
Register File Synthesis in ASIP Design

Manoj Kumar Jainy Lars Wehmeyer�

Peter Marwedel� M. Balakrishnany

Abstract

Interest in synthesis of Application Specific Instruction Set Processorsor ASIPs
has increasedconsiderably and a number of methodologies have been proposedfor
ASIP design. A key step in ASIP synthesis involves deciding architectural features
based on application requirements and constraints. In this report we observe the
effect of changing register file size on the performanceas well as power and energy
consumption. Detailed data is generated and analyzed for a number of application
programs. Results indicate that choice of an appropriate number of registers has
a significant impact on performance.

1 Introduction

An Application Specific Instruction Set Processor (ASIP) is a processor designed
for one particular application or for a set of specific applications. An ASIP exploits spe-
cial characteristics of application(s) to meet the desired performance, cost and power
requirements. ASIPs are a balance between two extremes: Application Specific Inte-
grated Circuits (ASICs) and general programmable processors [5, 9, 2]. ASIPs offer
the required flexibility (which is not provided by ASICs) at a lower cost than general
programmable processors. Thus ASIPs can be efficiently used in many embedded sys-
tems such as digital signal processing, servo-motor control, automatic control systems,
avionics, cellular phones etc [9, 2].

A recent survey of the approaches suggested for ASIP design methodologies during
the 90’s [7] identified five key steps as follows (fig. 1).

1. Application Analysis

2. Architectural Design Space Exploration

3. Instruction Set Generation

4. Code Synthesis
�Department of Computer Science 12, University of Dortmund, Germany. Email :

fwehmeyer,marwedelg@ls12.cs.uni-dortmund.de
yDepartment of Computer Science and Engineering, Indian Institute of Technology Delhi, India. Email :

fmanoj,mbalag@cse.iitd.ernet.in

Application Analysis

Architectural Design

Space Exploration

 Instruction Set

Hardware

Synthesis

Code

Synthesis

Object Code

Design Constraints
 Application(s) and

Generation

Processor
Description

Figure 1: Flow diagram of ASIP design methodology

5. Hardware Synthesis

An application written in a high-level language is analyzed statically and dynam-
ically. The analyzed information is stored in a suitable intermediate format, which is
used in the subsequent steps of ASIP design. Almost all the approaches consider a pa-
rameterized model for design space exploration. Inputs from the application analysis
step are used along with the range of architecture design space to select a suitable ar-
chitecture(s) by a design space explorer. The selection process typically can be viewed
to consist of a search technique over the design space driven by a performance estima-
tor. The instruction set is generated either by synthesis or by a selection process. A
retargetable compiler is used to generate code. The hardware is synthesized using the
ASIP architecture template and instruction set architecture starting from a description
in VHDL/ VERILOG using standard tools.

Some approaches attempted to establish a relationship between architectural fea-
tures and application parameters [7, 4, 3]. Methods are suggested to find the parameters
which in turn decide architectural features. Sato et al [9] have developed an Application
Program Analyzer (APA) which finds data types and their access methods, execution
counts of operators and functions used, the frequency of individual instructions and
sequences of contiguous instructions. Gupta et al [4] and Ghazal et al [3] considered
application parameters like average basic block size, number of Multiply-Accumulate
(MAC) operations, ratio of address computation instructions to data computation in-
structions, ratio of input/output instructions to total instructions, average number of cy-
cles between generation of a scalar and its consumption in the data flow graph etc. The
architectural features considered by these approaches are number of operation slots in
each instruction, concurrent load/store operations and latency of functional units and
operations, addressing support, instruction packing, memory pack/ unpack support,

loop vectorization, complex arithmetic patterns etc. Number of registers were consid-
ered in the model, but it was unconstrained.

There is a need to consider more architectural features as well as study the relation-
ship between application parameters and these features in terms of user constraints on
cost, performance, power and energy. In this work we consider varying the number of
registers for ASIP design space exploration and the attempt is to study its effect at the
application behavioural level. A specific architecture (ARM7TDMI) along with a com-
piler (encc) and a simulator has been used in this study. The intent is to study the effect
of varying register file size on a particular processor and use this to understand the
trend for power and performance estimation in a general ASIC synthesis framework.

