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Abstract| This paper presents a new code op-

timization technique for DSPs with irregular data

path structures. We consider the problem of gener-

ating machine code for data 
ow graphs with com-

mon subexpressions (CSEs). While in previous work

CSEs are supposed to be strictly stored in memory,

the technique proposed in this paper also permits the

allocation of special purpose registers for temporarily

storing CSEs. As a result, both the code size and the

number of memory accesses are reduced. The opti-

mization is controlled by a simulated annealing algo-

rithm. We demonstrate its e�ectiveness for several

DSP applications and a widespread DSP processor. 1

I. Introduction

More and more embedded systems with DSP function-
ality are based on programmable DSP processors. While
a processor based design style bene�ts from high 
exibil-
ity and opportunities for reuse, software development for
DSPs still su�ers from the fact, that there is no adequate
tool support by C compilers. Since DSPs are tuned for
compute-intensive applications, they often show an irreg-
ular data path structure with di�erent functional units
and special-purpose registers. An example is given in �g.
1. The Texas Instruments TMS320C25 is a widespread
DSP, whose data path comprises a multiplier, an ALU,
three special-purpose registers TR, PR, and ACCU, and
a data memory (MEM).
Such domain-speci�c architectures pose problems for C

compilers, since special constraints on code selection and
register allocation have to be taken into account during
code generation. In contrast to regular RISC-like data
path structures, arguments for operations executed on
functional units have to reside in particular registers, and
extra instructions may be required for moving values be-
tween those registers. In order to illustrate this, consider
the subset of available 'C25 machine instructions in �g. 2.
Multiplier and ALU results have to be stored in registers
PR and ACCU, respectively, and one multiplier argument
has to reside in register TR. Additionally, memory access
is quite restricted. For instance, PR cannot be directly

1Publication: ASP-DAC 2000, Yokohama/Japan, c
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Fig. 1. TMS320C25 data path structure

"lac": ACCU := MEM

"addk": ACCU := ACCU + CONSTANT

"add": ACCU := ACCU + MEM

"pac": ACCU := PR

"apac": ACCU := ACCU + PR

"mpy": PR := TR * MEM

"lt": TR := MEM

"sacl": MEM := ACCU

"spl": MEM := PR

Fig. 2. TMS320C25 data path instructions

loaded from memory, and register TR cannot be directly
stored.

Classical compiler technology can hardly cope with such
irregularities. As a consequence, the machine code gen-
erated by many current DSP compilers is of unaccept-
able quality [1], and the largest part of DSP software still
has to be written manually in assembly languages. Re-
cent research e�orts aim at eliminating this signi�cant
productivity bottleneck in embedded system design by
investigating novel DSP-speci�c code generation and op-
timization techniques [2]. Such techniques often exploit
the fact, that high compilation speed is not a major issue
for DSP compilers, so that comparatively time-intensive
optimizations may be used.

This paper presents a new code optimization technique
that falls into this category. It uses simulated annealing



to perform an optimized register allocation for common

subexpressions during code generation for irregular DSP
data paths. The code quality gain achieved by this tech-
nique is measured both in terms of code size reduction
and reduction of memory accesses and thus performance
and/or power consumption.
The paper is structured as follows. In the next section,

we discuss related work in the area of DSP code genera-
tion. The problem we consider is de�ned in section III,
and the proposed optimization algorithm is described in
section IV. An experimental evaluation for several DSP
applications is given in section V.

II. Related work

We consider the problem of generating sequential as-
sembly code for basic blocks in a program. Basic blocks
are commonly represented by data 
ow graphs (DFGs).
DFG nodes represent operations, memory accesses and
constants, while DFG edges denote data dependencies be-
tween operations. Common subexpressions (CSEs) are
those DFG nodes with a fanout larger than one. We as-
sume that recomputation of a CSE is always more expen-
sive than keeping it in memory or a register.
In order to reduce the problem complexity, the classical

approach to code generation [3] is to decompose a given
DFG into a set of data 
ow trees (DFTs) by breaking the
DFG at its CSEs, and communicating CSEs between the
DFTs via a �xed storage component, typically the mem-
ory. We call the successors of a CSE in a DFG the CSE

uses. An example is given in �g. 3. There is one CSE
"a * b" (variables are assumed to reside in memory) with
two uses. Breaking the DFG at the edges marked with a
dot results in a set of three DFTs, for each of which code
can be generated separately. The scheduling order of the
di�erent DFTs may be constrained by further dependen-
cies, such as control or output dependencies imposed by
the source program.

