Code Selection for Media Processors with SIMD Instructions

Rainer Leupers

Department of Computer Science 12
University of Dortmund
44221 Dortmund, Germany
email: Rainer.Leupers@cs.uni-dortmund.de

Abstract — Media processors show special instruction setsde, so that porting an application to a new target processor
for fast execution of signal processing algorithms on differergquires significant programming effort.
media data types. They provide SIMD instructions, capable The contribution of this paper is a new code selection tech-
of executing one operation on multiple data in parallel withimique, capable of exploiting SIMD instructions when compil-
a single instruction cycle. Unfortunately, their use in coning plain ANSI C code. This allows to take full advantage of
pilers is so far very restricted and requires either assembifye media processor capabilities while still using machine-
libraries or compiler intrinsics. This paper presents a noviedependent source code. The paper is structured as fol-
code selection technique capable of exploiting SIMD instrulows. The next section mentions previous work on code se-
tions also when compiling plain C source code. It permits tection for embedded processors. After exemplifying the use
take advantage of SIMD instructions for multimedia applicaf SIMD instructions in section 3, we explain the details of

tions, while still using portable source code. the proposed code selection technique in sections 4 and 5.
Experimental results for existing media processors are given
1. Introduction in section 6.

In order to support the fast execution of computatior?. Related work
intensive multimedia application programs, dedicatestiia
processorsre available on the semiconductor market. These Most compilers use tree pattern matching with dynamic
machines provide architectural support for efficiently prasrogramming [1] for code selection. This technique uses an
cessing different data types on the same data path. Exampigsrmediate program representation consistingath flow
are the Te)gas Instruments C62xx, the PhlllpS Trimedia, aﬂées(DFTs)_ The pr0b|em of code selection is mapped to a
Intel's Pentium MMX architecture. _ roblem of covering DFTs by available instruction patterns.
Many media processors show a 32-bit data word |en9ﬁ)‘r-ee pattern matching with dynamic programming is capable

However, applications in the audio or video domain normalby computing an optimal covering of each DFT linear time. It
require only a precision of 16 or 8 bits, respectively, resulting ysed in code generator generators like "twig” and "olive”
in a potential waste of computational resources. Therefo €] which generate code selectors from a tree grammar de-
media processors show a special kind of machine instrégription of the machine instruction set. A tree grammar con-
tions, that permit to virtually split each full data register int@jsts of terminals, nonterminals (including a designated start
multiple subregistersand to perform identical computationssympol), and tree-like, cost-attributed ruies. Rules are used
on the subregisters in parallel. These instructions are ngiVdescribe the behavior of assembly instructions, while rule
commonly calledSIMD (single instruction, multiple data) in- costs induce a metric such as the execution time of an instruc-
structions SIMD instructions are very powerful for compu-jgn.
Fa“ons (?n m.ed|a data. HOWeVer, a major probl_em with SIMD However, tree pattern matching with dynamic program-
instructions is the missing support by C compilers. Standaiging is not directly applicable to generation of SIMD instruc-
code generation techniques are not capable of detecting @gns, since this in general requires to simultaneously cover
portunities for SIMD instructions due to a limited exploratiomytiple DFTs, instead of processing one DFT after another.
of the search space. Using plain C code for programming mghis means that code selection has to be performed on full
dia processors thus potentially results in huge losses in cefi@a-flow graphs (DFGs) instead of only DFTs as in tradi-
quality with respect to code size, performance and/or powgsnal compiler technology. This will become obvious in the
consumption. ,) next section, which exemplifies the use of SIMD instructions.

_One way to circumvent this problem is the use of "com- Spome work on code selection for DFGs has also been per-
piler intrinsics”, i.e. calls to compiler-known functions whichigrmed in the DSP area [2, 3, 4, 5]. Such techniques have
are expanded into specific assembly instructions. Anoth®sen designed to cope with the irregular data path structure
method is the use of hand-optimized assembly libraries. Us¢ DSP processors. However, code selection with SIMD in-
fortunately, both methods result in highly machine-specifigryctions has so far not been addressed. As a result, current

*This work has been supported by Agilent Technologies, USA. PublicROMpilers for media processors cannot directly exploit SIMD
tion: DATE 2000,©EDAA instructions when compiling C source code.

3. SIMD instructions loaded by a single 32-bit load instruction instead of two sep-
arate 16-bit loads, and the same applies to C[i] and C[i+1].
We call an instruction a SIMD instruction, if it performs g>Ince adjacent array elements are stored in adjacent memory
manipulation (arithmetic or logic operation, load or store) ¢pcations, this can be accomplished with two 32-bit load in-
data stored subregisters instead of full registers. For the §&gictions. After execution of "ADD2”, the results Afi] and
of SIMD instructions, the 32-bit data registers are consider&i*1] are located in the lower and upper halves of the des-
to be composed of either two 16-bit subregisters or four 8-§fiation register, and a single 32-bit store operation suffices
subregisters. Thus, in terms of the C programming languaéfe Write the two results back to memory. This is illustrated
any full register may store either four "char” data, two "short™ fig- 3. In total, the number of instructions required to exe-
data, or a single "int” at a time. In the following, for sakecute the vector addition can be reduced by 50 % when using
of simplicity, we will emphasize SIMD instructions on 16->IMD instructions.
bit data, although (as outlined later) the proposed technique memory
equally applies to 8-bit data.
Fig. 1 gives an example of the SIMD instruction "ADD2”

