
STAR-DUST: Hierarchical Test of Embedded Processors by

Self-Test Programs

Peter Marwedel1, Ulrich Bieker2, Martin Kaibel3, Walter Geisselhardt4

1 Dept. of Computer Science XII, University of Dortmund, marwedel@acm.org
2 PRO DV, Dortmund, 3 Siemens, M�unchen, 4 Dept. of Electr. Eng., University of Duisburg

Abstract: This paper describes the hierarchical test-
generation method STAR-DUST, using self-test pro-
gram generator RESTART, test pattern generator
DUST, fault simulator FAUST and SYNOPSYS logic
synthesis tools. RESTART aims at supporting self-
test of embedded processors. Its integration into the
STAR-DUST environment allows test program gen-
eration for realistic fault assumptions and provides,
for the �rst time, experimental data on the fault cov-
erage that can be obtained for full processor models.
Experimental data shows that fault masking is not a
problem even though the considered processor has to
perform result comparison and arithmetic operations
in the same ALU.

1 Structure of STAR-DUST

The tools and data formats currently used for STAR-
DUST are shown in �g. 1.

We start with an RT-level structural description of
the processor under test. Input formats currently
available for this purpose include VHDL or MI-
MOLA.

From this speci�cation, we have to obtain equivalent
gate level descriptions. For this purpose, we run the
SYNOPSYS logic synthesis tools for each of the RT-
level components. In �g. 1 it is assumed that a pro-
cessor SIMPLECPU consists of just four components:
register �le reg file, an ALU, an ALU multiplexer,
and a controller.

Next, we select a heuristic order for processing RT-
level components (in �gure 1, components drawn in
front are processed �rst). Respecting that order, we
do the following for each RT-level component:

� We use the DUisburg Sequential Test generator
DUST [GK91] for obtaining test pattern sets for
the current component (e.g. the register �le).
Test patterns produced by DUST have to be
translated into the test code language (TCL) ac-

Logic Synthesis

gate−level descriptions
(ISCAS format)

DUST
DUST

DUST

controller
alumux

alu

DUST

reg_file

controller
alumux

alu

reg_file

test patterns
(TCL format)

flattened
gate−
level
netlist

FAUST
FAUST

FAUST

RESTART
RESTART

RESTART
controller

alumux
alu

reg_file

segment of
self−test
program

RESTART

FAUST

test program
generation

fault
simulation

ATPG

SYNOPSYS

RT−level structural processor description
(in VHDL or MIMOLA)

*

*
*

*
*

1st
itera−
tion

4th
iteration

detected faults

Figure 1: STAR-DUST test generation process

cepted by the next tool.

� Self-test programs are synthesized using
RESTART. RESTART produces programs
justifying test patterns and evaluating test
responses.

Example: Consider a test pattern for an ALU.
Suppose control code \10\ activates the add op-
eration of the alu, and assume that binary val-
ues \0111\ and \0001\ have been selected as test
patterns by DUST. Then, a test for the add op-
eration is speci�ed in TCL by the following state-



RT- gates DFF's 
t's det untest f untest aborted fault eÆciency
component coverage
reg file 316 64 2256 2252 0 4 0 99.82% 100.00%
alu 70 0 436 436 0 0 0 100.00% 100.00%
alumux 13 0 76 76 0 0 0 100.00% 100.00%
controller 68 8 488 480 6 2 0 98.36% 100.00%
SIMPLECPU 467 72 3256 3244 6 6 0 99.63% 100.00%

Table 1: SIMPLECPU results

ment:
TEST alu(0111,0001,10);

The result should be 1000. RESTART generates
code, which activates the + operation and checks
the result by a conditional jump:

IF 0111 + 0001 = 1000

THEN increment program counter

ELSE jump to error label;

Details on the code generation technique can be
found in [BM95, Bie95].

� Programs generated by RESTART are then used
as initial stimuli for fault simulation at the gate-
level. This way, the coverage of the programs
produced by RESTART can be computed. Fault
simulation is based on the gate-level stuck-at
fault model. For fault simulation, we use FAUST
(FAult Simulation Tool), a very eÆcient single
pattern, single fault propagation method. Infor-
mation about covered faults is exploited in the
next cycle of the loop in order to reduce the size
of the required test pattern set.

The loop terminates if all RT-level components have
been considered.

2 Features of STAR-DUST

STAR-DUST meets a number of objectives:

� STAR-DUST is the �rst test generation pro-
cess computing the fault coverage which can be
achieved by self-test programs.

� STAR-DUST is a hierarchical test generation
process reducing the complexity of generating
test patterns for the entire processor to that of
generating test patterns for each of the compo-
nents. Test generation proceeds at a high level of
abstraction (using RESTART) while at the same
time preserving the high fault coverage through
gate level fault modelling.

� STAR-DUST reduces the length of the test pro-
gram by considering faults covered by tests gen-
erated for one component during subsequent
generation of test patterns.

� Fault simulation is e�ectively used for validating
the consistency of RT-level and gate-level mod-
els.

� Processor testability can be improved with addi-
tional redesign cycles.

3 Results for SIMPLECPU

The entire self-test program for SIMPLECPU consists
of 250 instructions. Table 1 gives information and
results concerning the example processor SIMPLECPU.

For every RT component and the entire processor,
table 1 shows the number of gates, the number of D-

ip-
ops, the number of stuck-at faults, the number
of detected faults, the number of untestable faults,
the number of functional untestable faults, the num-
ber of aborted faults, the fault coverage for the stuck-
at fault model, and the eÆciency.

References

[Bie95] U. Bieker. Retargetable compilation of self-
test programs using constraint logic pro-
gramming. in: P. Marwedel, G. Goossens
(ed.): Code Generation for Embedded Pro-
cessors, Kluwer Academic Publishers, 1995.

[BM95] U. Bieker and P. Marwedel. Retargetable
self-test program generation using constraint
logic programming. 32nd Design Automa-
tion Conference, 1995.

[GK91] N. Gouders and R. Kaibel. Advanced tech-
niques for sequential test generation. Proc.
ETC, pages 293{300, 1991.


