Compiler Optimizations for Media Processors

Rainer LEUPERS

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany
leupers@Is12.cs.uni-dortmund.de

Abstract

In the design of embedded systems, programmable processors gain more and more
importance due to their high flexibility and potential for reuse. As a consequence, com-
pilers for embedded processors are required, capable of generating very fast and dense
code. In particular, this concerns the area of computation-intensive multimedia applica-
tions. While domain-specific digital signal processors may offer sufficient performance
for multimedia, they show comparatively low flexibility and pose difficult problems to
compiler and software developers due to their irregular architectures. In fact, meeting
the system specification while minimizing the costs frequently requires time-consuming
assembly-level programming of embedded processors. Recent media processors cover a
larger set of application areas and, due to a more regular architecture, also facilitate the
construction of compilers capable of generating high-quality machine code. However,
media processors simultaneously introduce new challenges for compiler technology. In
this paper, we motivate the use of media processors and we present two new compiler
optimizations for such processots.

1. Introduction

Today, many embedded systems are designed on the basis of instruction set processors rather
than on purely application specific hardware. Saptbedded processase used to achieve

higher degrees of reusability and flexibility both of which are key features in system design
for increasingly complex applications and short market windows. Flexibility is achieved

by programmability of embedded processors, which allows for quickly accommodating late
specification changes or new standards in existing designs. Reusability covers both the reuse
of software (if it is written in a high-level language) and the reuse of processors. Many
embedded processors (RISCs, DSPs, and microcontrollers) are available in the fonasof

i.e., complex macro cells which can be instantiated from a component library. Such cores
are generally used isystems-on-a-chj@ typical floorplan of which is shown in fig. 1.

If processor cores are employed in a design, then the silicon area occupied both by the
cores and the program memory contribute to the total chip area and thus to the system man-
ufacturing costs. There are two general approaches to ensure an efficient use of embedded
processors.

*The author acknowledges the support by HP EEsof
Publication: EMMSEC '99, Stockholm/Sweden, 1999

INIRIRINIRINIINIRINInInIE

processor
core
processor
ASIC program core
ROM

INRIIRIRIRIRIRIRIRERIRIN

Figure 1: System-on-a-chip with embedded processor cores

¢ Application or domain specific processors:

The use of standard "general-purpose” processors in an embedded system for a par-
ticular application may lead to a waste of resources. Therefore, embedded system
designers mostly make use of domain or even application specific processors. A large
variety of such specialized processors, either tuned for high performance or low power
consumption are available on the semiconductor market.

e Generation of compact machine code:

When developing the software executed by an embedded processor, much time is spent
in code optimization, so as to achieve dense code. In case an embedded system has to
meet real-time constraints, the code performance may be of even higher importance.
In particular for DSP processors, for which compiler support is still insufficient, pro-
grammers frequently have to resort to assembly programming in order to generate suf-
ficiently compact machine code [1]. Since such low-level programming is extremely
time-consuming, and both processors and applications get more and more complex,
high-level language compilers capable of generating high-quality code will become
very important design tools in the near future.

In this paper, we considenedia processomss a specific class of domain specific em-
bedded processors, and we propose two code optimization techniques for the use in compil-
ers for media processors. The purpose of these techniques is an increase in the quality of
compiler-generated code, which in turn helps to avoid assembly programming of embedded
processors.

2. Media processors

Embedded systems used in the areas of telecommunication, image processing or consumer
electronics involve a large amount of computation-intensive digital signal processing, such
as filtering, coding, or compression. Since the performance of general-purpose processors
is insufficient for such operations, dedicated digital signal processors (DSPs) are available.
These DSPs are equipped with special hardware for fast execution of kernel operations in
signal processing, like multiply-accumulate operations.

In spite of their performance advantages, DSPs unfortunately show two drawbacks:
Due to the high specialization of DSP architectures, different processors have to be used
for different application domains (e.g. audio and video). Furthermore, generation of high-

quality code for DSPs by compilers is very difficult and requires many special and time-
consuming code optimization techniques (see [2, 3] for overviews).

