so far.

6.4. Example for IRA

Example: The FRT sequence generated by IRA still contains a large amount
of exibility. The following example shows the generated FRT sequence for the
example from the introduction, generated from the FRT sequence shown in �g. 13:

3: ar|ax|ay|mr := d|p

4: ar|ax|ay|mr := d|p

6: af|ar := - ax|ay|ar|mr:c_3 ax|ay|ar|mr:d_4

1: ar|ax|ay|mr := d|p

2: ar|ax|ay|mr := d|p

5: af|ar := + ax|ay|ar|mr:a_1 ax|ay|ar|mr:b_2

7: ar|af := + af|ar:tmp_5 af|ar:tmp_6
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This sequence actually represents a set of possible sequences. It also contains
that one which can later be transformed into the optimally compacted sequence of
machine instructions.
The insertion of another FRT af := :::: would lead to the reduction of the live

value for node 7 to ar, thus preventing the spilling of live value 7.
The result of labeling will lead only to feasible sequence of RTs, e.g.:

3: ar:= d

4: ay:= d

6: af := - ar:c_3 ay:d_4

1: ar:= d

2: ay:= d

5: ar := + ar:a_1 ay:b_2

7: ar := + ar:tmp_5 af:tmp_6

6.5. Results of IRA

Techniques for data routing consider di�erent data routes between de�nitions and
uses in order to prevent spilling. In our method, data routing is given by FRTs.
The domains of the locations represent alternative routes. This is also the case
for inserted data moves and spill code. Furthermore, alternative routes are kept as
long as possible, so as to yield freedom for subsequent decisions.
The spilling strategy we propose not necessarily spills values to memory, but

also to free registers. One result is the reduction of data transfers, as shown
in section 6.2.2. There are some further advantages implied by the reduction of
memory accesses:

� The amount of required memory is reduced as certain values can exclusively be
kept in registers.

� Reducing the amount of memory accesses in general also leads to reduced power
dissipation.

� The amount of code needed for memory address computations is also reduced.

By introducing exible spilling and data routing for the register allocator, the
code was improved up to 20 % compared to the code generated for optimal covers
without exibility. The combined data routing and spilling strategy reduced the
amount of memory accesses drastically, as much as 70 %. The results of IRA are
given in table 3. The results given in columns S1 and S2 show the lengths of the
generated FRT sequences of IRA applied on the optimal cover with spilling only to
memory and for the same schedule of FRTs with data routing and exible spilling,
respectively. Columns Mem1 and Mem2 represent the transfer operations with
accesses to memory, and columns RT1 and RT2 represent the transfer operations
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without memory accesses. In columns time1 and time2 the run-times (in SPARC-
20 CPU seconds) for both approaches are shown (also compare the analysis of the
worst case complexity in section 7.6).

Table 3. Results of IRA

source S1 S2 Mem1 Mem2 RT1 RT2 time1 time2

complex multiply 10 9 7 6 0 0 1.02 1.25
complex update 13 11 7 6 1 0 1.24 1.51
iir �lter 16 13 11 8 0 0 1.39 1.71
lattice �lter 29 24 12 3 1 5 2.40 3.67

In the following section we consider the integration of code selection and register
allocation into the instruction scheduling phase. In this phase, also ILP is taken
into account for optimization.

7. Integrated instruction scheduling (IIS)

IIS denotes the integration of code selection, register allocation and instruction
scheduling. The goal is exploitation of potential ILP, so as to reduce the amount
of instruction cycles for basic blocks and to prevent unnecessary generation of spill
code. Our approach is based on list scheduling, extended by the integration of data
routing and spilling techniques of integrated register allocation. The IIS algorithm
maps a DFGFRT to a sequence of machine instructions. Like other list scheduling
algorithms, IIS makes use of a data ready set (DR) and selection functions for
choosing the next candidate to be scheduled. The selection of the next candidate
is based on the goal of minimizing spill code.
We make use of the following predicates: compatible(frt;mi) denotes the compat-

ibility of FRT frt and machine instructionmi. spilling(frt; LV S) denotes, that frt
requires spill code if a new live value for the de�nition is inserted to LVS. This predi-
cate fails, if reduction, according to section 6.2.1 is feasible. no resources free(mi)
denotes, that all resources of a machine instruction are consumed by its set of FRTs.
The IIS algorithm is given informally in �g. 19.

