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Abstract— This paper presents a new code optimizdrighly parallel VLIW-like processors. Therefore, an alter-
tion technique for a class of embedded processors. Modative architectural support for ITE statements, catleddi-
ern embedded processor architectures show deep instructibanal instructions have been implemented in several recent
pipelines and highly parallel VLIW-like instruction sets. Forembedded processors. Such instructions may implement ITE
such architectures, any change in the control flow of a mastatements without altering the control flow in a machine pro-
chine program due to a conditional jump may cause a signifyram, i.e. without modifying the program counter.
icant code performance penalty. Therefore, the instruction  In this paper, we present a technique for optimized im-
sets of recent VLIW machines offeipport for branch-free plementation of nested ITE statements for a class of VLIW
execution of onditional statements in the form of so-calledprocessors. Since embedded applications mostly have to
conditionalinstructions. Whether an if-then-else statement meet real-time constraints, the goal is to minimizewhest-
implemented by a conditional jump scheme or by conditionghse execution timef a (control dominated) software func-
instructions has a strong impact on its worst-case executiaion. This is performed by appropriately selecting either a
time. However, the optimal selection is difficult particularlyconditional jump or a conditional instruction based imple-
for nested conditionals. We present a dynamic programmingentation scheme for each ITE statement.
technique for selecting the fastest implementation for nested  The structure of the paper is as follows: Section 2 gives
if-then-else statements based on estimations. The efficacyis introduction to conditional instructions and their use in
demonstrated for a real-life VLIW DSP. machine programs. Section 3 describes the alternative im-
plementation schemes for ITE statements using conditional
jumps and conditional instructions. Sections 4 and 5 describe
i the proposed two-pass optimization technique. In section 6,
1 Introduction we provide experimental results for a recent VLIW DSP, the

A major goal of current research efforts in the area of COd-(I;I C62xx. Finally, section 7 gives conclusions.

generation for embedded processors is to overcome the in-
sufficient code quality of current DSP compilers, which still .- . .
makes time-consuming assembly-level programming of DSB8~ Conditional instructions
software essential [1]. Traditionally, DSPs have been mainly
used for implementation of data flow dominated applicaA conditional instruction [C] | " consists of a Boolean
tions. Consequently, much of the recent work on code ogonditionC' and a "regular” machine instructioh e.g., an
timization for DSPs has focussed on data flow graphs, e.gtithmetic operation, a register move, or a jump. Instruction
[2, 3, 4, 5, 6]. However, automotive applications and telef is executed, if and only if th€' evaluates to true at the point
com protocol functions also require a significant amount aoff time when the control flow in a machine program reaches
control functionality to be implemented by DSPs. Effective/. Otherwise, instruction behaves like a no-operation. The
compilation techniques are particularly important for contratonditionC' is stored in a machine registét. By defini-
dominated applications, since usually no assembly code tion, C' is false if R = 0, and true otherwise. The notation
brary support is available for control functions. "[!C] I " denotes a conditional instruction withreegated
The source code of control dominated applications tygsondition,
ically contains a large number of if-then-else (ITE) state- Several recent VLIW-like architectures, such as the
ments. Classical compiler technology uses conditional jumg@®xas Instruments C62xx or the Philips Trimedia TM1000,
for implementation of ITE statements. However, the presshow full support for conditional instructions. Also the next
ence of many conditional jumps has a negative impact ageneration of 64-bit Intel processors will be equipped with
code performance in particular for deeply pipelined anthis feature [8]. For such machines, the decision of whether
to implement an ITE statement by conditional jumps or by
*The author acknowledges the support by HP EEsof conditional instruction execution has a large impact on code
Lpublication: DATE '99, Munich, Germany, March 1998EDAA quality in terms of worst-case execution time. In the follow-




ing, we denote these two schemeschiymp andc-exec. The notation [c] B " denotes the conditional execu-
Usingc-exec instead ofc-jump may increase the code tion of all instructions in a block3. The worst-case execu-

performance by a twofold effect: Due to control hazards ition time when using-execis T'(S) = T(Br o Bg), where

the instruction pipeline, execution of jump instructions usu=o” denotes the concatenation of blocks. In totakexec

