Function Inlining under Code Size Constraints
for Embedded Processors

Rainer Leupers, Peter Marwedel
University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany
email: leupers@Is12.cs.uni-dortmund.de

Abstract— Function inlining is a compiler optimization thatonly a limited set of "small” functions within an application may be
generally increases performance at the expense of larger code siaadidates for inlining.
However, current inlining techniques do not meet the special de- |njining of functions during compilation can be guided by the
mands in the design of embedded systems, since they are basegai via e>?p|icit "inline” kengrds ir? function defingi;tions inythe
simple heuristics, and they generate code of unpredictable size. |y§rce code (e.g. in C++ and, as a non-standard feature, in most
paper presents a novel approach to function inlining in C compileg\s| ¢ compilers). Many compilers are also capable of automatic
for embedded processors, which aims a maximum program speegiyRing where inlined functions are selected by a set of simple,
under a global limit on code size. The core of this approach iSgystly |ocal, heuristics [7, 8]. For instance, a function might be
branch-and-bound algorithm which allows to quickly explore thgjined, if its calling overhead appears to be larger than the time
large search space. In an application study we show how this alg@ege to execute the function body. In some compilers, e.g. in the
rithm can be applied to maximize the execution speed of an appligd-cex ANSI C compiler, additionally a maximum size threshold
tion under a given code size constraint. for inlined functions can be specified as a compiler option. How-
ever, all these ad hoc methods cannot guarantee that the set of se-
: lected inline functions actually lead to the maximum speedup in
1 Introductlon program execution time. Furthermore, these methods are not capa-
le of meetingcode size constraintavhich is particularly important

b
For embedded systems based on programmable processors, C ¢omsmpedded systems-on-a-chip with a limited amount of program
pilers play an important role in the system design process. Wh mory.

assembly-level programming of embedded processors has been . o
common for quite some time, using C compilers for programming | "€ technique proposed in this paper represents a more sys-
embedded processors gains more and more acceptance. Comgfrgtic way of performing function inlining in the context of em-
permit shorter design cycles, higher productivity and dependalfidded system design. Itis based on the assumption that when com-
ity, and better opportiities for reuse than assembly programmind?"'”g an appllcatlon C source code titut any inlining, Fhe result-
However, code generated by compilers usually implies an overhd@@ Mmachine code does not completely occupy the available program
in code size and performance as compared to hand-written asserfIfij10ry; but that the remaining program memory space can be ex-
code. While this overhead is acceptable in general-purpose comfiifited o speed up the machine program. Given a C source code
ing, the demands on compilers are different for embedded systeR{&h @ total ofM functions, includingV functions,V. < M, which
In order to minimize the overhead of compiler-generated code, cofi€ candidates for inlining, our goalis to determine which subset of
pilers for embedded processors have to pay higher attention to ¢ N (_:andldate functions must l_)e Inl_lned, such that the resulting
optimization rather than high compilation speed. As a consequerfc@de Size does not exceed the given limit and that the performance
a number of code optimization techniques for embedded processgfgease 1S maximized. Since the number of possible solutions is
have been developed. Most of these are low-level optimizatio@s,f a brute-force exhaustive search is clearly infeasible, except for
which exploit detailed knowledge about the processor architectf@all values ofV.
for optimizing machine code. Examples are techniques for code se- The core of our technique, therefore, is a branch-and-bound
lection, register allocation, and scheduling [1, 2, 3], memory acceg& & B) algorithm which allows to explore the solution space in
optimization [4], and optimization of address computations [5, 6].comparatively short time. This algorithm selects the subset of in-
Complementary to these techniques, in this paper we presefihad functions while exactly minimizing the number d§namic
largely machine-independent source-level code optimization, whiftimction calls (i.e., calls executed at program runtime) under a given
employsfunction inliningto achieve higher performance. Funceode size constraint. Its main idea is that minimizing the number
tion inlining is a well-known technique used in many compilers foof dynamic calls approximately also minimizes the execution time.
general-purpose processors. The main idea is to replace calls tdoavever, in general, this is not exactly true, since inlining may also
function by copies of the function body. In this way, the function i;crease the number of resource conflicts. Therefore, a larger code
turned into a C-level macro. size limit is not guararanteed to result in higher performance. In
Since the overhead associated with function calls (paranwder to take into account the negative effects of inlining on perfor-
ter passing, call and return instructions, instruction pipeline stalleance, we embed the B & B algorithm into iterval searclover
saving and restoring register contents) is reduced, function inlinidgferent permissible code size limits. The lower interval bound is
tends to increase performance. However, inlining generally also the initial code size witout any inlining, while the upper bound re-
creases code size. Therefore, in order to avoid a code size explosii@tts a givermaximumcode size limit. For each limit within the

