
Exploiting Conditional Instructions in Code Generation
for Embedded VLIW Processors

Rainer Leupers�

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract– This paper presents a new code optimiza-
tion technique for a class of embedded processors. Mod-
ern embedded processor architectures show deep instruction
pipelines and highly parallel VLIW-like instruction sets. For
such architectures, any change in the control flow of a ma-
chine program due to a conditional jump may cause a signif-
icant code performance penalty. Therefore, the instruction
sets of recent VLIW machines offer support for branch-free
execution of conditional statements in the form of so-called
conditional instructions. Whether an if-then-else statement is
implemented by a conditional jump scheme or by conditional
instructions has a strong impact on its worst-case execution
time. However, the optimal selection is difficult particularly
for nested conditionals. We present a dynamic programming
technique for selecting the fastest implementation for nested
if-then-else statements based on estimations. The efficacy is
demonstrated for a real-life VLIW DSP.1

1 Introduction

A major goal of current research efforts in the area of code
generation for embedded processors is to overcome the in-
sufficient code quality of current DSP compilers, which still
makes time-consuming assembly-level programming of DSP
software essential [1]. Traditionally, DSPs have been mainly
used for implementation of data flow dominated applica-
tions. Consequently, much of the recent work on code op-
timization for DSPs has focussed on data flow graphs, e.g.,
[2, 3, 4, 5, 6]. However, automotive applications and tele-
com protocol functions also require a significant amount of
control functionality to be implemented by DSPs. Effective
compilation techniques are particularly important for control
dominated applications, since usually no assembly code li-
brary support is available for control functions.

The source code of control dominated applications typ-
ically contains a large number of if-then-else (ITE) state-
ments. Classical compiler technology uses conditional jumps
for implementation of ITE statements. However, the pres-
ence of many conditional jumps has a negative impact on
code performance in particular for deeply pipelined and

�The author acknowledges the support by HP EEsof
1Publication: DATE ’99, Munich, Germany, March 1999,c
EDAA

highly parallel VLIW-like processors. Therefore, an alter-
native architectural support for ITE statements, calledcondi-
tional instructions, have been implemented in several recent
embedded processors. Such instructions may implement ITE
statements without altering the control flow in a machine pro-
gram, i.e. without modifying the program counter.

In this paper, we present a technique for optimized im-
plementation of nested ITE statements for a class of VLIW
processors. Since embedded applications mostly have to
meet real-time constraints, the goal is to minimize theworst-
case execution timeof a (control dominated) software func-
tion. This is performed by appropriately selecting either a
conditional jump or a conditional instruction based imple-
mentation scheme for each ITE statement.

The structure of the paper is as follows: Section 2 gives
an introduction to conditional instructions and their use in
machine programs. Section 3 describes the alternative im-
plementation schemes for ITE statements using conditional
jumps and conditional instructions. Sections 4 and 5 describe
the proposed two-pass optimization technique. In section 6,
we provide experimental results for a recent VLIW DSP, the
TI C62xx. Finally, section 7 gives conclusions.

2 Conditional instructions

A conditional instruction ”[C] I ” consists of a Boolean
conditionC and a ”regular” machine instructionI, e.g., an
arithmetic operation, a register move, or a jump. Instruction
I is executed, if and only if theC evaluates to true at the point
of time when the control flow in a machine program reaches
I. Otherwise, instructionI behaves like a no-operation. The
conditionC is stored in a machine registerR. By defini-
tion, C is false ifR = 0, and true otherwise. The notation
” [!C] I ” denotes a conditional instruction with anegated
condition,

Several recent VLIW-like architectures, such as the
Texas Instruments C62xx or the Philips Trimedia TM1000,
show full support for conditional instructions. Also the next
generation of 64-bit Intel processors will be equipped with
this feature [8]. For such machines, the decision of whether
to implement an ITE statement by conditional jumps or by
conditional instruction execution has a large impact on code
quality in terms of worst-case execution time. In the follow-



ing, we denote these two schemes byc-jump andc-exec.
Usingc-exec instead ofc-jump may increase the code

performance by a twofold effect: Due to control hazards in
the instruction pipeline, execution of jump instructions usu-
ally causes ajump penalty, i.e., the pipeline needs to be
stalled for some machine cycles. This problem is avoided
if conditional instructions are used, because these do not al-
ter the control flow in a program. In turn, this leads to larger
branch-free (basic) blocks in the program, which give higher
opportunities for parallelization of instructions. On the other
hand, usingc-exec may also degrade performance due to re-
source contentions.

