
Array Index Allocation under Register Constraints
in DSP Programs

Anupam Basu�

I.I.T. Kharagpur
India

Dept. of Computer Science & Engineering
email: basu@ls12.cs.uni-dortmund.de

Rainer Leupers, Peter Marwedely

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupersjmarwedel@ls12.cs.uni-dortmund.de

Abstract{ Code optimization for digital signal pro-
cessors (DSPs) has been identi�ed as an important new
topic in system-level design of embedded systems. Both
DSP processors and algorithms show special character-
istics usually not found in general-purpose computing.
Since real-time constraints imposed on DSP algorithms
demand for very high quality machine code, high-level
language compilers for DSPs should take these charac-
teristics into account. One important characteristic of
DSP algorithms is the iterative pattern of references to
array elements within loops. DSPs support e�cient ad-
dress computations for such array accesses by means of
dedicated address generation units (AGUs). In this pa-
per, we present a heuristic code optimization technique
which, given an AGU with a �xed number of address
registers, minimizes the number of instructions needed
for address computations in loops.1

1 Introduction

Heterogeneous hardware/software systems are �nding
increasing use as embedded systems in industrial ap-
plications. Though software forms a principal compo-
nent in such systems, software development is still a
bottleneck [1]. Instead of the high compilation speed
requirement, as for general-purpose compilers, software
generation for embedded systems must attend to better
code quality, in terms of code size and execution speed.
Digital signal processors (DSPs) form a special class of
embedded processors, which show highly specialized in-
struction sets and pose challenges both to compilers and
assembly programmers. Many of today's C compilers for
DSPs have been shown to produce code of poor qual-
ity [2]. In order to overcome this problem, a number of
research e�orts have been launched, aiming at develop-
ment of new DSP-speci�c code optimization techniques
[3].

�The author acknowledges the support of the Humboldt Foun-
dation for this research

yThe authors acknowledge the support by HP EEsof
1Publication: 12th Int. Conf. on VLSI Design, Goa (India),

Jan 1999, c
IEEE

In DSP algorithms frequent references to elements
of data arrays are very common. Mostly, such array
elements are iteratively accessed in loops. DSPs sup-
port this scheme by dedicated address generation units
(AGUs), which are capable of performing pointer arith-
metic in parallel to the operation of the central data
path. Careful allocation of array address pointers in a
DSP source program to available on-chip address reg-
isters thus can enhance code quality. The purpose of
this paper is to give a formulation of this register al-
location problem and to present a heuristic algorithm
which, under given register constraints, minimizes the
number of machine instructions for array address com-
putations. The paper is organized as follows. In the
next section we de�ne the problem. In Section 3, we
summarize related works. The proposed approach and
algorithms are described in the next two sections, fol-
lowed by performance evaluation and conclusion.

2 Problem de�nition

Typical DSP algorithms, such as digital �lters, demon-
strate that the address distance of subsequently ac-
cessed array elements are bounded by a small constant.
Moreover, the array index expressions are simple and
the loop control variable shows a small constant step
width between iterations. Accordingly, the address gen-
eration units in DSPs, such as DSP56K (Motorola)
and TMS320C2X/5X (Texas Instruments) o�er post-
increment or post-decrement operations on address reg-
isters. These operators increment or decrement the con-
tent of a register R (serving as the pointer to an array
element) by some constant integer d. Thus, if the two
array elements A[i] and A[i+ d] are to be accessed con-
secutively by the same address register R, then the post-
increment operator R + d applied after accessing A[i],
will yield the necessary next address.

In such architectures, the range of post-incre-
ment/decrement is restricted to a maximum range M ,
for e�cient address computation. Within this range, the
address update operations can be done exclusively by
the address generation unit (AGU) in parallel to data

path operations. We call such address computations
zero cost address computations. However, for a larger
range of modi�cations of the address registers, an ex-
tra instruction word is necessary in the machine code,
since the encoding of d values larger than M cannot be
accommodated within the same instruction word. This
implies an additional instruction cycle in the machine
program, as this address computation cannot be paral-
lelized. Thus, whenever two consecutive data accesses
take place through the same register R and the address
distance d > M , then one additional computation is
required. We call this overhead unit reload cost.