ruplicaton. ICCAD 99, 5anJOSE(USA), NOV LIJ94 (OlEEE £

interval, using a certain search granularity, the B & B algorithm is
applied, and simulation is used to determine the exact performangryorithm MIN_IV
Finally, the best solution is emitted, which meets the maximum co il _ N.
size limit at the highest performance. Further details will be giveﬁfpm' _m.“r!e vector/V/ " (b1, - ’JeN) €{0, 1,2}
in section 3. output: inline vector/V”’ € {0, 1};
The structure of the paper is as follows. In the next sectioR€9iN _ A
we describe the B & B algorithm used for minimizing the number if V' contains no &” bits then
of dynamic function calls. Section 3 shows how this algorithm, in i S(/V') < L and D(IV') < D, then
combination with the interval search over code size limits, is used Dpin :=D(IV);
to minimize the execution time for an application. This is demon- end if
strated for a DSP application. Our experimental results indicate that return IV;
performing function inlining in a systematic way can lead to a sig- end if
nificant performance increase at a moderate growth in code size. ; := first index in/V for whichb; = z:

if S((bl,...,bi_l,l,O,...,O)) > L then

inimi i i return MIN_IV((b1,...,6,21,0,2,...,2));
2 Minimization of function calls elseifD((br. b 01 1) D then
For a given application C source code with functions, our tech- return MIN_IV((by, ..., bi—1, 1,2, ., x));
nigue requires the following input data. else
e The subse{fi,..., fx}, N < M, of functions which are gvo,'__g“['\lv‘l\(((bl’ b, O)
candidates for inlining. Recursive functions and functions 0= (IVo);)
within a call cycle have to be excluded from inlining inorderto V1 = MINLIV((by, ... b1, 1z, ., 2));
avoid infinite loops. Also top-level functions, i.e., the "main” Dl = D(IV1);
function or functions not called anywhere in the source code if Dy < Dy then
cannot be candidates for inlining. return V5,
e Thebasic code sizeB(fi) for each functiony;. These values else
are determined by compiling the source code oncleauit any return 1Vo;
inlining. end if
end if

e The numberD(;) of dynamic callsto each functionf; for)
a typical set of input data. This information is obtained b@nd algorithm
profiling.

e For each pair of functions$f;, f;) the numberC(f;, f;) of
static callsfrom function f; to functionf;, i.e., the number of
occurrences of calls tf; in the source code of..

¢ A code size limit L, which is assumed to be larger than the

Figure 1:Branch-and-bound algorithm

sum of the basic size valuéy f;) over all functionsf;. For a given/V, the total code siz&(/V") can be computed as
We represent the set of inlined functions as a bit veftor= ©lIOWS:
(b1,...,bn), hereafter called thnline vector For any function M
fi, avalue ofb; = 1 (b; = 0) denotes that functiorf; is (not) S(IV) = Z Si(1V)
selected for inlining. Under the code size constrdintve would i=1
like to minimize the numbep of total dynamic functions calls in
order to (approximately) minimize the execution time. Since inlined S:{(IV)=B(fi) + C(fi, £;) - S;(IV)
functions are never called, this value is, for a given inline veEtor
defined by fisbs=1
D(IV) = Z D(f:) The recursion in the definition o; (77) terminates at thkeaf
Fi:b;=0 functionswhich do not contain any function calls. Note that the code
Trivially, the theoretical minimum value db is obtained, if all can- SiZ€ cOmputed in this way is not exact but represents an estimation,
didate functions are inlined, i.el}’ = (1, ..., 1). However, such Since the detailed effects of function inlining on code size are only

a solution is unlikely to meet the code size limit in practical casg€10wn after code generation.
Therefore, among all™¥ possible inline vectors, we have to identify Given the definitions oD (V') andS(/V'), we use a branch-
that one which minimize®) such that the total code size does nond-bound search to efficiently compute the optimum inline vector
exceed.. meeting the constrainf(/V) < L at a minimumD value. We