7.1. Compatibility of FRTs and machine instructions

The concept of factorised RTs is extended to factorised machine instructions. Ma-
chine instructions are represented by a set of FRTs. Constraints between the FRTs
of a machine instruction guide the correct reduction of FRTs, in order to meet the
ILP constraints of the target processor. A new constraint ilp(frti;mi) is generated
if a new FRT is inserted into a machine instruction. The test whether a new FRT
is compatible with mi can also be performed by constraint ilp (cf. section 4.5).
The concept of factorised machine instructions permits to postpone the assignment
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Figure 19. IIS algorithm

� input: DFGFRT and the initial live value set LVS.

� output: The machine instruction sequence mis.

� algorithm:

DR = initial set of FRTs which are data ready
mi = new machine instruction
while DR 6= fg do
a) if no resources free(mi) then

Append mi to mis and generate a new empty machine instruction:
mis = mis@[mi];
mi = new machine instruction;

b) scheduling:
1. Select a compatible RT from DR which induces no spilling, i�

9frt 2 DR:compatible(frt;mi)^uses ready(RT;LV S)^ :spilling(frt;LV S)
Insert frt into mi, generate the constraints and update
LVS.

2. Generate compatible data moves:
2.1 Select a FRT which is not use ready, generate the transfer
operations, and insert them into DR, i�
9frt 2 DR::uses ready(RT;LV S)

2.2 If not 2.1 then select a required spill candidate which is use
ready and insert it into DR, i�
8frt 2 DR:spilling(frt;LV S) _
9frt 2 DR:spilling required(frt;LV S)

3. If not 2 then generate a new machine instruction:
mis = mis@[mi];
mi = new machine instruction;

of a certain machine instruction type. Again, this leaves more freedom for the
subsequent decisions.

7.2. Selection of a compatible FRT from DR

We select a compatible FRT from the DR, which can be scheduled into the current
instruction cycle. A FRT is selected which induces no spilling. This comprises
FRTs which can be reduced according to the reduction strategies of section 6.2.1.
The FRT with the longest path in the DFG is selected �rst. The insertion of a
FRT to the current machine instruction mi yields the the new machine instruction
mi [ ffrtig. The following tasks have to be performed:

1. mi := mi [ ffrtig and generate a new ilp constraint.

2. Eliminate the last uses of frti from LVS and insert a new live value for Di into
LVS.
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3. Insert all frtj to DR which become data ready due to the insertion of Di to
LVS.

7.3. Generating compatible data moves

If there are no compatible and spill free FRTs in the data ready set DR, and there
are still free resources for transfer operations in mi, we try to generate transfer
operations for data ready but not use ready FRTs.

7.3.1. Generate moves for not use-ready FRTs A FRT which is data ready but
not use ready is selected. Only compatible transfer operations are generated by
means of data routing as introduced in section 6.1. The generated moves will be
inserted into DR and will be selected in the next iteration of the main loop of the
IIS algorithm. The FRT with the longest path in the DFG will be selected �rst.

7.3.2. Generating required spill code If spilling can be prevented by scheduling a
non-compatible FRT into the next machine instruction, and if there is no FRT for
which spilling has to be performed anyway, then no transfer operation for spilling
is generated. Therefore, the conditions for generating spill code are:

1. All use ready FRTs frti 2 DR imply spilling(frti ; LV S), or

2. there exists an FRT frtj 2 DR for which spilling has to be performed.

Here, the same spilling strategies as for IRA are used.

7.4. Machine instruction sequence for the example

Example: IIS generates the following sequence of machine instructions for our
running example, which still retains a certain amount of freedom:

=============================================================

Instr => Typ: typ1 RLs: [dbus|pbus, dbus|pbus] Cycle: 0

1: ax|ay:= dmem|pmem

2: ax|ay:= dmem|pmem

=============================================================

Instr => Typ: typ1 RLs: [dbus|pbus, dbus|pbus, alu] Cycle: 1

3: ax|ay:= dmem|pmem

4: ax|ay:= dmem|pmem

5: ar := + ax|ay:a_1 ax|ay:b_2

=============================================================

Instr => Typ: Instr1=typ4|typ5|typ8 RLs: [alu] Cycle: 2

6: af := - ax|ay:c_3 ax|ay:d_4

=============================================================

Instr => Typ: Instr1=typ1|typ4|typ5|typ8 RLs: [alu] Cycle: 3

7: ar := + r:tmp_5 af:tmp_6

=============================================================
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7.5. Results of IIS