Section 2 describes the experimental set up used and the procedure adopted to take
the observations. Results of the observations are presented in Section 3. The last
section concludes the paper with directions for future work.

2 Experimental Setup

Some benchmark programs were chosen and code generation and performance
evaluation was performed with varying number of registers for theARM7TDMIproces-
sor using the parameterizable compilerenccbeing developed and in use at the Univer-
sity of Dortmund, Germany. The benchmark programs were then analyzed to identify
application characteristics responsible for the observed behavior.

2.1 Benchmark Suite

The following applications were selected as benchmark programs. These appli-
cations are either from the domain of media applications, DSP or implementations
of standard sorting algorithms. An attempt has been made to study applications re-
quiring typical array access patterns. These benchmark programs are available at
http://www.cse.iitd.ernet.in/ manoj/research/benchmarks.html.

1. biquadN sections (from DSP domain)

2. lattice init (from DSP domain)

3. matrix-mult (multiplication of twom x n matrices)

4. meivlin (media application)

5. bubblesort

6. heapsort

7. insertionsort

8. selectionsort

2.2 TheenccCompiler

Theencccompiler was used for code generation and performance evaluation.encc
was developed for the RISC class of architectures and generates code for reduced en-
ergy consumption. It features a built-in power model which is used to take decisions
during the compilation process. The compiler was re-targeted from theARM7TDMIto
theLEON processor. Configuration of the compiler is possible by changing a parame-
ter file which contains several constant declarations and processor specific information.
Using this configuration file for the target processor, a customized compiler is gener-
ated. In our case, we took the configuration file for theARM7TDMI processor and
changed the number of registers in the range from 3 to 8 and generated a compiler for
each case so as to be able to compile and evaluate the performance of the benchmark
programs.

2.2.1 Functional Description of theenccCompiler

Taking an application program written in C an intermediate representation (IR) file
is generated usingLANCE[8]. Some standard optimizations are performed on this IR
file usingLANCE library functions. The optimizations performed byLANCEon the
IR include constant propagation, copy propagation, dead code elimination, constant
folding, jump optimizations and common subexpression elimination.

Taking an IR file as input, the code generator generates a forest of data flow trees for
each function. A cover is obtained for each tree based on tree pattern matching. At this
stage, the internal power model is used to generate a valid cover with minimal power
consumption. A low level intermediate representation is generated. Register allocation,
instruction scheduling, spill code generation and peephole optimizations are performed
using this representation to generate assembly code. An assembler and a linker are
used to create the object code. An instruction set simulator produces outputs required
for validation. A trace of instructions is also produced which is analyzed by a trace
analyzer. Theenccprovides information on spilled registers as well. The optimization
options available are time, energy, size and power. One optimization can be selected at
a time.

2.2.2 Power Model used inencc

The power model used in the compiler is based on the processor power model
developed by Tiwari et al [11], which distinguishes between basic costs and inter-
instruction effects. Basic costs consist of the measured current during execution of
a single instruction in a loop. An approximate amount is added for stalls andcache
misses. The change of circuit state for a different instruction and resource constraints
are summed up in the inter-instruction effects. The power model used inenccincludes
the power of the processorPproc and the power dissipation of the memory Pmem. For
computing the basic power costs and inter-instruction effects, actual measurements
have been done for theTHUMB instruction set. Similarly, power consumption of the
memory is based on actual measurements carried out on the off-chip memory of the
used evaluation board ATMEL AT91M40400.

Power is calculated using the following equation.

Ptotal =

X

exec instr

Pproc + Pmem

This model is integrated into the compiler to take decisions during instruction selection
or optimizations and into the trace analyzer which computes the total amount of energy
dissipated during execution of the program under observation.