Previous work on exploiting conditional instructions
during compilation [9, 10] is primarily based on estimated
execution times only forsingle basic blocks. Furthermore,
focus has been on minimizing theaverageexecution time.
In contrast, our technique estimates theworst-caseexecution
time, which is more relevant for real-time applications, and it
handles complete (possibly nested) ITE statements with mul-
tiple blocks at a time.

3 ITE implementation schemes
This section presents and analyzes the different implementa-
tion schemes used in our approach. Both forc-jump andc-
exec two cases have to be considered, depending on whether
or not ITE statements are nested.

3.1 c-jump

Let S = (cond;BT ; BE) be an ITE statement, whereBT

andBE are basic blocks. The standard replacement scheme
using conditional jumps is:

c := evaluate(cond)
[c] goto then_label

B E

goto join_label
then_label: B T

join_label: ...

The condition is evaluated into a registerc, and depen-
dent on its value, eitherBT orBE get executed. Then, con-
trol flow joins at the next instruction afterS.

Let T (B) denote the time to execute a basic blockB,
and letJ be the (machine-dependent) jump penalty. If the
conditional jump is taken (i.e., conditionc is true) then
the execution time for the ITE statementS is T1(S) =
J + T (BT ). If the jump is not taken, then two jump instruc-
tions are executed, and the time isT2(S) = 2 � J + T (BE).
The worst-case execution time (neglecting the time for con-
dition evaluation) isT (S) = max(T1(S); T2(S)).

3.2 c-exec

For a non-nested ITE statementS = (cond;BT ; BE), the
c-exec implementation scheme looks as follows:

c := evaluate(cond)
[c] B T

[!c] B E

The notation ”[c] B ” denotes the conditional execu-
tion of all instructions in a blockB. The worst-case execu-
tion time when usingc-exec is T (S) = T (BT �BE), where
”�” denotes the concatenation of blocks. In total,c-exec
leads to a shorter worst-case execution time thanc-jump, ex-
actly if

T (BT �BE) < max(J + T (BT ); 2 � J + T (BE ))

Note that, in VLIW processors,T (BT � BE) is fre-
quently much less thanT (BT )+T (BE ), because the instruc-
tions inBT andBE may be partially executed in parallel. On
the other hand it is obvious thatc-exec is not guaranteed to
be the fastest alternative in any case.

3.3 c-jump with precondition

The abovec-jump andc-exec implementation schemes are
in general only valid for innermost ITE statements, where the
then and else blocks are basic blocks. However, in general we
have to cope with nested ITE statements. As shown above,
thec-exec scheme requires that the then and else blocksBT

andBE of ITE statementS be executed dependent on a con-
dition c. In this case, we say that the statements inBT and
BE havec as aprecondition. If some statementS0 in BT or
BE is an assignment or a jump, we can simply attach the pre-
conditionc to S0 by forming a conditional instruction ”[c]
S’ ”. However, ifS0 in turn is an ITE statement(c0; B0

T ; B
0

E),
thenbothB0

T andB0

E mustnot be executed if precondition
c is false, independent of the value ofc0. Thus, in order to
retain the correct program behavior, preconditions have to be
propagated to the inner ITE statements. This requires the
following generalized implementation schemes.

Let S = (cond;BT ; BE) be an arbitrary ITE statement,
and letp be the precondition ofS. Then, the followingc-
jump implementation scheme is used.

[p] c := evaluate(cond)
[!p] c := 0
[c] goto then_label
[p] B E

goto join_label
then_label: B T

join_label: ...