In order to compute the total code size for a given inline vectditart with an initial vectod V' = (&, ..., x), whereb; = » denotes
it is important to consider the mutual dependence of function coti#t the inlining of functionf; is not yet decided. Then, far =
size values. Consider a functighwith ¢ = C(f;, f,) static calls 1,..., N, all bitsb; in IV are determined one after another. The B
to functionf;. If £, is inlined, then the resulting size ¢f, initially ~ & B algorithm, whose pseudo code is shown in fig. 1, is based on
given by its basic sizé(f:), grows byc times the size off;. In the following problem analysis.
turn, the size off;, which might call another functioffi. that again LetIV = (b1,...,bi—1,x,...,x) be the current inline vec-
may or may not be inlined, obviously dependsidn. Therefore, tor, where the values @fi, ..., b;—1 have already been fixed. Next,
the decision to inline a certain function may have a global effect eve would like to determiné;, i.e., the leftmost #” bitin 7V. Let
the overall code size. This will be exemplified in the applicatiomariable D..i» denote the minimum number of dynamic function
study in section 3. calls found so far, such that the corresponding solution meets the

rupilicaton. ICCALD JI, o5anJose(UoA), NOV 1994 (O lEEE o

code size constrairft(/V') < L. Initially, Dnin is setto are relatively small and are frequently called from other functions.
Therefore, the basic functions were the natural candidates for func-
M tion inlining. As a target processor, we have used the Tl 'C6x, a
Duin = Z D(f:) VLIW DSP with 8 functional units, together with TI's correspond-
i=1 ing ANSI C compiler and instruction set simulator.

application C source code
number of

_ Static calls

which is equal to the number of dynamic function calls without an
inlining. Now, four different cases may occur:

1. If there is no further £” bitin 7V, then we compute the total
code sizeS(IV') and the number of function call3(/V") for
the solution represented By . If S(I1V') < LandD(IV) <
Dhin, then a new valid minimum has been found, and we set
Dimin 1= D(IV).

2. Otherwise, ifb; = x, we check whether functiofi; can be
inlined without violating the code size limit by temporarily
settingb; = 1. A lower bound on total code size foy = 1 is
givenif, fory =¢+41,..., N, allremaining " values in/V'
are set to zero, i.e., no further function is inlined. The corre-
sponding inline vector gV, = (b1,...,b;—1,1,0,...,0). If
S(IVi) > L, theninlining f; cannot result in a valid solution,
independent ofb;41, ..., bx). Thus, the corresponding part
of the search space can be cut off without loss of ogitgnay
settingb; = 0. Note that the tes§(/V1) > L also ensures
that any invocation of algorithm MN_IV can only return a Figure 2: Methodology overview

valid solution. An overview of our methodology is shown in fig. 2. The first
3. If b = 1 could not be excluded, then we check whether &ep was to use a simple source code analysis tool in order to de-

new minimumD value would be possible if; werenotin- termine the number of static cali f:, f;) from f; to f; for each

lined. This can be determined by temporarily setng= 0 pair of functions. Next, we compiled the source code without func-

and, for; = i+ 1,..., N, setting all remaining £” val- tion inlining in order to determine the basic code sigf;) for all

ues in/V to one. The corresponding inline vector/i8o = functionsy;. Finally, we performed profiling on a given set of input

(b1,...,bi-1,0,1,...,1). Then, the valud)(IVs) provides speech data in order to obtain the number of dynamic éx{ig) for

a lower bound on the number of dynamic calls/}{/Vs) > all functionsf;. Without inlining, we obtained a total code size of

Dmin, then not inlining f; cannot improve the best solutiong7,820 bytes. The initial number of execution cycles as determined

found so far, and the case= 0 can be cut off from the search py simulation was 27,400,547.