2.3 TheARM7TDMI Processor

TheARM7TDMIby ARM Ltd [6] is a 32-bit RISC processor and offers high per-
formance combined with low power consumption. This processor employs a special
architectural strategy known asTHUMB, with the key idea of a 16-bit reduced instruc-
tion set. Thus theARM7TDMIhas two instruction sets :

1. The standard 32-bit ARM set

2. The 16-bit THUMB set

THUMB code operates on the same 32-bit register set as ARM code so it achieves
better performance compared to traditional 16-bit processors using 16-bit registers and
consumes less power than traditional 32-bit processors. Various portions of a system
can be optimized for speed or for code density by switching betweenTHUMB and
ARM execution as appropriate. TheARM7TDMIprocessor has a total of 37 registers
(31 general purpose 32-bit registers and 6 status registers) but these are not visible
simultaneously. The processor state and operating mode dictate which registers are
available to the programmer. InTHUMB mode only 8 general purpose registers are
available to the user, requiring 3 bits for register coding, thus reducing the instruction
size.

2.4 Observations

The number of physical registers was varied in the range from 3 to 8 for the
ARM7TDMI processor. The number of registers was increased beyond 8 as well, but
in that case only assembly code could be generated as no instruction set simulator was
available to execute the code. However, we were able to get information about spilling
and static code size in such cases. For each different number ofphysical registers,encc
was compiled to generate a customized compiler which was then used to generate code
and other trace information for our benchmark programs. In a similar way, we have
generated spilling information for theLEON processor as well.LEON is a RISC type
of processor having SPARC architecture.

Optimizations for time, energy, size and power were performed for different con-
figurations for all benchmark programs. Since the trends have shown to be similar for
various optimizations, for brevity we are presenting results only for time optimization
in the next section.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

N
um

be
r

of
 I

ns
tru

ct
io

ns

 (
m

ill
io

ns
)

biquad (x 500)
lattice_init (x 2)
matrix-mult (x 250)
me_ivlin (x 1)
bubble_sort (x 4)
heap_sort (x 14)
insertion_sort (x 6)
selection_sort (x 3)

Figure 2: Number of Executed Instructions

3 Results

We present the results obtained for number of executed instructions, number of cy-
cles, ratio of spill instructions to total static code size, power and energy consumption.
The results and the following analysis is based on the following two assumptions.

1. Processor cycle time does not change with the change in the number of registers.
This implies that change in the number of cycles is directly related to perfor-
mance.

2. Power consumed by each instructiondoes not change significantly with the change
in the number of registers.

3.1 Number of Executed Instructions

The results obtained for number of executed instructions are shown in figure 2.
Values for different programs are scaled to produce the results on a single plot. Scale
factors are shown in the figure. This is acceptable since the general trends can still be
observed. We can observe one sharp curvature (knee) in some curves. The Curve for
the programbiquadN sectionshas its knee at 4 registers, whereas the programsbub-
ble sort andinsertionsort both have their knee at 5 registers. The curves for some of
the other programs do not contain such a knee. In the programbiquadN sections,
there are twofor loops with high iteration count. Each contains a statement like

0

0.5

1

1.5

2

2.5

3

3.5

3 4 5 6 7 8

Number of Registers

N
um

be
r o

f C
yc

le
s

(m
ill

io
ns

)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 3: Number of Cycles

somearray[loop counter] = value; which needs 4 registers for its execution with-
out spilling. Oneeach for storing the value ofloop counter, base address of the array
somearray, offset value and the value to be written into the array. Thus the number
of instructions shoots up significantly when we lower the number of physical registers
from 4 to 3, since additional spill code has to be inserted within the loop. Looking at
the programsbubblesort and insertionsort, we observe that each contains a 2-level
nested loop. The statements in the innermost loop in both the cases need 5 registers for
execution, that is why we observe a knee at 5 registers in the curves for these programs.