load a load b

* 42load c

store a store b

++

Fig. 3. Example DFG 1

Araujo and Malik [4] showed, how tree pattern match-

ing with dynamic programming can be used to generate
optimal code for DFTs in linear computation time for ir-
regular DSP data paths satisfying certain architectural
criteria. The instruction set is modeled as a tree gram-
mar, and the code generator generator "olive" is used to

generate a tree pattern matcher based on this model. In
the RECORD project [5], this technique has been embed-
ded into a user-retargetable compiler for DSPs.
Using the approach from [4], also a heuristic code gener-

ation technique for full DFGs has been proposed [6]. The
basic idea is to cut a DFG with highest priority at those
edges, where the CSE uses have to pass the memory any-
way due to architectural constraints. As compared to an
approach where all CSE uses are rigidly loaded frommem-
ory, this technique frequently yields higher code quality
by avoiding some redundant loads and stores. However, it
still requires that all CSEs are stored to memory and all
but one CSE uses are loaded from memory, which is not
always necessary. The same limitation holds for the bi-
nate covering formulation given in [7], which presents an
exact technique for mapping DFGs to DSP data paths.
A further approach is presented in [8], which uses a

branch and bound algorithm for DFG code generation.
However, unlike [6] and [7], it separates detailed register
allocation from code selection. Thus, for architectures
with single special-purpose registers (instead of register
�les) like the one shown in �g. 1, it may generate inferior
code in presence of CSEs. The tree pattern matching
approach to code generation has recently been extended
to full DFGs [9], but due to several constraints on the
underlying tree grammars so far only regular data paths
can be handled.
The idea of temporarily storing CSEs in registers in-

stead of the memory has also been implemented in a
code generator based on constraint logic programming

[10]. However, that approach still neglects the mutual
dependence between CSE register allocation and DFT
scheduling which will be illustrated in the following sec-
tion.

III. Problem definition

For sake of easier illustration, we will refer to the 'C25
data path and instruction set (�gs. 1 and 2) in the fol-
lowing. The 'C25 data path has four possible locations
fMEM;ACCU;PR; TRg to hold CSEs. Given a DFG
with k CSEs C = fc1; : : : ; ckg, a CSE register allocation

is a mapping

K : C ! fMEM;ACCU;PR; TRg

which assigns each CSE to one of the possible locations.
The mapping K(ci) = L implies, that CSE ci is stored to
location L and all uses of ci also read the CSE value from
L.
Note that not all CSE register allocations are valid. If,

for instance, a CSE ci is assigned to a register, and some
instruction writes to that register before all uses of ci have
been scheduled, then a con
ict is exposed and a di�erent
CSE location (e.g. MEM) has to be selected. However,
there is no need to give priority to MEM as a CSE loca-
tion, but there are good reasons to use registers (ACCU,



PR, TR) instead:

1) Reading a CSE from a register can result in lower code
size and higher performance since the number of data
moves between registers and memory might be reduced.

2) If external memory instead of on-chip memory is used,
then a memory access is generally slower than a register
access.

3) Memory accesses typically consumemore power than
register accesses, since they cause signal transitions on ad-
dress and data busses.

4) Additional instructions may be required to compute
memory addresses for CSE loads and stores.