space. In this casg; is setto one and the search continues for' g -t e analyzed, whether inlining of some of the 26

the next undecided bfii4, in IV, basic functions under a code size limit would result in higher per-
4. Inthe worst case, pruning the search space by computing lovisinance. We have arbitrarily allowed for a maximum code size
bounds is not possible, so that both alternatives= 0 and increase of 50 % as compared to the initial size, and we used the
b; = 1 have to be evaluated in detail. First, we ty= 0 B & B algorithm to explore the vast search spacedt possible
and recursively compute the corresponding minimum numbsslutions. As mentioned earlier, the B & B algorithm minimizes the
of dynamic function callsD,. Let I'V; be the resulting inline number of dynamic function calls, but this does not necessarily also
vector. Nextpb; is setto 1, and the corresponding minimurmminimize the number of execution cycles. This means that, in prin-
number of function calld), is recursively computed togetherciple, all code size limits within the interval 100 % (the initial code
with the resulting inline vectofVi. If Dy < Do thenb; =1 size)to 150 % have to be considered to find the actual optimum w.r.t.
is the best solution and is also guaranteed to be valid w.r.t. therformance. Since this obviously cannot be accomplished within
code size limitZ, due to the test performed in step 2. Othetreasonable time, we have performed an evaluation for the interval
wise, we need to sét = 0. Depending on the setting 6f, between 100 % and 150 % in steps of 5 %. For each code size limit,
either/V;, or I'V; are returned as the optimal inline vector. we ran the B & B algorithm in order to determine the optimum set
m inlined functions. Then, the C source code was modified accord-
ly by tagging the selected functions with an "inline” keyword,

code size _ - =(branch-and-bound
of functions _ _ - -~ 7 -7 algorithm

functions to
be inlined

modify and recompile
source code

executable
code

absolute limit
not reached ?

number of
execution
cycles

specify absolute
code size limit

absolute limit
reached ?

emit best
solution

The worst case complexity of this branch-and-bound algorith 9
is exponential inV. However, in many cases pruning the searc 2 L St ; .
space in steps 2 and 3 is possible. This permits to optimize functit reby enforcing inlining of those functions by the compiler, and

inlining also for relatively large values d¥. This will be demon- € source code was re-complled f”md simulated. i .
strated in the next section. Our results are summarized in table 1. The first column gives

the code size limit in percent relative to the initial solutionheitit

inlining. The second and third columns show the absolute and rel-
3 Minimization of execution time ative number of dynamic function calls, respectively, which mono-

tonically decrease with the increasing code size limit. Columns 4
In order to evaluate the proposed technique, we have performedefl 5 show the code size as estimated by functibh”) and the
application study for a complex DSP application from the area Egal code size, while column 6 gives the estimation error. As can
mobile telephony: a GSM speech and channel encoder. This Bg-Seen, the estimation is highly accurate, with a maximum error of
plication is specified by 7,140 lines of C code, comprising 126 dif %. More important, in no case did the real code size exceed the
ferent functions. Out of these, 26 functions are dedicated "basRstimated size.
functions for certain arithmetic operations. These basic functions Columns 7 and 8 account for the absolute and relative num-

ruplicaton. ICCAD 99, 5anJOSE(USA), NOV LIJ94 (OlEEE 4

size limit (%) | calls (absolute) calls (%) | est. size| real size| error (%) | cycles (absolute) cycles (%)| CPU
100 10,292,056 100 -| 67,820 - 27,400,547 100 -
105 7,618,479 74| 71,200| 70,284 1 24,095,022 88 62
110 5,893,530 57| 74,536| 72,876 2 19,560,628 71| 117
115 4,984,329 48 | 77,976| 77,796 1 20,190,858 74| 186
120 4,403,360 43| 81,372| 80,772 1 20,518,980 75| 348
125 3,892,613 38| 84,768| 82,636 3 18,235,114 67| 351
130 3,427,558 33| 88,148| 87,908 1 18,527,926 68| 521
135 2,414,683 23| 91,544| 89,796 2 18,416,065 67| 696
140 2,385,409 23| 93,812| 91,940 2 18,750,981 68| 933
145 1,872,297 18 | 98,320 97,956 1 18,796,095 69 | 1138
150 1,797,790 17 | 101,716| 100,484 1 19,136,175 70 | 1202

Table 1:Experimental results for GSM encoder application on a Tl 'C6x

size limit (%) | inline vector (functions 1-26) motivates the use of the proposed B & B algorithm instead of a
100 00000000000000000000000000 possible faster, but less effective, local optimization approach.
105 00100000001100001110111111
110 10111001011100001111111111 .
115 10110000000001001000111001 4 Conclusions
120 10110100101000100110111101 .