Given a sequence of array references and a set of
available address registers, one of the goals of a code
generator should be to minimize the total reload cost. A
trivial case is of course to have as many address registers
as there are array references. In that case, there would
obviously be zero reload cost. However, in view of the
limited address registers available and a distribution of
array references, the problem is nontrivial.
Example: Let us consider an example array reference
pattern to illustrate the problem. We shall be referring
to this example repeatedly throughout the paper.

for (i = 2; i <= N; i++)

{ /* a_1 */ A[i+1] /* offset 1 */

/* a_2 */ A[i] /* offset 0 */

/* a_3 */ A[i+2] /* offset 2 */

/* a_4 */ A[i-1] /* offset -1 */

/* a_5 */ A[i+1] /* offset 1 */

/* a_6 */ A[i] /* offset 0 */

/* a_7 */ A[i-2] /* offset -2 */}

It is convenient to plot the access pattern on a grid-
structure, where the rows indicate the control steps and
the columns denote the o�sets. In Fig.1 the X symbol
shows the accesses on the grid. Let us assume that the
value of M = 1, that is there are only auto-increment
and auto-decrement operations available on the address
registers. Let us assume further that there are only two
address registers available for accessing the array ele-
ments. Two clusters A and B are shown in Fig. 1(a),
each cluster representing one register using which the
array elements within a cluster are referenced. Note
that for each consecutive access in the cluster, the o�-
set di�erence is one, and hence can be dealt with us-
ing the auto-increment/auto-decrement facilities only.
However, as shown in Fig. 1(b), if the clusters were
formed di�erently, then in order to access the reference
in control step 7, it would be necessary to reload the
address register, supporting cluster A, with the new
address value (shown by the arrow). Thus, while the
�rst clustering does not introduce any reload overhead,
in that iteration, the second clustering introduces unit
reload cost. In the upper part of Fig. 1(a), we show
the inter-iteration situation (control steps 7 and 8). As
may be noted, the reference at control step 1 (o�set 1)
will be re-accessed at control step 8 (the �rst control
step of the next iteration) and the o�set value will be 2
instead of 1, because of the iteration step width. Since

1

2

3

4

5

6

7

9

8

-1-3 2 3 4-2 0 1

A

B

X

X

X

X

X

X

X

X

A

B

1

2

3

4

5

6

7

9

8

-1-3 2 3 4-2 0 1

offsets

st
ep

co
nt

ro
l

X

X

X

X

X

X

X

X

X

(a)

(b)

Figure 1: A grid model to illustrate reloads

the reference at control step 1 and 8 must take place
by the same register2, an inter-iteration reload cost is
introduced (shown by the arrow), though there were no
intra-iteration reloads necessary for the same clustering.

Let us denote an array reference pj as a pair
(ofj ; csj), where ofj denotes the o�set of the reference
and csj denotes the control step in which the reference
is made.
Let Ck =fpkg denote a cluster, that is an address reg-
ister, using which the references pk are addressed.
De�nition 1: If within a cluster Ck, two consecutive
array references pk1 and pk2 have jofk2 � ofk1j > M ,
then a unit reload cost is introduced.

De�nition 2: (inter-iteration reload cost) Let the
�rst reference p1 and the last reference pn in a particular
iteration, in a cluster Ck be such that jof1+step�ofnj >
M , where step denotes the inter-iteration step value,
then a unit inter-iteration reload cost is introduced.
This is obvious, since in the next iteration, the refer-
ence p1 should be addressed by the same address regis-
ter speci�ed for cluster Ck.

De�nition 3: (total reload cost (TC)) The total
reload cost introduced by clustering the references into

2Note that this constraint could be eliminated by applying loop
unrolling which, however, tends to increase the code size.

address registers is denoted by TC =
Pm

i=1(rci + irci),
where m is the total number of clusters and rci and irci
denote the total reload cost and the total inter-iteration
reload cost introduced in a cluster Ci.

The problem of address register allocation can now
be stated as follows:

Given: a set of address registers A = faij1 < i < mg
and a pattern of array references P = fpjj1 < j < ng,
where each pj is an ordered pair (ofj ; csj), ofj denoting
the index of an array referred at control step csj .

Required: an allocation of all elements of P to the
elements of A, so that the total reload cost (TC) is min-
imized.

Before presenting our approach to solve the problem, we
brie
y discuss other works related to this problem area.