3.2 Number of Cycles

The results obtained for number of cycles are shown in figure 3. Again, the values
for different programs are scaled to produce the results on a single plot and scale factors
are shown. General behavior of the curves for the number of cycles is similar to that
for the number of instructions. Though as we lower the number of registers, more spill
instructions are inserted. Since spill instructions consist mainly of multi-cycle load
and store instructions, the average number of cycles per instruction increases more
than number of instructions. Still, the general shape of the curves is the same. Thus,
the same application characteristics are responsible for similar behavior in both number
of instructions and number of cycles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Number of Registers

R
at

io
 o

f S
pi

ll
In

st
ru

ct
io

ns
 to

 T
ot

al

C
od

e
(s

ta
tic

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 4: Ratio of Number of Spill Instructions to Total Number of Static Instructions

3.3 Ratio of Spill Instructions to Total Static Code Size

The results obtained for ratio of spill instructions to total static code size is shown
in figure 4. The values for the programlattice init are high because of high register
pressure. A 2-level nestedfor loop is there. The inner loop contains two statements
which needs 6 registers for execution. An interesting feature is observed for this pro-
gram: the presence of common sub-expressions in two statements of the inner loop.
Three additional registers are required to avoid repetition of address calculations and
memory accesses. Values for programmeivlin are high due to the large number of
variables required to be live for a long time, so spilling is high, but it is continuously
decreasing with increasing number of registers. To eliminate all spill code from this
program, 19 registers are required. The values are drastically decreasing at 7 registers
for the programmatrix-mult, because 7 registers are sufficient to execute the statement
in the innermostfor loop (3-level nesting).

3.4 Average Power Consumption

We have used two different memory configurations in our study. One considers
only off-chip memory, while the other considers on-chip instruction memory and off-
chip data memory.

460

470

480

490

500

510

520

3 4 5 6 7 8

Number of Registers

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 5: Average Power Consumption based on only Off-chip Memory

3.4.1 Off-chip memory

The results obtained for average power consumption while considering only off-
chip memory are shown in figure 5. The power values are highest for thematrix-mult
program, because the innermost loop (3-level nested looping) contains the statement
c[i][j] = c[i][j] + a[i][k] * b[k][j];
which accesses two 2-D array elements for reading and one 2-D array element for
reading as well as writing. Since all the arrays are 2-D arrays, the address calculation
requires an arithmetic shift left (instead of another expensive multiplication) and an
addition. Since one power-hungry multiplication is still required for performing the
actual arithmetic operation between the two matrices, the power consumption is high.
The values for the programlattice init are also high due to the fact that it is also a mem-
ory access intensive application. A 2-level nestedfor loop can be found and the inner
loop body contains statements,accessing two 2-D matrices and one 1-D matrix. The
values for the programmeivlin are quite high due to high register pressure which leads
to more spilling to memory. Since power consumption of the external data memory is
significantly higher than the power consumed within the processor, the application’s
power demands are high. The values for the programsbubblesort andheapsort are
similar because memory accesses in both are of similar extent. The values for program
selectionsort are the lowest, because in selection sort data movement in memory is
minimum. For the programinsertionsort the amount of data movement in memory
is more than that ofselectionsort but less than that ofbubblesort, which justifies its

200

220

240

260

280

300

320

340

360

380

400

3 4 5 6 7 8

Number of Registers

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 6: Average Power Consumption based on On-chip Instruction Memory and Off-
chip Data Memory

position in the plot.
Our analysis shows that using more registers does not help significantly in sav-

ing power consumption, especially for memory intensive applications (e.g. programs
matrix-multandlattice init). Though we observe that number of instructions executed
and number of cycles taken for execution are being saved considerably with increasing
number of registers in our observation range. These applications have higher power
consumptions and even providing additional registers could not help in saving it. For
other applications, the saving in power consumption is marginal and that gets saturated
after a few registers.