C compilers should be used for software development for embed-

125 10110000001010000100111101 ded processors in order to replace assembly language programming.
130 00110000000010100100111000 However, compilers will only gain acceptance if they take into ac-
135 10110010001110101110111101 countthe special demands in the design of embedded systems, such
140 101110111111101011111112111 as very high code quality and limited code size. This requires spe-
145 10110110101010100110111101 cial code optimization techniques for embedded processors. In this
150 10110110000010110110111101 paper we have described a new technique for optimized function in-

lining which, in contrastto techniques used in compilers for general-

purpose processors, is capable of maximizing performance while
meeting a global code size constraint. In our application study, the
net effect was a performance increase of 33 % at an increase in

ber of instruction cycles as determined by simulation. Although ti@de size of 25 %. Naturally, the detailed results depend on the
number of function calls decrease with an increased code size lirdiPlication and the target processor. However, our results indicate
this does not exactly also hold for the number of execution cycldgat high-level code optimizations like function inlining should def-
For a limit of 150 %, the execution time is reduced to 70 % of thigitely be considered equally important to complementary optimiza-
original value, but the absolute minimum (67 %, marked line in t4lon techniques working at the assembly code level.

ble 1) is achieved for a limit of only 125 %. Beyond this value,

the negative effects of function inlining due to a larger amount (Efg

resource conflicts become predominant. As a consequence, a” BferenceS

uration” takes place, where an increase in code size does not le .) i .)
: ' - : . : 1] C.Liem, T. May, P. Paulintnstruction-Set Matching and Selection for
to higher performance. Still, the execution timeybed a code size ?(1 DSP and ASIF)’/Code Generatidguropean Desigr? and Test Confer-

of 125 % does not deviate much from the optimum, so that the B opce (ED & TC), 1994, pp. 31-37
&B ?"go”thm could a_llso be ulse_d as alftand;]alone opftlmlzatlon tEZ] G. Araujo, S. Malik: Optimal Code Generation for Embedded Mem-
obtain a close-to-optimum solution without the need for repeated™ gy Non-Homogeneous Register Architectygsh Int. Symp. on Sys-
S|mula.t|on. _ _ tem Synthesis (ISSS).995, pp. 36-41

Finally, column 9 gives the CPU seconds needed for executing) s Liao, S. Devadas, K. Keutzer, S. Tjiarlgstruction Selection Using
the B & B algorithm on a SUN Ultra-1 workstation. The runtime Binate Covering for Code Size Optimizatjént. Conf. on Computer-
grows with the code size limit, since a less tight limit removes op- Aided Design (ICCAD), 1995, pp. 393-399
portunities for pruning the search space at an early point of timg4] A. Sudarsanam, S. MalikMemory Bank and Register Allocation in
For the maximum limit of 150 %, the required CPU time was about Software Synthesis for ASIAst. Conf. on Computer-Aided Design
20 minutes. This appears to be high, but the actual bottleneck in our (ICCAD), 1995, pp. 388-392
application study was the time required by the TI 'C6x simulator,[5] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wan§torage As-
which ranged between one and two hours in each case. signmentto Decrease Code Si2€M SIIGPLAN Conference on Pro-

Besides these resullts, it is also interesting to take a look at th[%] gramemg Llinﬁ/l“age Esj;gn izd I";p irzzntatlcr (PLDY), 1?,95DSP
inline vectors computed by the B & B algorithm as shown in table - Leupers, . Marwedeslgorithms for Address Assignment in
2. The detailed bit values are less important, but it can be observed fggg Generatigrint. Conf. on Computer-Aided Design (ICCAD),
that the inline vectors tend to change at many bit positions fro . . .)
step to step. This means that among the set of candidate functighg Sésn' gﬂ?;gﬁfg&’a?scﬁgscafgg'?'ef Design & Implementatjdvior-
there are hardly functions for which inlining pays off independent g M . Buildi ' _ iler B h
of the code size, but that the optimum set of inlined functions ard®] Hoi organ: Building an Optimizing Compiler Butterworth-

- A . - einemann, 1998

globally influenced by the concrete code size limit. This observation

Table 2:Inline vectors computed by B & B algorithm