3 Related works

Several researchers have investigated DSP-speci�c opti-
mization techniques for address computation for scalar
program variables [4, 5, 6, 7]. These approaches are
based on permutation of variables within available sec-
tions of memory. Hence, these techniques cannot be di-
rectly applied to arrays. More recently, addressing opti-
mization techniques related to array accesses have been
considered. In [8], a C source-to-source transformation
is described, which minimizes number of required array
pointers. In a contribution by members of the SPAM
project [9] an address register allocation algorithm for
loops has been given, which makes use of a graph-based
problem formulation. It was shown that this formulation
enables the use of an optimalmatching-based path cover-
ing algorithm [10] for register allocation. However, this
approach neglects both register constraints and inter-
iteration reload cost. The approach by Gebotys [11] ac-
cepts register constraints but it is also limited to a single
loop iteration. Exploiting the results of [9] as a lower
bound, and a heuristic algorithm for upper bound, an
optimal branch and bound algorithm has been presented
to �nd the minimumnumber of registers required to en-
sure zero reload cost solution [12]. However, in this work
register constraints are not taken into account, and con-
sequently, the minimum number of registers for a zero
reload cost solution might exceed the number of avail-
able registers. In this case the allocated registers have
to be taken as "virtual" registers which still have to be
mapped to a smaller number of physical registers.

4 Array access optimization

Now we address ourselves to the issue of optimization of
array accesses in loops given a constrained set of address
registers. We approach the solution in two passes. In
the �rst pass we arrive at a quick estimate of the upper
bound of the number of address registers required to en-
sure zero reload cost. If the number of registers, thus

p6
 A[i]

p1

p2

p3

p7

p4
p5

A[i+1]

A[i]

A[i+2]

A[i-1]
A[i+1]

A[i-2]

Figure 2: Distance graph for the example loop

obtained exceeds the given constraint on the set of avail-
able registers, we adopt the second pass, where we at-
tempt to merge the accesses allocated to some of the reg-
isters with others. Such mergings may introduce reload
costs, and hence the objective of the merging should be
to minimize the incremental TC.

4.1 Arriving at an upper bound

In order to arrive at a tight upper bound of the number
of registers required to ensure zero reload cost we model
the problem as an Iteration Distance Graph. In order
to present this concept, a review of some background
seems to be in order. We �rst present the notion of a
distance graph.
De�nition: Let (a1; : : : ; an) be a sequence of array ref-
erences in a loop. For all ai; aj, with 1 � i < j � n, the
intra-iteration distance �(ai; aj) := f(aj) � f(ai) is
the (constant) o�set di�erence between ai and aj in a
�xed loop iteration. Let S be the loop step-width. The
inter-iteration distance �0(ai; aj) := ��(ai; aj)+S is
the (constant) o�set di�erence between aj in the current
loop iteration and ai in the following iteration.

Let M denote the maximum modify range. The
distance graph G = (V;E) is a directed acyclic graph
(DAG) with V = fa1; : : : ; ang. The edge set E contains
all edges e = (ai; aj) with 1 � i < j � n and j�(ai; aj)j �
M .

An edge e = (ai; aj) is present in E, if using the same
address register for both ai and aj allows for generating
the address for aj from the address for ai with a zero-
cost address computation. Fig. 2 shows the distance
graph for our above example loop and M = 1.

According to the de�nition of the distance graph
G = (V;E), any subsequence (ak1 ; : : : ; akm) of an ar-
ray reference sequence (a1; : : : ; an) can be implemented
by zero-cost address computations, only if for all ki 2
f1; : : : ;m � 1g the edge e = (aki ; akj) is present in E.
That is, there must exist a path P = (ak1 ; : : : ; akm) in G.
However, since the address of reference ak1 for the next
loop iterationmust be computed from the address of akm
in the current iteration, it must be also ensured that the

di�erence between those two addresses does not exceed
the maximum modify range M . Otherwise, a unit-cost
address computation would be required. Thus, if the ob-
jective is to minimize the number of registers required
for a zero cost solution, it could be obtained by �nding
a minimum path cover of the distance graph G, i.e., a
minimum number K of node-disjoint paths P1; : : : ; PK
in G, such that all nodes in V are touched by exactly
one path, and for each path Pk = (ak1 ; : : : ; akm) it holds
that j�0(ak1 ; akm)j �M .