The whole statementS must only be executed ifp is
true. The condition for executingBT is p ^ cond, while
BE must be executed exactly ifp ^ NOT (cond) is true.
After execution of the conditional instruction ”[!p] c =
0”, the condition registerc contains the value ofp ^ cond.
If this value is true, then a jump toBT is taken, andBT is
executed unconditionally. If the jump is not taken, then ei-
therp or cond are false. By propagatingp as a precondition
to BE it is guaranteed, thatBE is executed if and only if
p ^NOT (cond) is true.

3.4 c-exec with precondition

Alternatively, ac-exec scheme can be used, in which case
the implementation scheme is the following:



C source c-jump only

if (a > 10) cmpgt a,10,R1
{ d = b + c; [R1] jmp L1

if (d > 13) add f,g,h
{ h = d + e; jmp L2
} L1: add b,c,d
else cmpgt d,13,R2
{ i = d - e; [R2] jmp L3
} sub d,e,i

} jmp L2
else L3: add d,e,h
{ h = f + g; L2:
}

c-exec only mixed

cmpgt a,10,R1 cmpgt a,10,R1
[R1] add b,c,d [R1] jmp L1
[R1] cmpgt d,13,R2 add f,g,h
[R1] not R2,R3 jmp L2
[!R1] mov 0,R2 L1: add b,c,d
[!R1] mov 0,R3 cmpgt d,13,R2
[R2] add d,e,h [R2] add d,e,h
[R3] sub d,e,i [!R2] sub d,e,i
[!R1] add f,g,h L2:

Figure 1: Illustration of thec-jump andc-exec ITE imple-
mentation schemes

[p] c := evaluate(cond)
[p] d := !c
[!p] c := 0
[!p] d := 0
[c] B T

[d] B E

The correctness of this scheme follows by a similar ar-
gumentation as forc-jump. Both schemes are exemplified in
fig. 1 using a sequential assembly syntax.

We now consider how the fastest implementation scheme can
be selected for each ITE statement. Obviously, the execu-
tion time for an ITE statementS = (cond;BT ; BE) depends
on the execution times forBT andBE . In turn, these de-
pend on the ITE implementation versions selected for the
ITE statements insideBT andBE . However, also a converse
dependence exists, since the execution times forBT andBE

depend on the implementation version forS itself: As can
be seen in the generalized implementation schemes, bothc-
jump andc-exec may require somesetup code, which con-
tributes to the total execution time. This setup code consists
of additional instructions required to compute preconditions
for BT andBE (excluding the code for evaluating the ITE
condition itself). For instance,c-exec with precondition has
three setup instructions:

[p] d := !c, [!p] c := 0, [!p] d := 0

Since the amount of setup code is different forc-jump andc-
exec, the execution times for ITE statements insideBT and
BE depend on the implementation ofS. Especially for small
blocks, that consist of very few instructions, the execution
time overhead due to the setup code must not be neglected in
order to achieve accurate estimations. This means, that the
fastest implementation version for each ITE statement can-
not be decided locally, but that information must be passed
both bottom-up and top-down through different ITE nesting
levels. We therefore use a two-pass dynamic programming
technique described in the following two sections. In the
first (bottom-up) pass, a cost estimation table is computed

for each ITE statement. The tables are used in the second
(top-down) pass to select the fastest implementation for the
ITE statements at each level.

4 Cost table computation

Setup costs: The setup costof an ITE statementS is de-
fined as the number of instructions in the setup code in the
implementation ofS. The setup cost is a constant implied
by the chosen implementation scheme and the existence of
a precondition forS. Thus, it can be determined by table
lookup. Table 1 shows the setup costs2 for the implemen-
tation schemes shown in sections 3.1 to 3.4 and defines a
notation for each case.

c-jump c-exec
precondition: no Nc�jump = 0 Nc�exec = 0
precondition: yes Pc�jump = 1 Pc�exec = 3