3.4.2 On-chip Instruction Memory and Off-chip Data Memory

The results obtained for average power consumption while considering on-chip in-
struction and off-chip data memory are shown in figure 6. We observe a significant
change in power consumption by the applications which are not memory intensive but
have high register pressure (e.g. the programmeivlin). In such applications signif-
icant spilling is saved by providing additional registers. On chip instruction memory
consumes less power compared to off-chip memory used for data accesses. This is due
to several reasons: on chip memory is usually smaller, the bus lines that need to be
driven are shorter since the boundaries of the chip are not left, and on chip memories
for storing instructions are often realised as power saving ROM memories. The aver-

0

0.01

0.02

0.03

0.04

0.05

0.06

3 4 5 6 7 8

Number of Registers

E
ne

rg
y

C
on

su
m

pt
io

n
(W

S
)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 7: Energy Consumption based on only Off-chip Memory

age power consumption is less for all the benchmark programs compared to the power
consumption for other memory configuration (i.e. considering only off-chip memory).

3.5 Energy Consumption

Again, we present results for both memory configurations.

3.5.1 Off-chip memory

The results obtained for energy consumption while considering only off-chip mem-
ory are shown in figure 7. Since for this memory configuration the average power con-
sumption is almost constant, so trends of the curves for energy consumption is similar
to that for number of cycles required for execution, since E = P * t and the power values
do not change very much.

3.5.2 On-chip Instruction Memory and Off-chip Data Memory

The results obtained for energy consumption while considering on-chip instruction
memory and off-chip data memory are shown in figure 8. For this configuration the
average power consumption is lower in general, and there is significant saving in power
consumption while reducing spilling by providing additional registers. This results
in a significant reduction in energy consumption with larger number of registers.This

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

3 4 5 6 7 8

Number of Registers

E
ne

rg
y

C
on

su
m

pt
io

n
(W

S
)

biquad (x 650)
lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 8: Energy Consumption based on On-chip Instruction Memory and Off-chip
Data Memory

difference is visible especially for the applications which are not too memory intensive
and having high register pressure such asme-ivlin.

3.6 Analysis of Results

We have analyzed the results for number of instructions executed, number of cy-
cles taken for execution, number of spilling instructions inserted in code, power and
energy consumption for each program separately. Here we analyze the results for two
application programs:lattice init andme ivlin. We used on-chip instruction memory
and off-chip data memory while generating results.

Results obtained for programlattice init are shown in figure 9. We find that in this
application, the power consumption does not change significantly with change in num-
ber of registers, though there is some change in number of spilling instructions. This
is due to the fact that this application is memory intensive. The energy consumption
shows a steady drop dominated by the reduction in the number of cycles without any
pronounced knee.

Results obtained for programme ivlin are shown in figure 10. We can see the
change in power consumption for this program as we vary the number of registers. This
is because the application is not memory intensive but it has high register pressure, so
additional registers helps in saving the spilling and thus reducing the memoryaccesses.
A careful analysis shows two knees in the energy curve, the one at register value 4 is

Figure 9: Results for the program latticeinit

Figure 10: Results for the program meivlin

Application Performance Power Energy
program Reg. size % inc. Reg. size % red. Reg. size % red.

biquadN sections 3! 4 57.5 3! 4 12.6 3! 4 62.9
lattice init 4! 5 20.5 6! 7 1.0 4! 5 21.0

matrix-mult 3! 4 29.7 7! 8 7.4 3! 4 33.4
me ivlin 3! 4 53.4 5! 6 15.3 3! 4 59.3

buublesort 4! 5 46.3 4! 5 17.3 4! 5 55.6
heapsort 6! 7 25.6 6! 7 10.3 6! 7 33.2

insertionsort 4! 5 44.8 4! 5 22.3 4! 5 57.1
selectionsort 3! 4 22.2 5! 6 14.0 5! 6 30.1

Average 37.5 12.5 44.1

Table 1: Maximum variation in results for various benchmark programs

due to the knee in the cycle count and the knee at register value 6 is due to the knee in
the power curve.