Our goal is to determine the CSE register allocation
which, among all valid allocations, results in the minimum
cost machine code for an entire DFG. The cost metric is
given by two components. The cover costs of a DFG is
the sum of the cost values of all selected instructions. The
cost value of a single instruction, which is supposed to be
given, may represent its size, execution time, or power
consumption.
Additionally, we estimate the addressing costs implied

by a certain CSE register allocation. This cost value re-

ects the fact, that the addresses of CSEs stored in MEM,
which are normally allocated in the stack frame of a func-
tion, might need to be computed by extra instructions.
A small example illustrates that holding CSEs in reg-

isters rather than only in memory may yield better code.
The 'C25 assembly code in �g. 4 implements the DFG
from �g. 3. In the left column, the CSE "a * b" is as-
signed to a memory cell "temp", which leads to a total of
9 instructions. In the right column, the CSE has been as-
signed to PR, which saves one instruction and two mem-
ory accesses. One can also �nd DFG structures, where
keeping CSEs in registers ACCU or TR is favorable.

lt a lt a

mpy b mpy b

spl temp pac

pac add c

add c sacl a

sacl a pac

lac temp addk 42

addk 42 sacl b

sacl b

Fig. 4. Alternative assembly codes for DFG 1

It is important to observe the mutual dependence be-
tween CSE register allocation and scheduling. This is
exempli�ed by the DFG in �g. 5, which after breaking it
at its CSEs consists of three DFTs T1, T2, and T3. Due to
dependencies, both T2 and T3 have to be scheduled after
T1, but the scheduling order of T2 and T3 is arbitrary. Let
the CSE "a * b" be assigned to PR. Since T2 comprises

load a load b

*

*

42load c

store a store b

+

T1

T2 T3

Fig. 5. Example DFG 2

another multiplication, PR would be overwritten before
the second CSE use in T3 has been scheduled, resulting
in a con
ict and thus in an invalid allocation. However,
if T3 is scheduled before T2, then the CSE in PR is still
available when scheduling T2. Thus, optimizing the CSE
register allocation obviously requires to take into account
alternative DFG schedules. This is accomplished by the
technique described in the following section.

IV. Problem solution

Due to the generally large number of alternative CSE
register allocations and DFG schedules, we use simulated
annealing (SA) to approach a global optimum. SA is a
well-tried technique for complex optimization problems
since it is capable of skipping local minima in the objec-
tive function. The main algorithm is outlined in �g. 6. It
reads a DFG, globally optimizes the CSE register alloca-
tion while trying alternative schedules, and �nally emits
assembly code for the DFG.
First, the input DFG G is decomposed into a set of

DFTs by breaking it at its k CSEs and inserting dedi-
cated CSE write and read nodes. The modi�ed DFG is
called G0. During the optimization, the current location
(MEM, ACCU, PR, or TR) of each CSE is kept in the ar-
ray "CSE alloc". Initially, all CSEs are assigned to MEM,
the initial costs are computed, and the starting temper-
ature is set2. The outer while-loop is executed until the
temperature is "frozen". The inner for-loop is executed
for a �xed number of times.
In each iteration of the inner loop, function DoModi-

fication modi�es the current solution in one of the two
following ways (with equal probability):

� The DFG G0 is modi�ed by adding or removing (each
with a probability of 0.5) a random sequencing edge

between two DFTs in G0. Naturally, dependency
edges originally present in the input DFG are un-
removable, in order to preserve correctness of the re-
sulting code. Likewise, additional sequencing edges

2In �g. 6, the SA parameters (temperature interval, iterations
per temperature value, cooling factor) have been set to those values
we found most appropriate during experimental evaluation.



are inserted only if they do not cause cycles in G0.
These additional edges in
uence the scheduling pos-
sibilities for G0 and thereby permit to explore alter-
native schedules. Since such edges may be removed
again in a later step, they do not lead to an unnec-
essary restriction of the solution space.

� The current CSE register allocation is changed
by randomly replacing one CSE location by an-
other location, i.e., for some CSE ci, the cur-
rent mapping K(ci) is set to one element of
fMEM;ACCU;PR; TRg di�erent from the current
K(ci).

algorithm CSE RegisterAllocation

input: data 
ow graph G with k CSEs;
output: sequential assembly code for G;
begin
G