In order to overcome these problems, semiconductor vendors are starting to offer so-
calledmedia processor3hese processors provide instructions for efficient computations on
different multimedia data types, such as 8-bit 16-bit or 32-bit data. While also some general-
purpose processors offer multimedia support (e.g. Intel's Pentium with MMX technology
[4]), special media processors like the Texas Instruments 'C6x [5] or the Philips Trimedia
[6] in general allow for higher performance due to a large number of functional units. In
addition, such processors are relatively regular and are thus much more "compiler-friendly”
than traditional DSPs. Mostly, the architectures of media processors follow the VLIW (very
long instruction word) paradigm to expose a high degree of instruction-level parallelism to
the compiler and they show deep instruction pipelines to achieve high throughput.

While the VLIW-like architectures eliminate some difficulties encountered in code gen-
eration for traditional DSPs (like dealing with special-purpose registers and peculiar instruc-
tion formats), they also pose new challenges to compiler technology. In this paper we discuss
two code generation problems associated with media processors, and we outline solutions for
these problems.

Firstly, this concerns the fact, that control structures in application programs (such as
if-then-else) cause hazards in the instruction pipeline which may significantly slow down
the potential performance. Media processors proewieditional instructionas a means of
compensating this effect, but effective exploitation of such instructions in a compiler is not a
trivial problem.

Secondly, media processors are capable of performing computations on different data
types by means of dedicatedultimedia instructionsThese instructions execute identical
operations on multiple data in parallel. So far, the use of multimediainstructions in compilers
is restricted to inlining of assembly library code @ympiler intrinsicswhich are expanded
into specific instructions like a macro. The disadvantage of these approaches is that the
resulting code is highly machine-dependent, which prevents the reuse of software for new
processors.

3. Exploiting conditional instructions

Control structures in programs, like if-then-else (ITE), are normally compiled into machine
code by means ofonditional jumpinstructions. Depending on the ITE condition, either
the then or the else part of an ITE statement are skipped. However, instruction pipelining
implies that the processing of instructions is started already before it is established that these
instructions are actually the correct ones w.r.t. the program control flow. In case the pipeline
if filled with "wrong” instructions due to an execution of a jump instruction (called a pipeline
hazard), the pipeline needs to be stalled for several instruction cycles.

Such hazards may significantly degrade the code performance. In case of the Tl 'C6x,
for instance, any jump instruction incurs a delay of up to 5 cycles. Since in any cycle up to
8 instructions may be executed, the maximum performance penalty of a jump is equivalent
to 40 instructions. This can be avoided by usignditional instructions A conditional
instruction is denoted bly|/, where! is any regular machine instruction, ant a Boolean
"guard” (stored in a register) that evaluates to true or false at program runtime. Instriction
is executed only it: = true, and behaves like a no-operation, otherwise. Except for explicit
conditional jumps, conditional instructions have no effect on the program control flow and
thus do not cause pipeline hazards. On the other hand, using conditional instructions in

general leads to a larger competition of instructions for processor resources and thus may
lead tostructural hazargsvhich in turn may degrade performance. Therefore, conditional
instructions have to be used carefully.

From a compiler viewpoint, the presence of conditional instructions implies two alter-
native code generation schemes for ITE statements, one of which has to be selected so as
to maximize performance. § = (cond, By, Bg) denotes an ITE statement, wheted is
the condition, and3; and By, are the then and else blocks, respectively, then a "traditional”
implementation o5’ by conditional jumps looks as shown below.

c := evaluate(cond)
[c] goto then_label
B_E
goto join_label
then_label: B.T
join_label:

If ¢is true, then the execution time foris equal to the execution time fé#; plus one
jump penalty. Otherwise, if is false, then the execution time is the time e plus two
jump penalties. The worst case execution time is the maximum of both possibilities. When
using conditional instructions instead, the implementation scheme would be:

c := evaluate(cond)
[c] BT
[lc] B_E

Here, the blocks3r and By are guarded by their respective execution conditions and
are concatenated to a single "large” block. If the instructions in both blocks do not compete
for processor resources, then the execution time is equivalent to the time needed for the
largest of the two blocks and thus is guaranteed to be lower than for the conditional jump
scheme. On the other hand, concatenating two blocks with extensive resource utilization will
in general lead to lower performance than conditional jumps.

The best of these two ITE implementation schemes can only be chosen in each case, if
the execution times a8, and B are (approximately) known. B, and By arebasic blocks
(i.e. branch free), then this can be achieved by estimation techniques. However, #both
and By in turn comprise ITE statements, then the estimation gets difficult. In particular, for
nested ITE statements, also a mixture of the two implementation schemes may be required.