In [9] it has been proposed to apply a matching-
based algorithm developed in the area of graph theory
[10] to address register allocation. This algorithm com-
putes a minimumpath cover of the distance graph, how-
ever without considering post-modify operations across
loop iteration boundaries. That is, in our terms, the
constructed paths Pk = (ak1 ; : : : ; akm) do not necessar-
ily satisfy j�0(ak1 ; akm)j � M . As a consequence, unit-
cost address computations can be incurred, unless the
computed cover by coincidence represents a zero-cost
solution.

However, if each path Pk = (ak1 ; : : : ; akm) must
satisfy j�0(ak1 ; akm)j � M , then we must reformulate
the model by including inter-iteration distances in the
distance graph model, yielding the proposed Iteration
Distance Graph de�ned below.
De�nition:

Let G = (V;E) with V = fa1; : : : ; ang be the dis-
tance graph of a loop. The iteration distance graph
is a DAG G0 = (V 0; E0) with V 0 = V [fa0

1; : : : ; a
0

ng,
where each node a0

i 62 V represents the array reference
ai in the following loop iteration, and

E0 = E[f(aj; a
0

i) j 1 � i � j � n^j�0(ai; aj)j � Mg:

Presence of an edge e = (aj ; a0

i) inE
0 indicates, that

if the references ai and aj share an address register R,
then the address computation on R between loop itera-
tions can be implemented at zero cost. Thus, computing
a zero-cost solution with a minimumnumber of address
registers is equivalent to covering all nodes fa1; : : : ; ang
in the iteration distance graph by a minimum number
of node-disjoint paths P1; : : : ; PK, such that if a path
Pk starts in node ai it must end in node a0

i. The iter-
ation distance graph for the example problem is shown
in Fig.3.

As a special case, this problem comprises the de-
cision whether a DAG can be covered by two node-
disjoint paths with given start and end nodes. Since
this problem is NP-complete [13] the address register al-
location problem is most likely of exponential complex-
ity. However, it is possible to compute a (potentially
suboptimal) solution e�ciently, if address registers are
allocated greedily based on the following longest path
based heuristic.

1. Given a distance graph G = (V;E), construct the
extended distance graph G0 = (V 0; E0) with V =
fa1; : : : ; ang[fa

0

1; : : : ; a
0

ng, and assign a unit weight
to each edge e 2 E0.

p6
 A[i]

p1

p2

p3

p7

p4
p5

A[i+1]

A[i]

A[i+2]

A[i-1]
A[i+1]

A[i-2]

p’1
p’2

p’3

p’7

p’4

p’5

p’6

Figure 3: Iteration Distance Graph

2. Let ai be the source node in fa1; : : : ; ang � V 0

with minimum index, i.e., there is no node aj with
(aj ; ai) 2 E0 and j < i. Compute the longest path
P = (ai; ak1; : : : ; akm ; a

0

i) in G0 between ai and a0

i.
If P does not exist then stop, because no zero-cost
solution is possible.

3. Allocate a new address register for the array refer-
ences represented by the nodes fai; ak1; : : : ; akmg in
path P . Remove these nodes as well as the nodes
fa0

i; a
0

k1
; : : : ; a0

km
g from G0, and remove all their in-

cident edges.

4. If G0 is not empty goto step 2, else stop and return
the number r of allocated registers.

Below we show a longest path solution to the ex-
ample problem. This solution results in three registers
addressing the following references. None of the regis-
ters require any inter-iteration or intra-iteration reloads.
R1 : a1; a3; a5; a0

1;
R2 : a2; a4; a6; a

0

2;
R3 : a7; a0

7

Thus the references would be

R1 = &A[3]

R2 = &A[2]

R3 = &A[0]

for (i = 2; i <= N; i++)

{ /* a_1 */ *R1 ++

/* a_2 */ *R2 --

/* a_3 */ *R1 --

/* a_4 */ *R2 ++

/* a_5 */ *R1 ++

/* a_6 */ *R2 ++

/* a_7 */ *R3 ++

}

The longest path heuristics ensures obtaining a zero-
cost-solution (if one exists), but may result in subopti-
mal number of address registers.