0 = Decompose(G);
CSE alloc[1..k] = MEM;
best = InitialCost(G0);
temp = 50;
while temp > 0.1 do
for count = 1 to 10 do
DoModification(G0, CSE alloc);
schedule = TopologicalSort(G0);
cost = 0;
for all trees T in schedule do
cost += CoverCost(T );
if RegisterConflict(T ) then cost = 1;

end for
cost += AddrCost(schedule);
delta = cost - best;
if delta < 0 or Random(0,1) < exp(-delta/temp)
then
best = cost;
best schedule = schedule;

else UndoModification(G0, CSE alloc);
end if

end for
temp = 0.9 * temp;

end while
for all trees T in best schedule do
EmitAssemblyCode(T );

end for
end algorithm

Fig. 6. Optimization algorithm

Next, a schedule for the DFTs in G0 is determined by
topological sorting, and a cost value is computed. For
each DFT T in G0, function CoverCost returns the sum
of the costs of instructions selected for T . For code gener-
ation and scheduling of single DFTs, we use the technique

by Araujo and Malik [4], which is based on tree pattern
matching with dynamic programming. In our approach,
the underlying tree grammar model of the machine in-
struction set uses a dynamic instruction cost function,
which ensures that a CSE can be read and written only
from/to that location, to which it is currently assigned.

As an additional cost metric for the current sched-
ule, function AddrCost estimates the costs of extra in-
structions needed for address computation for those CSEs
currently assigned to MEM and for intermediate results
stored in memory. Such CSEs and intermediate results
can be considered as "local variables", which have to be
laid out in memory. Since DSPs typically show auto-
increment capabilities for address registers, the concrete
memory layout of local variables plays an important role
for the overall code quality. This is illustrated in �g. 7.

LOAD AR, 1
AR += 2
AR -= 3
AR += 2
AR ++
AR -= 3
AR += 2
AR --
AR --
AR += 3
AR -= 3
AR += 2
AR ++

b
d
a
c
d
a
c
b
a
d
a
c
d
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c
d

0
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2
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LOAD AR, 3
AR --
AR --
AR --
AR += 2
AR --
AR --
AR += 3
AR -= 2
AR ++
AR --
AR --
AR += 2

b
d
a
c
d
a
c
b
a
d
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c
d

c
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d
b

0
1
2
3

a) b)

cost: 9 cost: 5

Fig. 7. Memory layout optimization

Suppose, a set of symbolic local variables fa; b; c; dg is
given, and the access sequence to these variables within
the schedule is

S = (b; d; a; c; d; a; c; b; a; d; a; c; d)

If the variables are mapped to memory cells simply in lex-
icographic order (�g. 7 a), and one address register AR
is used to compute the memory addresses of the sequence
S, then a certain sequence of address computation in-
structions has to be added to the code. First, AR has to
be initialized with the address of the �rst element in S.
Then, for each subsequent variable access, AR has to be
set to the next address by adding or subtracting a certain
constant to/from AR.

The key idea in optimizing the memory layout is, that
those address computations which modify AR by +1/-
1 do not result in extra instructions, since they can be
mapped to parallel auto-increment/decrement operations
on AR. The goal, therefore, is to permute the local vari-
ables in memory in such a way, that the utilization of
auto-increment/decrement is maximized.



Fig. 7 b) shows the sequence of address computations
for a di�erent memory layout. The number of extra ma-
chine instructions (the "cost" of the layout) has been re-
duced from 9 to 5, since more address computations have
been implemented by auto-increment/decrement.
This e�ect should be taken into account in code gener-

ation for DFGs in order to achieve accurate code quality
estimations. A number of di�erent graph-based o�set as-

signment algorithms for computing good memory layouts
for local variables are already available. In our approach,
we use the algorithm presented in [11], an improvement
of the work described in [12]. An experimental evaluation
of these algorithms w.r.t. code quality improvement for
DSP algorithms has been given in [13].
The total costs of the schedule are given as the sum of

the covering costs for the single DFTs plus the address-
ing costs of the complete schedule. During cost compu-
tation, function RegisterConflict checks whether the
current CSE register allocation is invalid. This is the case,
whenever an instruction selected for T overwrites a reg-
ister containing a CSE, whose uses have not yet all been
scheduled. If such a register con
ict is detected, the costs
are set to an "in�nite" value.
If the current cost value indicates an improvement of

the best solution found so far, the last modi�cation per-
formed is accepted. Also modi�cations resulting in worse
solutions may be randomly accepted with a probability
inversely related to the temperature. This is important
to skip locally optimal solutions. If a modi�cation of G0

or "CSE alloc" is not accepted, then the last modi�cation
is undone and the previous solution is restored. After ter-
mination of the while-loop, assembly code is emitted for
all DFTs according the the optimized CSE register allo-
cation and schedule.