Table 1:Simplified setup cost table

Statement blocks:LetB = (s1; : : : ; sn) be a block of state-
ments. We denote the estimated costs ofB by TP (B) (if B
has a precondition) andTN (B) (if B has no precondition),
respectively. The costs of a blockB are defined as the sum of
the costsTP (si) orTN (si) of all statementssi inB. If state-
mentsi is an assignment or an unconditional jump, then we
setTP (si) = TN (si) = 1, because the execution time of an
assignment or a jump instruction does not depend on whether
the instruction is conditional. Otherwise,si is in turn an ITE
statementsi = (c; BT ; BE), in which case the costs of the
two alternativesc-jump andc-exec must be estimated.
c-jump scheme: Since we compute the cost tables bottom-
up, the cost values for the blocksBT andBE are already
known when the costs forsi are estimated. If we implement
si by c-jump andsi has no precondition, then bothBT and
BE have no precondition, and we estimate the worst-case
execution time by (J is the jump penalty, cf. section 3.1):

TNc�jump(si) = Nc�jump+max(J+TN (BT ); 2�J+T
N(BE ))

whereTN (BT ) (the cost of the fastest implementation ofBT

in absence of a precondition) is given as

TN (BT ) = min(TNc�jump(BT ); T
N
c�exec(BT ))

and analogously forTN (BE ). If si has a precondition, then,
according to the implementation scheme from section 3.3,
the else blockBE also has a precondition, whileBT has
none. Thus, we obtain

TPc�jump(si) = Pc�jump+max(J+TN (BT ); 2�J+T
P (BE ))

with

TP (BE ) = min(TPc�jump(BE ); T
P
c�exec(BE))

2Actually, a larger setup cost table with two further dimensions is re-
quired: First, if an ITE statement has an empty else block, then thec-jump
andc-exec schemes are slightly different, and so are the setup costs. Sec-
ond, the setup costs depend on whether the target processor directly supports
negated conditions.



The estimation functionsTNc�exec andTPc�exec are defined in
the following.
c-exec scheme:If si is implemented byc-exec, then the
blocksBT andBE are effectively concatenated to form a
single ”large” block. Therefore, we need to estimate the
parallelization of the instructions inBT andBE . For this
purpose, we incorporate a machine-dependent parameterK
that reflects the available instruction-level parallelism, and
which has to be determined empirically. The use ofK is
based on the following observation: If there is a large dif-
ference in the estimated execution times ofBT andBE , say
T (BT )� T (BE ), then it is likely thatBE will almost com-
pletely fit into instruction slots not occupied by computations
from BT , so thatT (BT � BE ) is only slightly larger than
T (BT ). This can be modeled by subtracting a fraction of
T (BT ) from T (BT ) + T (BE). Furthermore, the possible
parallelization ofBT andBE is inversely related to the nest-
ing levelL(si) (with L(s) := 1 for any innermost ITE state-
ments) of statementsi, because the size of blocksBT and
BE tends to grow withL(si), leading to more resource con-
tentions between the blocks. For estimating the times forBT

andBE , we use theTP values as defined in section 4, since
in thec-exec scheme both blocks have to be executed under
a precondition. Summarizing, a useful estimation is

T (BT �BE ) = M +m� z

with
M = max(TP (BT ); T

P (BE))

m = min(TP (BT ); T
P (BE ))

z = min(
K

L(si)
�M;m)

The ”min” in the latter formula ensures thatT (BT � BE )
is never estimated less thanM . Like for c-jump, we com-
pute two cost estimations forc-exec, again dependent on the
presence of a precondition:

TNc�exec(si) = Nc�exec +M +m � z

TPc�exec(si) = Pc�exec +M +m� z

5 Implementation selection

After bottom-up cost table computation, each ITE statement
has been annotated with the four valuesTNc�jump, T

P
c�jump,

TNc�exec, andTPc�exec. In a top-down pass, we can now se-
lect the best implementations for each ITE statement, starting
from the ”root” statementS� = (cond;BT ; BE). When se-
lecting the implementation forS�, we can exploit the fact,
thatS� cannot have a precondition, since it is the outermost
ITE statement. Therefore, we just need to compare the values
TNc�jump(S

�) andTNc�exec(S
�). Suppose,TNc�jump(S

�) <

TNc�exec(S
�). Then, c-jump is the faster implementation.