5 Satisfying register constraints
by Path Merging

The longest path algorithm explained in the previous
section provides a tight upper bound on the number
of address registers required. In the following, we will
refer to this algorithm as FIND-TUB (�nd tight up-
per bound). If the number of required address registers
exceeds the number of available address registers, then
the accesses allocated to some of the registers can be
merged with others in a way that minimizes the incre-
mental reload cost. The process of merging is iteratively
performed till the number of address registers required
equals the number of available registers. The merging
algorithmMERGE will be explained in the following.

5.1 MERGE

The algorithm FIND-TUB will return the clusters or
paths along with the upper bound Reg-Bound. If
Reg-Bound exceeds the number of available registers
then the algorithmMERGE is iteratively applied, until
a solution is obtained or there are no further possibilities
of merging, that reduce the value of Reg-Bound.

Let REQ denote the number of clusters (paths). It
is initialized to the number of paths (that is the number
of registers) returned by FIND-TUB. Let C be the
set of all clusters, C = fCkg, where Ck = fpkig, with
each pki is of the form (ofki ; cski). Let the set of all

possible candidate combinations be ~C � C � C, such
that 8m;n;m 6= n; (Cm; Cn) 2 ~C. Note that for any i
in pki 2 Ck, jofki � ofki+1 j �M .

Now let us consider the procedure (Path-Merge-
Cost) to merge two candidate paths Ci and Cj belong-

ing to ~C and compute the associated reload costs intro-
duced.
Path-Merge-Cost (Ci; Cj):
1. Let the nodes of the two paths Ci and Cj be concate-
nated in a list L. Each element of L will be a 3-tuple
(path-id, o�set, control step).
2. Sort L on the values of the control steps of the ele-
ments.
3. Initialize TCij to zero.
4. Let s and t be the number of nodes in Ci and Cj
respectively.

for index = 1 to s + t � 1 do
if L[index].path-id 6= L[index + 1].path-id and
jL[index].o�set - L[index+1].o�setj > M
TCij := TCij + 1

5. Return (L and TCij)
The merging of two paths is illustrated in Fig. 4.
The directed edges show the points of merging, la-
belled with associated reload costs. Now we present the
algorithm MERGE, which iteratively invokes Path-
Merge-Cost.

1. Form ~C.

2. Initialize REQ.

3. For all elements in ~C invoke Path-Merge-Cost

4. Find the element of ~C with minimum TCij. In
case of con
ict resolve arbitrarily. Let the chosen
element be (Cx; Cy). Delete this element from ~C

and add the merged path (Cx; Cy) to ~C.

5. Decrement REQ

As mentioned at the beginning of this section,
MERGE is called iteratively, until all possibilities are
exhausted or a combination of paths are found which
can be allocated to the available registers.

On applying the path merging approach to the
longest path solution, shown earlier, subjected to the
constraint of two available address registers, we obtain
the following solution with a TC value of 2. Here, the
accesses by registers R2 and R3 has been merged. The
reload costs stem from transitions from references a6 to
a7 and from a7 to a

0

2 in register R2.
R1 : a1; a3; a5; a0

1;
R2 : a2; a4; a6; a7; a0

2

5.2 Complexity

The address register allocation technique shown in the
beginning of this section is a polynomial-time proce-
dure. It utilizes two algorithms, the FIND-TUB al-
gorithm to compute the minimum number of registers
and the MERGE algorithm for combining the paths.
The �rst algorithm is of complexity O(jV j2 � jEj), where
V and E denote respectively the vertex and edge sets of
the Iteration Distance Graph. The Path-Merge-Cost
procedure of MERGE is of linear complexity in the
number n of array accesses, while the invocation of this
procedure by MERGE is bounded by O(n2). Hence,
the worst case complexity of MERGE is O(n3). Since
jV j = O(n), the total runtime is dominated by FIND-
MIN and is in O(n4). In practice this means, that the
computation time is in within the range of CPU mil-
liseconds on a SparcStation-10.

6 Performance

In order to determine the net e�ect of the proposed
path-merging heuristic, we have performed a statistical
analysis as compared to a non-optimized address regis-
ter allocation, which repetitively merges two arbitrary
paths until the register constraint is met. Table 1 gives
the results, diversi�ed with respect to three parameters:
the length N of the array access sequence, the maximum
auto-increment range M , and the number k of available
address registers. Columns 2 and 3 show the average
total reload cost (TC) obtained by non-optimized and
optimized address register allocation, respectively. Each
average TC value was computed over a set of 100 ran-
dom array reference patterns. Column 4 gives the per-
centage of cost reduction achieved by the path-merging
technique as compared to the non-optimized allocation.