In case of a nested ITE statement, the implementations chosen for the inner ITE state-
ments, which determine their execution time, must be known when deciding the scheme for
the outer one. On the other hand, the execution time of inner statements also depends on the
implementation selected for the outer one. This cyclic dependence is due to the fact, that
translating a nested ITE statement into conditional instructions may require the insertion of
additional code preserving program correctness.

We solve this problem by means ofdgnamic programming algorithmA nested ITE
statement is considered as a binary tree, with left and right children of nodes correspond-
ing to then and else blocks. The algorithm makes two passes over the ITE tree. In the first
(bottom-up) pass, the execution times for program blocks within ITE statements are esti-
mated for four possible configurations. These four configurations result from the fact, that
any ITE statement may be implemented by conditional jumps or conditional instructions,

and for both schemes it may or may not be necessary to insert additional correctness pre-
serving code. The four estimated values are passed upwards in the ITE tree until the root is
reached. Then, the second (top-down) pass determines the implementation schemes based
on the estimations. For the tree root (i.e. the outermost ITE statement), obviously no addi-
tional code is required, so that only two of the possible configurations need to be compared,
and the minimum is selected. In turn, this selection generates the information, whether or
not the ITE statements inside the outermost one require additional code, so that again only
two possible configurations remain. This process is recursively continued down to the tree
leaves. Afterwards, the best (i.e. fastest) implementation schemes for all ITE statements have
been determined.

This algorithm is efficient, since its runtime is linear in the number of ITE statements.
We have performed an experimental evaluation, where the machine code generated by the
proposed algorithm was compared to the machine code generated by the Tl 'C6x ANSI C
compiler for different control-intensive source codes. In most cases, a reduction of the worst
case execution time (as much as 30 %) has been observed. The price for this acceleration is
an increase in code size (typically 25 %).

4. Exploiting multimedia instructions

The term "multimedia” implies that in applications one has to deal with different media data
types, such as 8-bit video or 16-bit audio data. Execution operations on such data on a pure
32-bit processor would imply a huge waste of resources. So-callétimedia instructions
enable a much more efficient use of resources. In terms of the C programming language,
any 32-bit register, for instance, may store one 32-bit "integer”, two 16-bit "short”, or four
8-bit "char” data. Likewise, a 32-bit functional unit (with appropriate hardware support)
may perform operations on two pairs of 16-bit arguments or four pairs of 8-bit arguments
at a time. As an example, fig. 2 illustrates the behavior of a Tl 'C6x machine instruction
performing two parallel 16-bit additions on two pairs of 16-bit "subregisters”.

16 bits 16 hits 16 bits 16 hits
T~
I I
| | |
16 bits 16 bits

Figure 2: TI C6x multimedia instruction "ADD2”

Such multimedia instructions may significantly accelerate computations on media data.
As an example, consider the vector addition source code in fig. 3. Executing the loop body
once with 32-bit instructions requires four loads, two additions, and two stores. In contrast,
when using the above "ADD2” instruction, the number of required instructions is halved.
This is possible, since the memory accesses refer to adjacent locations in memory, which
permits to load two 16-bit data simultaneously by a single 32-bit load instruction.

Traditional compiler techniques are inadequate for multimedia instructions due to a lim-
ited exploration of the search space during code generation. Most code generation techniques
are based on the paradigm of tree pattern matching with dynamic programming [7]. Thus,
their scope is restricted to code generation for expression trees, which are a standard form

void f(short* A,short* B,short* C)

{int i;
for (i =0;i<N;i+=2)
{ All = B[] + CIi];
A[i+1] = B[i+1] + CJ[i+1];
}
}

Figure 3: C source code for vector addition

for intermediate program representation. However, exploitation of multimedia instructions
requires to perform code generation for multiple expression trees at a time (e.g. two trees,
one per statement, in case of the code from fig. 3).

We propose to perform code generation on data flow graphs (DFGs) instead of trees.
DFGs are a generalized graphical representation of basic blocks. The DFGs are generated
by means of an ANSI C frontend. Any DFG is first decomposed into a set of expression
trees by cutting the DFG at its common subexpressions. Each toeeésedwith a mini-
mum number of machine instructions by means of tree pattern matching. For this purpose,
we use the olive code generator generator, a variant of which has been described in [7].
Instead of computing only a single optimal tree cover, we use a modified version of olive,
which generatealternative coversThese alternatives reflect the fact that some operation,
depending on the code generated for other trees, might be covered by a multimedia instruc-
tion. If, for instance, code is to be generated for an addition of two 16-bit variables, then both
a regular 32-bit add instruction as well as the above "ADD2” instruction would be identified
as alternative covers. However, using "ADDZ2" is only possible, if the DFG (possibly in a
different tree) contains a "partner” instruction, such that both instructions eventually can be
mapped to a single multimedia instruction.