Furthermore, from the implementation scheme in section 3.1
we know thatBT andBE will have no precondition. Thus,
for all ITE statements inBT andBE , we again only need to
compare theTNc�jump andTNc�exec values in order to decide

source # ITE nest. size
adaptquant 4 3 16

adaptpredict1 3 1 29
adaptpredict2 6 2 44

diff comp 2 1 22
outp conv 4 2 34
codeadj1 5 5 19
codeadj2 17 9 86
codeadj3 17 5 95
detectpos 7 3 45
find mv 4 4 45

Table 2:Characteristics of tested C source codes

on the best implementation. From this decision, we in turn
know which values need to be compared for the ITE state-
ments at the next lower level. Conversely, ifTNc�jump(S) �

TNc�exec(S), we prefer thec-exec version forS, so thatBT

andBE have a precondition. Then, for all ITE statements
in BT andBE , we only need to compare theTPc�jump and
TPc�exec values in order to select the best implementation.

In each step of the top-down pass, the fastest implemen-
tation for an ITE statementS = (cond;BT ; BE) is decided.
In turn, this decision makes the presence or the absence of
a precondition forBT andBE known. This information is
exploited at the next lower level, and the process is contin-
ued down to the innermost ITE statements. The complete
optimization procedure is illustrated in fig. 2.

Since in both the bottom-up and the top-down pass each
ITE statement is visited only once, the total runtime of the
dynamic programming technique is linear in the number of
ITE statements.

6 Experimental results

We have evaluated the proposed optimization technique for
a TI C62xx [7], a fixed-point VLIW DSP that issues up to 8
instructions per cycle. We have compared the worst-case ex-
ecution times of code generated by our technique to the code
generated by the TI C6x ANSI-C compiler. For experimenta-
tion, we have compiled 10 control-intensive pieces of ANSI-
C code extracted from the ADPCM transcoder ”g721.c” in-
cluded in the DSPStone benchmark suite [1] and from an
ANSI-C MPEG package. Table 2 shows the characteristics
(number of ITE statements, maximum nesting level, number
of statements in the intermediate representation) of the code
fragments we have tested.

In order to determine the net effect of our optimization
technique, we have used the following methodology: The C
source code was first compiled by an ANSI C frontend into
an intermediate representation (IR). The IR essentially con-
sists of three-address code, but originally retains all source-
level ITE statements. On the IR we have applied the pre-
sented technique to replace all ITE statements by (condi-
tional) assignments and jumps. From the modified IR, we
have generated symbolic sequential C62xx assembly code.
This sequential code has been processed by the TIassembly
optimizer, that performs register allocation, and scheduling



T N
c-exec

T
P
c-exec

TN
c-jump

T
P
c-jump

TN
c-exec

T
P
c-exec

TN
c-jump

T
P
c-jump

ITE

ITEITE

B T BE

N c-exec
N

c-jump

Pc-jumpP
c-exec

and TP
compute new cost 

and setup cost table
table from TN

ITE ITE

ITE

ITEITE

TN
c-exec

T
P
c-exec

TN
c-jump

T
P
c-jump

TN
c-exec

T
P
c-exec

TN
c-jump

T
P
c-jump

from row TP
yes: select min

implementation
generates

precondition ?

PASS 1: BOTTOM-UP

cost table

setup cost table
(constant)

min = T

min = T

N

P

for block BT

PASS 2: TOP-DOWN

select min

no: select min
from row TN

from row TN

root ITE statement

Figure 2:Illustration of the optimization procedure for a nested ITE statement

of the symbolic sequential assembly while using the same
code generation techniques as the TI C6x C compiler. For
the dynamic programming technique, we have set the jump
penalty3 J to a value of 4, while for the parallelism parame-
terK (see section 4) we empirically found a value of 3 most
appropriate. The code generated in this way has been com-
pared to the code that was directly generated through the TI
C compiler. The worst-case execution times (in instruction
cycles) are shown in table 3.