V. Experimental results

For an experimental evaluation of CSE register allo-
cation, we have implemented a TI 'C25 code generator
prototype using our LANCE compiler environment [14].
The LANCE system comprises an ANSI C frontend and
a library of machine-independent code optimizations, in-
cluding global CSE detection. LANCE compiles ANSI C
source code into an optimized intermediate representation
(IR), and machine-dependent compiler backends working
on the IR can be easily integrated. All LANCE tools are
invoked from a common graphical user interface (�g. 8).
Using the TI 'C25 code generator, we have compiled

di�erent ANSI C source codes into TI 'C25 assembly code.
The sources are taken from DSPStone [1], as well as from
GSM, JPEG [15], MPEG-2 [16], and MPEG-4 packages.
For each source code, columns 3 and 4 in table I show

the number of CSEs and CSE uses. Column 5 gives the
number of CSEs that were assigned to registers by the
algorithm in �g. 6. Column 6 shows the percentage of
costs for those DFGs containing CSEs, as compared to

Fig. 8. User interface of the LANCE system

the initial solution (100 %) which only uses the memory
as a CSE location. Column 7 gives the percentage of
the number of memory accesses for CSEs and temporary
values remaining after optimization. Finally, column 8
gives the CPU time on a Sun Ultra-1 workstation.
The cost metric we have used only re
ects code size and

does not penalize potentially slow or power-consuming
memory accesses. Thus, the primary optimization goal
was to minimize the number of instructions required for
data transport in the 'C25 data path. Even though the
average cost reduction achieved (7 %) seems moderate,
it is important to note that for embedded systems with
on-chip program memory every byte matters. For cost
metrics also re
ecting memory access time or power con-
sumption, much higher cost savings are possible. This is
indicated by the average reduction of memory accesses for
CSEs (column 7) to only 67 %. Even when optimizing for
code size, the number of memory accesses are signi�cantly
reduced as a secondary e�ect.

VI. Conclusions

In order to increase the quality of DSP code generated
by C compilers, code optimization techniques tuned for
the special data path structures of DSPs are required.
Such techniques will enable the use of compilers instead
of assembly programming and thus enhance the produc-



package source CSEs CSE uses reg CSEs cost (%) mem (%) CPU sec
IIR �lter 1 section 2 5 1 91 57 1

DSPStone IIR �lter n sections 12 26 3 89 72 10
FFT 13 32 2 97 95 7
2-dim FIR �lter 3 6 3 94 42 2
ADPCM transcoder 18 36 12 93 31 19
LMS �lter 2 5 0 100 100 1
n complex updates 12 26 2 96 89 7
basic functions 2 4 2 76 40 3

GSM receiver 52 113 17 95 73 34
main bu�er ctrl 3 8 3 97 10 4

JPEG compression preproc ctrl 14 35 12 97 44 16
IDCT 41 100 5 97 85 79
downsampling 37 81 17 92 66 32
transcoding compression 4 8 2 85 67 4
IDCT 49 99 2 100 97 85

MPEG-2 motion vector decoding 24 58 7 94 80 20
DCT block decoding 24 54 18 83 59 41
motion comp prediction 48 127 13 100 89 38
quantization 11 22 11 76 47 12
grey scale coding 15 31 8 93 74 33

MPEG-4 bitstream functions 3 7 2 100 83 4
DCT coe� quantization 18 38 12 92 64 18

average 93 67

TABLE I
Experimental results for CSE register allocation

tivity in DSP software development. For irregular data
paths, the mapping of CSEs to registers or memory plays
an important role for code quality. While in previous work
CSEs are supposed to be kept in memory, we have pointed
out that in principle any special-purpose register may be
used for storing CSEs and we have proposed a new op-
timization algorithm which exploits this fact to improve
code quality. The eÆcacy has been demonstrated exper-
imentally for a widespread DSP. We expect that compa-
rable results can be achieved for other DSP architectures
also showing irregular data paths, which, however, might
require di�erent optimization parameters.
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