In table 4, the number of generated machine instructions for our set of benchmarks
is shown. The numbers of machine instructions for the �rst three benchmarks
are the same as in the hand crafted code of DSPStone, which are optimal when
neglecting address computations. For our small running example we also obtain
the optimal result shown in the last row. The run-times for IIS are given in the last
column (in SPARC-20 CPU seconds). Run-times for internal benchmarks were all
within a minute. The following subsection 7.6 comprises an analysis of the worst
case complexity of IIS. In section 8 results for executable code including address
computations will be shown.

Table 4. Results of IIS

source # instructions runtime

complex multiply 6 1.11
complex update 9 1.76
iir �lter 12 1.15
lattice �lter 18 6.53
example 4 0.91

Like in IRA, we allow constraints violation, to prevent deadlocks due to con-
straints which cannot be met. So far, in the benchmarks and in the internal test
cases, this case did not occur.

7.6. Remarks on the complexity of IIS

In this section we will informally analyze the worst case complexity of our scheduling
approach IIS. The essential parameters for a worst case analysis are given in table
5. In the following analysis the sizes of the sets DR and LVS will be approximated
with N . The overall worst case complexity of IIS is given by WC = Cl �Cb �Cc.

Table 5. Essential parameters for complexity analysis

Cl number of main loop iterations
Cb worst case complexity of possible backtracking steps in a single main loop iteration
Cc worst case complexity for constraint re-/activations

N number of DFG nodes
Vmax the maximum number of variables in occurring in a constraint
Cmax the maximum number of constraints generated for each DFG node
DRC number of register cells in the target architecture
DFU number of FUs



43

7.6.1. Main loop iterations (Cl): We can assume, that the while loop terminates
within Cl = O(N ) iterations, since in every iteration either one node is scheduled
or some new data move nodes are generated. The amount of generated data moves
is �nite and generally proportional to N .

7.6.2. Backtracking (Cb): Like in IRA, IIS does not comprise complete back-
tracking. We only allow backtracking over the possible solutions in a single main
loop iteration of IIS 13. The worst case e�ects of backtracking may result in testing
the maximal number of solutions possible for:

� Selecting a candidate for scheduling: For a d 2 DR we check if the uses are
ready in LVS. The complexity of all solutions is O(jDRj � jLV Sj) which can be
approximated by O(N2).

� Data routing for FRTs which are not use ready: We search for a d 2 DR which
is not uses ready in LVS. The worst case complexity is O(N2).

� Selecting a spill candidate: depends on how complex the strategy is, which is
O(N2) in the current version of IIS.

The total complexity of backtracking therefore results in Cb = O(N2)

7.6.3. Re-activations of constraints (Cc): In section 6 a reduction strategy was
introduced, in order to prevent the generation of spill code. This strategy is also
integrated in the constraints intf, and a similar reduction strategy is incorporated
in the constraint ilp.
First we assume, that the reduction strategy is disabled. Then, only non-disjunctive

constraints are generated in our system. If we resume the complexity analysis of
covering in section 5, the total number of possible re-activations of constraints oc-
curring in a DFG was given by O(N ). This still holds for Cc for the following
reasons:

� The number of new constraints is limited and the maximum of generated con-
straints can be still given by a constant C. For each scheduled node, the con-
straints intf and ilp are generated. For the new generated data moves, the
matching constraints described in section 5 are generated.

� The complexity of the generated constraints intf and ilp dependents DRC and
DFU . The complexity of each reactivation of intf is in the worst case O(D2

RC ),
and O(D2

FU ) for ilp. This does not a�ect the overall complexity of re-activations,
since DRC and DFU are constant for a given target architecture.

If we enable the reduction strategies, then intf and ilp become disjunctive, which
can lead to exponential run-times: there are D = max(DRC ; DFU ) possibilities for
reducing variables at each node. Since the reduction strategy may indicate the reac-
tivation of further reductions we may yieldDN possible combinations for reduction,
which could all be tried due to failure and backtracking over the constraints.
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7.6.4. Total complexity If the reduction strategy is disabled, in the worst case we
get a run-time ofO(N4). Otherwise, exponential run-times are possible in the worst
case, but this case never occurred in our experiments. Concerning the reactivation
of constraints, only very few constraints are reactivated and failures are detected
very early. This also holds for the reduction strategy, where in general a feasible
reduction or the failure of reduction is found very early. Our experiments show that
our approach is practicable for real life examples (with large basic blocks), even if
reduction is activated.