ally causes gump penalty i.e., the pipeline needs to be leads to a shorter worst-case execution time thpmp, ex-

stalled for some machine cycles. This problem is avoidedctly if

if conditional instructions are used, because these do not al-

ter the control flow in a program. In turn, this leads to larger ~ T'(Br o Bg) < max(J + T'(Br),2-J + T(Bg))

branch-free (basic) blocks in the program, which give higher

opportunities for parallelization of instructions. On the other  Note that, in VLIW processors]'(Br o Bg) is fre-

hand, using-exec may also degrade performance due to requently much less thaf( By )+7'( Bg ), because the instruc-

source contentions. tionsin By and Bg may be partially executed in parallel. On
Previous work on exploiting conditional instructionsthe other hand it is obvious thatexec is not guaranteed to

during compilation [9, 10] is primarily based on estimatedbe the fastest alternative in any case.

execution times only fosingle basic blocks Furthermore,

focus has been on minimizing tleverageexecution time. . . o

In contrast, our technique estimates #ast-casexecution 3.3 C-jump with precondition

time, which is more relevant for real-time applications, and i

handles complete (possibly nested) ITE statements with my}€ @bovec-jump andc-exec implementation schemes are
tiple blocks at a time. In general only valid for innermost ITE statements, where the

then and else blocks are basic blocks. However, in general we

have to cope with nested ITE statements. As shown above,
i i thec-exec scheme requires that the then and else bldgks

3 ITE |mplementat|on schemes and Bg of ITE statement be executed dependent on a con-

This section presents and analyzes the different implemenftion ¢ In this case, we say that the statement®inand

tion schemes used in our approach. Bothdgamp andc- £ havec as aprecondition If some statement” in Br or

exec two cases have to be considered, depending on whetH&F 1S @n assignmentor a jump, we can simply attach the pre-
or not ITE statements are nested. conditionc to S’ by forming a conditional instruction¢]

S’ . However, ifS" inturnis an ITE statemertt’, B, By ),
) thenboth B/, and B mustnot be executed if precondition
3.1 c-jump c is false, independent of the value of Thus, in order to
Let S = (cond, Br, Br) be an ITE statement, wherié, retain the correct program behavior, preconditions have to be

: ropagated to the inner ITE statements. This requires the
and By are basic blocks. The standard replacement sche ; ; ; -
using conditional jumps is: lowing generalized implementation schemes.

Let S = (cond, By, Bg) be an arbitrary ITE statement,

¢ = evaluate(cond) and letp be the precondition of. Then, the followingc-
[c] goto then_label jump implementation scheme is used.
goto join_label [p] c¢ := evaluate(cond)
then_label: BT [l c =0
join_label: [c] goto then_label
o : . ] B-E
The condition is evaluated into a registeland depen- goto join_label
dent on its value, eitheBy or By get executed. Then, con- then label: BT -
trol flow joins at the next instruction aftef. join_label:

Let T'(B) denote the time to execute a basic bldgk
and letJ be the (machine-dependent) jump penalty. If the  The whole statemen$ must only be executed i is
conditional jump is taken (i.e., condition is true) then true. The condition for executingr is p A cond, while
the execution time for the ITE statemefitis 71(S) = By must be executed exactly jf A NOT(cond) is true.
J +T(Br). If the jump is not taken, then two jump instruc- After execution of the conditional instructiofip] ¢ =
tions are executed, and the timefig(S) = 2- J + T(Bg). 0", the condition registec contains the value gf A cond.
The worst-case execution time (neglecting the time for conf this value is true, then a jump tB7 is taken, and3r is

dition evaluation) isl'(S) = max(71(S), T2(5)). executed unconditionally. If the jump is not taken, then ei-
therp or cond are false. By propagatingas a precondition
3.2 c-exec to Br it is guaranteed, thaBg is executed if and only if

p A NOT (cond) is true.
For a non-nested ITE statemefit= (cond, Br, Bg), the

c-exec implementation scheme looks as follows: . ..
3.4 c-exec with precondition
¢ := evaluate(cond) ] ) ]
[c] BT Alternatively, ac-exec scheme can be used, in which case
B_E

the implementation scheme is the following:



€ source cjump only for each ITE statement. The tables are used in the second
if c(ia_>b1t3r) . R1] cmpgt 3.10R1 (top-down) pass to select the fastest implementation for the
BN | Ry _Joe ot ITE statements at each level.
{h=d+e jmp L2
}I L1: add ti’cc’idls‘ -
else cmpgt d,13, .
(i=a-e 2l me L3 4 Cost table computation
Sul ,e,l
} jmp L2 .
else _ L3:  add deh Setup costs: The setup cosbf an ITE statement' is de-
fh=t+g Lz fined as the number of instructions in the setup code in the
_ implementation ofS. The setup cost is a constant implied
| d P : : i
cexec ony mixe by the chosen implementation scheme and the existence of
cmpgt a,10,R1 __ompgt 2,10.R1 a precondition forS. Thus, it can be determined by table
{Eﬂ ?%C:ag?’cdfils,m R fg.h lookup. Table 1 shows the setup cdsitsr the implemen-
{%1111 ot R2,R3 L. JmoL2 tation schemes shown in sections 3.1 to 3.4 and defines a
IR1] mov %:Rgh ' d%mgg{ r;d,ls,Rz notation for each case.
R2 e, R2 e, -
{RB% b dei [![RZ]] sib diei . c-jump C-exec
[IR1] add fg,h L2: precondition: N0 | Ne—jump =0 | Ne—egee =0
precondition: yes Pe_jump =1 | Pe—cgec =3

Figure 1: lllustration of thec-jump andc-exec ITE imple-

mentation schemes

Table 1:Simplified setup cost table

{B% g Z i;’aluate(cond) Statement blocks:Let B = (sq, . . ., s,,) be a block of state-
[lp] ¢ = 0 ments. We denote the estimated cost®dfy 77 (B) (if B
lp] d =0 has a precondition) an@™ (B) (if B has no precondition),
[c] BT respectively. The costs of a bloékare defined as the sum of
[bd B.E the costd ¥ (s;) or T (s;) of all statements; in B. If state-

The correctness of this scheme follows by a similar ar-
gumentation as faz-jump. Both schemes are exemplified in

fig. 1 using a sequential assembly syntax.

We now consider how the fastest implementation scheme catatement; = (¢, Br, Bg), in which case the costs of the
be selected for each ITE statement. Obviously, the exectwo alternativeg-jump andc-exec must be estimated.

tion time for an ITE statemerft = (cond, By, Bg) depends c-jump scheme: Since we compute the cost tables bottom-
on the execution times foBr and Bg. In turn, these de- up, the cost values for the blocksr and Bg are already
pend on the ITE implementation versions selected for thenown when the costs far; are estimated. If we implement
ITE statements insidBr andBg. However, also a converse s; by c-jump ands; has no precondition, then bofhy and
dependence exists, since the execution time®foand By

depend on the implementation version foitself: As can
be seen in the generalized implementation schemes,doth
jump andc-exec may require someetup codewhich con-

ments; is an assignment or an unconditional jump, then we
setT (s;) = TV (s;) = 1, because the execution time of an
assignment or a jump instruction does not depend on whether
the instruction is conditional. Otherwiss,is in turn an ITE

Bg have no precondition, and we estimate the worst-case
execution time by [( is the jump penalty, cf. section 3.1):
N (si) = Ne—jumptmax(J+TY (Br), 2-J+TN (Bg))

—jump

tributes to the total execution time. This setup code consists ~ . .
of additional instructions required to compute precondition&herel™ (Br) (the cost of the fastest implementationfef
for By and By (excluding the code for evaluating the ITEIn absence of a precondition) is given as

condition itself). For instance-exec with precondition has

three setup instructions:

[p] d :=

Ic, ['p] ¢

=0, [pl]d:=0

Since the amount of setup code is differentdgump andc-
exec, the execution times for ITE statements insigle and

TN(Br) = min(TY

c—jump

(Br), TY . ,c.(Br))

and analogously fof'"Y (Bg). If s; has a precondition, then,
according to the implementation scheme from section 3.3,
the else blockBg also has a precondition, whilBr has
none. Thus, we obtain