Before Merging

<A,1,1> <A,2,3> <A,3,5>
Path A

Path B

<A,1,1> <A,2,3> <A,3,5>

<B,3,2>

1
0

M =1

<B,3,2> <B,4,4>
<B,4,4>

1
0

Total Reload Cost after merging is 2

After Merging

Figure 4: Example of Path Merging

parameter TC non-opt TC opt cost red.

N = 5 0.35 0.31 11 %
N = 10 1.10 0.80 27 %
N = 15 2.01 1.31 35 %
N = 20 3.00 1.84 39 %
N = 25 4.03 2.36 41 %

M = 1 5.18 3.50 32 %
M = 3 2.36 1.37 42 %
M = 7 0.74 0.37 50 %
M = 15 0.10 0.05 54 %

k = 2 4.12 2.87 30 %
k = 4 1.83 0.95 48 %
k = 8 0.33 0.16 53 %

total 40 %

Table 1: Experimental results

On the average, a cost reduction of 40 % has been ob-
served. The diversi�ed results show, that the proposed
optimization technique is robust with respect to varia-
tion of AGU resources, i.e., larger auto-increment ranges
(M) and larger number of address registers (k) lead to
higher cost reductions. Moreover, the cost reduction
grows with the reference sequence length N .

7 Conclusion

In this paper, we have presented a DSP-speci�c code
optimization technique, which minimizes the number of
explicit (i.e., non-parallel) address computations for ar-
ray accesses in loops. To our knowledge, the proposed
path-merging technique is the �rst concrete algorithm to
tackle this problem for a given constraint on the num-
ber of available AGU address registers. Experimental
results show that by performing the path-merging tech-
nique one obtains a 40 % reduction on the number of
explicit address computations as compared to a non-
optimizing address register allocation technique.

References

[1] P. Paulin, M. Cornero, C. Liem, et al.: Trends in Embedded Sys-
tems Technology, in: M.G. Sami, G. De Micheli (eds.): Hard-
ware/Software Codesign, Kluwer Academic Publishers, 1996

[2] V. Zivojnovic, H. Schraut, M. Willems, R. Schoenen: DSPs,
GPPs, and Multimedia Applications { An Evaluation Using
DSPStone, Int. Conf. on Signal Processing Applications and
Technology (ICSPAT), 1995

[3] P. Marwedel, G. Goossens (eds.): Code Generation for Embedded
Processors, Kluwer Academic Publishers, 1995

[4] D.H. Bartley: Optimizing Stack Frame Accesses for Processors with
Restricted Addressing Modes, Software { Practice and Experience,
vol. 22(2), 1992, pp. 101-110

[5] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage
Assignment to Decrease Code Size, ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
1995

[6] R. Leupers, P. Marwedel: Algorithms for Address Assignment in
DSP Code Generation, Int. Conf. on Computer-Aided Design (IC-
CAD), 1996

[7] B. Wess, M. Gotschlich: Constructing Memory Layouts for Address
Generation Units Supporting O�set 2 Access, Proc. ICASSP, 1997

[8] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retar-
getable Compilation and Exploration of Instruction-Set Architec-
tures, 33rd Design Automation Conference (DAC), 1996

[9] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and
Optimizations for Address Computation in DSP Architectures, 9th
Int. Symp. on System Synthesis (ISSS), 1996

[10] F.T. Boesch, J.F. Gimpel: Covering the Points of a Digraph
with Point-Disjoint Paths and Its Application to Code Optimization,
Journal of the ACM, vol. 24, no. 2, 1977, pp. 192-198

[11] C. Gebotys: DSP Address Optimization using a Minimum Cost
Circulation Technique, nt. Conf. on Computer-Aided Design (IC-
CAD), 1997

[12] R.Leupers, A. Basu, P.Marwedel: Optimized Array Index Com-
putation in DSP Programs, Proc. of ASP-DAC '98, Yoko-
hama/Japan, Feb 1998

[13] N. Robertson, P.D. Seymour: An Outline of Disjoint Path Algo-
rithms, pp. 267-292 in: B. Korte, L. Lovasz, H.J. Pr�omel, A.
Schrijver (eds.): Paths, Flows, and VLSI Layout, Springer-Verlag,
1990