7.6.5. Complexity of Labeling Labeling serves two purposes. The �rst one is to
yield the �nal code from the FRT machine instructions, by means of a �nal resource
binding. The second goal is to check for global feasibility of the �nal schedule, since
the generated constraints only guarantee local feasibility. If labeling succeeds we
also know that there exists a feasible solution. In case no feasible solution exists,
one problem is, that the feasibility check is an NP-complete problem, which may
cause exponential run-times. In our experiments the labeling procedure did not fail
so far, and a labeling was found very fast (within a second). To prevent cases of
exponential run-times, user de�ned time outs are possible for labeling. If labeling
fails, we allow certain constraints to be violated. Strategies to select constraints
are very simple (since so far there was no necessity to apply them). Repair code
has to be inserted, in form of extra spill code or of splitting up MIs into a set of
sequential MIs.

7.6.6. Concluding remarks of complexity For the case that the proposed strate-
gies fail, due to unacceptable run-times and time outs, we provide standard tech-
niques, in order to yield code for every source program. When considering modern
compiler technology, compilers incorporate strategies which make usage of alterna-
tive optimization strategies (often in parallel), and select the one (or even a set)
with the best results. In this context we think, that techniques which may fail in
certain cases but normally lead to a strongly improved code quality, are not only
permissible, but also constitute a real enrichment for a compilation system.

8. Post-processing and results

The �nal phase in our code generator is the generation of executable code by two
post-processing phases (cf. �g. 8):

1. Insertion of code needed for memory address computations: After code gen-
eration, values are bound to speci�c memories, but not yet to �xed addresses.
Due to the specialized architecture of address generation units (AGUs) in DSPs,
assignment of variables to memory addresses must be performed carefully. The
goal in address assignment is to maximize the utilization of auto-increment and
auto-decrement AGU operations for address computations.
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2. Post-compaction: After AGU operations have been inserted into the code gen-
erated for DFG computations, a post-compaction step is required to actually
parallelize DFG computations and AGU operations, so as to obtain the �nal ma-
chine code. Simultaneously, the post-compaction phase exploits the code selec-
tion freedom that is left in the generated factorised machine instructions. Each
alternative instruction is associated with a binary encoding (opcode). From
all alternative opcodes, post-compaction selects those ones which permit an
optimum parallelization with generated AGU operations.

For address generation and post-compaction, we currently reuse techniques de-
veloped for the RECORD compiler [38, 39].
Table 6 shows experimental results for our set of benchmarks. Each entry gives a

number of generated machine instructions including address computations. Column
1 shows results obtained with a GNU-based ADSP-210x C-Compiler. Column 2
lists results obtained with the RECORD compiler [37], and column 3 gives the
length of the hand-written reference code for the DSPStone benchmarks. Finally,
the results of our code generator ICG are shown in column 4.

Table 6. Comparison of generated code for benchmarks

source GNU RECORD hand-written code ICG

complex multiply 16 11 6 6
complex update 23 15 9 9
iir �lter 33 21 12 12
lattice �lter - 30 - 18

In none of the compared examples optimizations like e.g. loop unrolling or soft-
ware pipelining have been used, hence larger code size cannot lead to higher per-
formance. Thus, smaller code sizes also indicate a higher performance. The GNU
compiler showed an overhead of 170 % on the average compared to the hand-written
code, while the code generated by RECORD showed a 70 % average overhead. An
analysis of the code proved that this overhead is actually due to too many data
moves between registers and poor exploitation of potential parallelism.
As can be seen in columns 3 and 4, ICG achieved the same code quality as

the hand-written code for the �rst three benchmarks in table 6. Due to the use
of address optimization techniques [38], no additional overhead was induced for
address computations. The overall compilation speed of our approach, comprising
all phases, is in the order of 3-5 generated instructions per CPU second.