Bg depend on the implementation.8f Especially for small

blocks? that consist of very few instructions, the executiofle—jumy (5:) = Pejumptmax(J+T™ (Br),2-J+T" (Bg))
time overhead due to the setup code must not be neglecte 'Hh

order to achieve accurate estimations. This means, that the

fastest implementation version for each ITE statement can- 77 (Bg) = min(T,” ,,,,..(Bg),T.-.....(BE))

not be decided locally, but that information must be passed

both bottom-up and top-down through different ITE nesting _2Actually, a larger setup cost table with two further dimensions is re-

_ ; sguired: First, if an ITE statement has an empty else block, theo-jhmp
levels. We therefore use a two pass dynamlc proqramm'@ﬁdc-exec schemes are slightly different, and so are the setup costs. Sec-

t_eChnique described in the f0||0Wing two sectiqns. In thgngd, the setup costs depend on whether the target processor directly supports
first (bottom-up) pass, a cost estimation table is compute@gated conditions.




The estimation function? ... and7TZ .. are defined in | source [ #ITE | nest.] size|
the following. adaptquant 4 3 16
c-exec schemeilf s; is implemented byc-exec, then the adaptpredictl| 3 1 29
blocks Br and Bg are effectively concatenated to form a adapipredici2| 6 2 44
single "large” block. Therefore, we need to estimate the diff_comp 2 1 22
parallelization of the instructions iBr and Bg. For this outpconv A 2 34
purpose, we incorporate a machine-dependent parameter codeadil 5 5 19
that reflects the available instruction-level parallelism, and codeadi? 17 9 36
which has to be determined empirically. The uselofis codeadi3 17 5 95
based on the following observation: If there is a large dif- detectpos 7 3 25
ference in the estimated execution timed3af and Bg, say find.mv Z i 75

T(Br) > T(Bg), thenitis likely thatBg will almost com-
pletely fit into instruction slots not occupied by computations
from Br, so thatT'(Br o Bg) is only slightly larger than
T(Br). This can be modeled by subtracting a fraction of
T(Br) from T'(Br) + T(Bg). Furthermore, the possible on the best implementation. From this decision, we in turn
parallelization ofBr and B, is inversely related to the nest- know which values need to be compared for the ITE state-
ing level L(s;) (with L(s) := 1 for any innermost ITE state- ments at the next lower level. Converselyfﬂ‘ijump(s) >
ments) of statement;, because the size of blocks and N . ..(S), we prefer thee-exec version forS, so thatBr

Bp tends to grow withl.(s;), leading to more resource con- "5

tent bet the blocks. F timating the ti and Bg have a precondition. Then, for all ITE statements

entions between eP Ocks. For estimating the |me§50_r in By and Bg, we only need to compare the . and

andBg, we use thd™” values as defined in section 4, since_ . . . Jump -
values in order to select the best implementation.

in thec-exec scheme both blocks have to be executed undér—csec

Table 2:Characteristics of tested C source codes

it (i imation i In each step of the top-down pass, the fastest implemen-
a precondition. Summarizing, a useful estimation is tation for an ITE statement — (cond. Br, ) is decided.
T(Bp oBp)=M+m—z In turn, this decision makes the presence or the absence of
a precondition forBy and Bg known. This information is
with exploited at the next lower level, and the process is contin-
M = max(TF (Br), TF (Bg)) ued down to the innermost ITE statements. The complete
P P optimization procedure is illustrated in fig. 2.
m = min(T" (Br),T" (Bg)) Since in both the bottom-up and the top-down pass each
K ITE statement is visited only once, the total runtime of the
z=min(—— - M, m) dynamic programming technique is linear in the number of
L(si) ITE statements.