Table 1 shows the maximum percentage increase in performance and reduction in
power and energy due to an increase of one register in each of the application pro-
grams. We also indicate where this takes place. This table establishes the importance
of register file size as an architectural feature as a single register increase results in a
performance improvement of up to 57.5% and energy reduction of 62.9%. The power
is relatively insensitive to the changes in the number of registers. Furthermore, there is
a high degree of correlation between the register file size which gives optimum perfor-
mance and optimum energy consumption.

4 Conclusion and future work

We changed the number of physical registers for theARM7TDMIprocessor. A new
instance of theencccompiler was compiled with the specific number of registers. This
generated compiler was used for compiling the benchmark programs. We studied the
results obtained for number of instructions executed, cycle time taken for execution
and spilling information, power and energy consumption. An increase in the number
of registers by one can result in upto 57.5 % of performance improvement and upto
62.9 % reduction in energy consumption. Further there is a high degree of correlation
between performance improvement and energy reduction. In the process we found that
power does not strongly depend on the number of registers. We have generated spilling
information for these application programs in the same range of number of registers on
LEON processor as well. There is a reasonable correlation in the data generated.

The cost of varying register file size in an ASIP is not linear due to its effect on
instruction encoding, instruction bit-width and required chip area. For an effective
area-time-power tradeoff, we propose to develop an area model as well. Future work
will be to identify and extract application characteristics so that an early estimation of
number of ‘optimal’ registers may be done.

Acknowledgements

We acknowledge the guidelines and help provided by Professor Anshul Kumar, Dr.
Rainer Leupers and Stefan Steinke. This research work is supported by DST-DAAD
cooperation project (Project code MCS-216).

References
[1] Binh, N.N.; Imai, M.; Shiomi, A.; Hikichi, N. : “A hardware/software partitioning al-

gorithm for pipelined instruction set processor ”, Proceedings of the Design Automation
Conference, 1995, with EURO-VHDL, EURO-DAC ’95, 18-22 Sept. 1995, pp. 176-181.

[2] Childers, B.R.; Davidson J.W. : “Application Specific Pipelines for Exploiting
Instruction-Level Parallelism ”, University of Virginia Technical Report No. CS-98-14,
May 1, 1998.

[3] Ghazal, N.; Newton, R.; Jan Rabaey. : “Retargetable estimation scheme for DSP architec-
ture selection ”, Proceedings of the Asia and South Pacific Design Automation Conference
2000 (ASP-DAC 2000), 25-28 Jan. 2000, pp. 485-489.

[4] Gupta, T.V.K.; Sharma, P.; Balakrishnan, M.; Malik, S. : “Processor evaluation in an
embedded systems design environment ”, Proceedings of Thirteenth International Con-
ference on VLSI Design 2000, 3-7 Jan. 2000, pp. 98-103.

[5] Hoon Choi; In-Cheol Park; Seung Ho Hwang; Chong-Min Kyung : “Synthesis of appli-
cation specific instructions for embedded DSP software ”, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 1998. ICCAD 98. Digest of Tech-
nical Papers 1998, 8-12 Nov. 1998, pp. 665 - 671.

[6] http://www.arm.com/

[7] Jain M.K.; Balakrishnan, M.; Anshul Kumar : “ASIP Design Methodologies : Survey
and Issues ”, to appear in the Proceedings of the IEEE/ACM International Conference on
VLSI Design, 2001.

[8] LANCE System.
http://ls12-www.cs.uni-dortmund.de/�leupers/lanceV2/lanceV2.html

[9] Sato, J.; Imai, M.; Hakata, T.; Alomary, A.Y.; Hikichi, N. : “An integrated design environ-
ment for application specific integrated processor ”, Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors 1991, ICCD ’91,
14-16 Oct. 1991, pp. 414-417.

[10] Stanford compiler group. The SUIF library, version 1.0, 1994.
http://suif.stanford.edu

[11] Tiwari, V.; Malik, S.; Wolfe A. : “Power Analysis Of Embedded Software: A First Step
Towards Software Power Minimization ”, Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 1994, ICCAD ’94, 6-10 Nov. 1994, pp. 384-390.