Once all trees of a DFG have been covered, groups of instructions that can be imple-
mented by a single multimedia instruction are identified globally for the entire DFG. This
is possible, whenever there is no scheduling precedence between the group of instructions
considered, and when appropriate multimedia instructions are available. In case of instruc-
tions accessing memory data it must be additionally ensured that these instructions refer to
adjacent memory addresses.

We formulate the generation of multimedia instructions mathematically asteger
linear programmindILP) problem. This formulation contains binasplution variables
whose values account for the detailed selection of machine instructions for a DFG. The
restrictions on packing separate 32-bit instructions to multimedia instructions, such as avail-
able alternative covers and schedulability of instructions are encoded in the form of linear
constraint®n the solution variables. Finally, we specify @bjective functionn such a way,
that for a given set of alternative DFG covers that cover is selected which maximizes the use
of multimedia instructions.

For each DFG, the corresponding ILP is automatically generated and optimized by
means of a public domain ILP solver (§wlve from TU Eindhoven, available via ftp). Even
though ILP is an exponential problem, covering of DFGs with not more than approximately
100 nodes can typically be done within a few seconds of CPU time.

For experimental evaluation, we have implemented code generators for the Tl 'C6x and

the Philips Trimedia and compiled a set of DSP kernel routines into machine code for these
processors. As can be expected, the use of multimedia instructions resulted in a significantly
lower number of instructions needed to execute the DSP routines. This is no surprise, since
multimedia instructions are designed for this purpose. However, the most important feature
of the proposed code generation technique is that it allows for exploitation of multimedia
instructions also when compilinglain ANSI C source codeThat is, in contrast to other
compilers, it does not require hand-optimized assembly libraries or "compiler intrinsics”,
which results in much higher portability of C source code. This is reflected by the fact that
we compiledidenticalsets of C source codes to two different media processors.

5. Conclusions and recommendations

Currently, there is a trend towards software based implementation of embedded systems,
where a large part of the system functionality is realized by machine code running on pro-
grammable embedded processors. As both embedded applications and embedded processors
become more and more complex, high-level language compilers should be used for devel-
opment of embedded software. However, due to the lack of compilers capable of generating
efficient code, embedded processors are still mostly programmed in low-level assembly lan-
guages, resulting in a significant productivity bottleneck.

In order to overcome this problem, code optimization techniques beyond the scope of
classical compiler technology are required, which take the specific architectures of embed-
ded processors into account in order to improve code quality. In this paper, we have outlined
two new code optimization techniques for media processors, which exploit two specific ar-
chitectural features: conditional instructions and multimedia instructions. We expect that
these and similar optimizations will help to take the step from assembly level programming
of embedded processors to the use of compilers. Eventually, this will enable a more efficient
design of processor based embedded systems.

References

[1] V. Zivojnovic, J.M. Velarde, C. Sclalger, H. Meyr:DSPStone — A DSP-oriented Benchmarking
MethodologyInt. Conf. on Signal Processing Applications and Technology (ICSPAT), 1994

[2] P. Marwedel, G. Goossens (edsgode Generation for Embedded Processdtisiwer Aca-
demic Publishers, 1995

[3] R. Leupers:Retargetable Code Generation for Digital Signal Process#lsiwer Academic
Publishers, 1997

[4] A. Peleg, S. Wilkie, U. Weisertntel MMX for Multimedia PCsComm. of the ACM, vol. 40,
no. 1, 1997

[5] Texas Instruments: TMS320C62xx CPU and Instruction Set Reference Guide, URL
http://www.ti.com/sc/c6x, 1998

[6] Philips: URL http://www.trimedia.philips.com, 1998

[7] A.V. Aho, M. Ganapathi, S.W.K Tjiang€ode Generation Using Tree Matching and Dynamic
Programming ACM Trans. on Programming Languages and Systems 11, no. 4, 1989, pp. 491-
516