9. Conclusions and future work

The use of processors in embedded system design demands for high-level language
compilers capable of generating very e�cient machine code. Current compilers
hardly meet this demand. One main reason for the poor performance of current
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compilers for embedded processors are irregularities in processor architectures, i.e.,
the presence of special-purpose registers and FUs in combination with restricted
instruction-level parallelism. This type of architecture is frequently found in �xed-
point DSPs. As we have exempli�ed for a standard DSP, tight coupling of code
generation phases is necessary to overcome this problem.

Using a phase-coupled approach to code generation requires higher compilation
times than in general-purpose computing. However, the tight code size and speed
constraints for embedded processors in most cases make higher compilation times
acceptable.

In this paper we have proposed a novel constraint-driven approach to code genera-
tion for embedded DSPs. This approach has two signi�cant advantages as compared
to previous work mostly based on heuristics: Firstly, there is no need of design-
ing speci�c optimization algorithms capable of obeying all constraints that arise
due to irregularities and ILP. Machine code is not constructed, but it is obtained
by a successive reduction of the solution space based on the constraints imposed
by the target processor. An e�cient and uniform constraint satisfaction approach
implemented with constraint logic programming guarantees that no constraint is
violated in the emitted code. Secondly, our approach achieves a tight coupling of
the main code generation phases, i.e., code selection, register allocation, and in-
struction scheduling. As a result, it is possible to generate machine code of very
high quality, which comes close to hand-written assembly code. This has been
demonstrated for benchmarks and a standard DSP.

Further improvements of our approach concern more intelligent functions for se-
lecting candidates for reduction and spilling. This can be achieved by consideration
of larger search spaces, e.g., the global interference graph augmented with informa-
tion about parallelism. We will also replace the post-processing used in the current
version by integrated techniques for generation of executable code.

While our approach already achieves a tight coupling of phases, at some points
heuristics are still used to make decisions. We plan to eliminate these heuristics step
by step, and to replace them by the labeling and optimization strategies of our CLP
system. This will allow to study up to which problem complexity globally optimal
code generation for a DFG will be possible within a reasonable amount of compu-
tation time. Furthermore, application of algebraic rules during code generation is
another potential area for improvements.

Notes

1. The numbering of types corresponds to the ADSP-210x User's Manual [16].

2. A very good summary of �rst approaches using grammars and attributed grammars for speci-
fying code selectors can be found in [25].

3. The notion tree reduction rules reects a view of the tree covering process as the reduction of a
certain input tree to a certain nonterminal, by using the rules of the tree grammar as rewriting
rules. A pattern detected in the input tree is replaced (or substituted) by the nonterminal on
the left hand sight of the corresponding rule.

4. Since labelingmay consume exponential run-times if no solution exists, we can specify timeouts
for the feasibility checks.
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5. This holds, since the compared code examples did not include software pipelining or loop
unrolling optimizations.

6. Our instruction types di�er slightly from the ones introduced in [58].

7. In chained operations the order of the Ui's is given by their occurrence in the expression (left
to right).

8. Chained patterns are split into a set of FRTs as follows (cf. the tree automaton construction
in [23]): For each sub-pattern a new virtual resource is inserted and the FRTs which match the
sub-operations are extended with the corresponding virtual resource. E.g., the MAC operation
is modeled by inserting the SR 0 � (X;Y )0 as the de�nition of operation 0�0 and as a use of the
operation 0+0. If the FRT for '*' reduces to the MAC operation, the costs are set to 0, and
the corresponding operand of the FRT of '+' is constrained to 0 � (X;Y )0; the correct costs are
reected by the FRT of '+'.

9. Tree grammars [8] are a special case of context free grammars.

10.Each rule in a tree grammar can be associated with a sequence of RTs given by the action
part. In our approach, the sequence has to be restricted to a single RT.

11.This style was chosen for better understanding of our algorithms for readers not familiar with
CLP. It also enables a conversion to other (non-CLP based) constraint systems.

12.We also consider RFs with capacity > 1. Thus, an inequality constraint on locations is not
su�cient; in our approach this constraint is extended to take into account indices of SRs. Thus
we generate the constraint (Lj 6= Li)_ ((Lj = Li)^ (Ii 6= Ij)), where Ii and Ij denote domain
variables for the possible set of indexes for addressing the SRs given by Li and Lj.

13. If there exists no feasible solution in a certain iteration (due to that constraints cannot be
met), our strategy is, to allow the violation of certain constraints. Then, repair code has to be
inserted in a post-processing phase. In the benchmarks we tested, this case didn't occur so far
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