source c-jump c-exec opt TI
adaptquant 21 11 11 15

adaptpredict1 12 13 13 13
adaptpredict2 26 21 22 27

diff comp 9 12 12 10
outp conv 26 30 24 21
codeadj1 32 23 23 30
codeadj2 57 173 49 51
codeadj3 39 244 30 41
detectpos 28 27 27 29
find mv 27 30 30 28

Table 3:Experimental results: worst-case execution time

Columns 2 and 3 show the execution times when us-
ing thec-jump andc-exec schemes only, respectively. Col-
umn 4 shows the results for optimized ITE implementation,
and column 5 gives the corresponding results for the TI C
compiler. In most cases, our technique was able to generate
faster code. In a few cases, due to inaccuracies in the es-
timations, the ”optimized” solutions computed by dynamic
programming are worse than the purec-jump or c-exec so-
lutions. However, the two larger and deeply nested examples
(”code adj2” and ”codeadj3”) indicate that exclusively us-
ing eitherc-jump or c-exec is not a good approach, but that
the optimum in general is located somewhere in between.

3The TI C62xx has 5 branch delay slots. However, the value ofJ was
chosen smaller, since sometimes the delay slots are filled with useful in-
structions, resulting in a lower average jump penalty.

7 Conclusions
This paper has presented a new optimization technique for
mapping control-intensive programs to embedded VLIW
processors. The technique makes use of conditional instruc-
tions and aims at globally selecting the fastest ITE imple-
mentations across all nesting levels. Its efficacy has been
demonstrated for a recent VLIW DSP. Since the optimization
is guided by machine-dependent parameters, we expect that
comparable results can be achieved for similar VLIW ma-
chines. The dynamic programming technique is not affected
by the replacement of the cost estimation functions. There-
fore, the simple and fast estimation techniques presented here
might be substituted in the future by moreaccurate and time-
intensive procedures that exploit schedulability information.

References
[1] V. Zivojnovic, J.M. Velarde, C. Schl¨ager,H. Meyr:DSPStone– A DSP-oriented

Benchmarking Methodology, Int. Conf. on Signal Processing Applications and
Technology (ICSPAT), 1994

[2] B. Wess:Automatic Instruction Code Generation based on Trellis Diagrams,
IEEE Int. Symp. on Circuits and Systems (ISCAS), 1992, pp. 645-648

[3] G. Araujo,S. Malik, M. Lee:Using Register Transfer Paths in Code Generation
for Heterogeneous Memory-Register Architectures, 33rd Design Automation
Conference (DAC), 1996

[4] D. Lanneer, M. Cornero, G. Goossens, H. De Man:Data Routing: A Paradigm
for Efficient Data-PathSynthesis and Code Generation, 7th Int. Symp.on High-
Level Synthesis (HLSS), 1994, pp. 17-21

[5] C. Liem, T. May, P. Paulin:Instruction-Set Matching and Selection for DSP
and ASIP Code Generation,European Design and Test Conference (ED & TC),
1994, pp. 31-37

[6] A. Timmer, M. Strik, J. van Meerbergen, J. Jess:Conflict Modelling and In-
struction Scheduling in Code Generation for In-House DSP Cores, 32nd De-
sign Automation Conference (DAC), 1995, pp. 593-598

[7] Texas Instruments: TMS320C62xx CPU and Instruction Set Reference Guide,
URL http://www.ti.com/sc/c6x, 1997

[8] W. Hwu: Introduction to Predicated Execution, IEEE Computer, Jan. 1998, pp.
49-50

[9] J.R. Allan, K. Kennedy, C. Porterfield, J. Warren:Conversion of control de-
pendence to data dependence, 10th ACM Symp. on Principles of Programming
Languages, 1983

[10] S.A. Mahlke, D.C. Lin, W.Y. Chen, et al.:Effective Compiler Support for Pred-
icated Execution Using the Hyperblock, 25th Ann. Symp. on Microarchitecture
(MICRO-25), 1992