The "min” in the latter formula ensures thd@i(Br o Bg)
is never estimated less thar. Like for c-jump, we com- .
pute two cost estimations farexec, again dependent on the 6 Experlmental results
presence of a precondition:
We have evaluated the proposed optimization technique for

T ree(5i) = Neegpee + M +m — 2 a Tl C62xx [7], a fixed-point VLIW DSP that issues up to 8
instructions per cycle. We have compared the worst-case ex-
TF o oo(5i) = Pe_coce + M +m — 2 ecution times of code generated by our technique to the code

generated by the TI C6x ANSI-C compiler. For experimenta-
tion, we have compiled 10 control-intensive pieces of ANSI-
5 Implementation selection C code extracted from the ADPCM transcoder "g721.c” in-
cluded in the DSPStone benchmark suite [1] and from an
After bottom-up cost table computation, each ITE statemeANSI-C MPEG package. Table 2 shows the characteristics
has been annotated with the four valu@$ . 7F . (number of ITE statements, maximum nesting level, number
N P Jumpt cmumb  of statements in the intermediate representation) of the code
TN veer @ndT.__ . In a top-down pass, we can now se-,
lect the best implementations for each ITE statement starti#tlrgagmentS we have tested. L
from the "root” 2tatemen£* = (cond. Br, Bx) When se- In order to determine the net effect of our optimization
lecting the implementation f_oﬁ* Wé cgr’u egpioit the fact technique, we have used the following methodology: The C
thath cannotphave a precondition, since it is the outermoSt " e code was first compiled by an ANSI C frontend into
ITE statement Therefc?re we iust need to compare the valu%ltn intermediate representation (IR). The IR essentially con-
N LN e J he P . SiSts of three-address code, but originally retains all source-
T2 jump(57) @NAT.L cpe(S7). SUPPOSET.L jump(57) < Jevel ITE statements. On the IR we have applied the pre-
TX rec(S7). Then,c-jump is the faster implementation. sented technique to replace all ITE statements by (condi-
Furthermore, from the implementation scheme in section 3tibnal) assignments and jumps. From the modified IR, we
we know thatBr and Bg will have no precondition. Thus, have generated symbolic sequential C62xx assembly code.
for all ITE statements i3y and B, we again only need to This sequential code has been processed by tlrs3g@mbly
compare thg'Y and7¥ values in order to decide optimizer that performs register allocation, and scheduling

c—jump c—exec



setup cost table select min

(constant) PASS 1: BOTTOM-UP - - trom row TN
T e
Nc—exec Nc-jump c-exec c-jump
<P P implementation
Peexec |Pejump .- cexec | Tejump generates

P2 ~~_ precondition ?
root ITE statement AN N .
compute new cost " : no: select m’\lln
P T T <— fromrow T

table from T™and T @ c-exec c-jump
N N .
and setup cost table T T { P P yes: select min

c-exec c-jump K . T exec chump . P
° @E\\ £ v N\ from row T
cexes | Tojump , N
soon (e Qre)
’ N ’ \\

. N
min=T"| ;N TN % \\\ /; \\\
c-exec c-jump
- 1P
min=T Tzexec P PASS 2: TOP-DOWN
cjump
cost table
for block Bt

Figure 2:1llustration of the optimization procedure for a nested ITE statement

of the symbolic sequential assembly while using the sam& Conclusions

code generation techniques as the TI C6x C compiler. For

the dynamic programming technique, we have set the jumihis paper has presented a new optimization technique for
penalty .J to a value of 4, while for the parallelism parame-mapping control-intensive programs to embedded VLIW
ter K (see section 4) we empirically found a value of 3 mosprocessors. The technique makes use of conditional instruc-
appropriate. The code generated in this way has been cotig¢ns and aims at globally selecting the fastest ITE imple-
pared to the code that was directly generated through the mentations across all nesting levels. Its efficacy has been
C compiler. The worst-case execution times (in instructiodemonstrated for a recent VLIW DSP. Since the optimization
cycles) are shown in table 3. is guided by machine-dependent parameters, we expect that
comparable results can be achieved for similar VLIW ma-

[__source | cjump | c-exec | opt] TI | chines. The dynamic programming technique is not affected
adaptquant 21 11 11 115 by the replacement of the cost estimation functions. There-
adaptpredictl | 12 13 113113 fore, the simple and fast estimation techniques presented here
adaptpredict2| 26 21 22 [ 27 might be substituted in the future by marecurate and time-
diff_comp 9 12 12 | 10 intensive procedures that exploit schedulability information.
outp.conv 26 30 24 121
codeadjl 32 23 23] 30
codead)2 57 | 173 |49 [ 51 References
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