of the Tl C62xx. It performs two 16-bit additions in parallel 32-bit load B[]
and writes two results into the two subregisters of the desti- Bli+1]
nation register. While arithmetic SIMD instructions require
32-bitload | C[il
16 bits 16 bits 16 bits 16 bits | Cli+1]
‘ [ety | Bil | [civu [cil |
Alil
ADD2 Ali+1]
{]
| | | Al All |
’ ‘ ‘ 32-bit store
16 hits 16 bits

) . . Figure 3. Parallelization of vector addition with SIMD
Figure 1. TI C62xx instruction "ADD2” instructions

special hardware support, such as the suppression of carry
propagation, there are also "trivial” SIMD instructions like There are two major difficulties in exploiting SIMD in-
those performing logic operations (AND, OR, XOR, NOT).structions. First, parallel loading or storing of values located
In order to take full advantage of SIMD instructions, iin subregisters from/to memory requires to establish that the
is necessary, that the 16-bit or 8-bit data to be manipulate@mory address difference is correct. In our C compiler, we
are efficiently loaded from and stored into memory. Undeipply a standard data flow analysis technique to pointers in
certain conditions, one can use 32-bit instructions to loadder to determine those sets of operands that qualify for par-
operands and store results of SIMD instructions. As an exasilel loading and storing with 32-bit instructions.
ple, consider the piece of C code in fig. 2, which describes aA more difficult task is to correctly pack potentially par-
vector addition on short data. In this example, the loop bodylel instructions together during code generation, so as to
form SIMD instructions. Generating SIMD instructions on-
void f(short* A,short* B,short* C) the-fly only during the instruction scheduling and register al-

{int i, . : location phases, although possible, would be very difficult,
for (i =0; i <N i-+= 2) because a large number of constraints need to be obeyed. If,

{ Al =Bl +Clil, for instance, multiple values share a single 32-bit register,
Ali+1] = Bli+1] + C[i+1]; then their live ranges are tightly coupled. As a consequence,
} standard register allocation techniques, such as graph color-

ing [6], cannot be applied.
Instead, we prefer to generate SIMD instructions already
Figure 2. Source code for vector addition early in the code generation process duringtbde selec-
tion phasewhich maps the machine-independent intermedi-
has been unrolled once, so as to reveal the potential pa g representation of a program into machine-specific instruc-
lelism. lons. The generated code afterwards only operates on sym-
Using the above "ADD2” instruction, the two additions inP@li¢ 32-bit registers, so that existing instruction scheduling
the loop body could be executed in parallel. However, thid!d register allocation techniques can still be used.
requires that the operand pairs BJi], C[i] and BJi+1], C[i+1])
are loaded into the lower and upper halves of the argumehtDFG covering
registers, respectively Therefore, B[i] and B[i+1] must be

10n some processors this requires a memory alignment to word bouz -Our code selection teChmque operates on data flow graph

aries. We assume that an appropriate alignment can be ensured, either b{ltHeG) representations of basic blocks. Using full DFGs (in-
source code itself or by assembler directives. stead of separate DFTS) is necessary, since exploitation of

SIMD instructions frequently requires to pack together op- Note that all rules representing operations on subregisters

erations located in different DFTs. Each DFG nodeep- must not be considered as "stand-alone” instructions, since

resents an operation (arithmetic, logic, load, or store), a cahis would result in invalid code. The constraint system pre-

stant, or a variable, and each DFG edgem) denotes a data sented in section 5 ensures, that such rules can only be used

dependence between nodesand m. Note that a DFG in for coveringpairs of DFG nodes, in which case only a single

general may contain common subexpressions (CSEs) (no8#gD assembly instruction is emitted.

with fanout greater than one) and may consist of several non-The overall DFG covering process works as follows. The

connected subgraphs. A given DFG is partitioned into mulldFG is partitioned into DFTs by assignirgach CSE to a

ple DFTs by cutting the DFG at the CSE edges and compstmbolic register and replacing all uses of CSEs by read op-

ing optimal covers for each single DFT. Since media procesrations on that register. Then, all DFTs are separately cov-

sors tend to show a regular data path architecture, this deesd by means of tree pattern matching with dynamic pro-

not incur significant losses in code quality. However, thgramming. We use a modification of olive [1] to generate

"traditional” approach is not directly capable of generatingpe required tree pattern matcher from an instruction set de-

SIMD instructions, since this in general requires the consideription. Since olive in the original version only computes a

eration of multiple DFTs at a time. single optimal solution (with ties broken arbitrarily) for each
We overcome this problem by permitting the generatiddFT and thus only annotates a single ruleath DFTnhode,

of alternative solutionsluring tree pattern matching. Insteadve have modified olive in such a way, that alternative op-

of annotating only a single optimal rule &ach DFGnode, timal covers are retained during DFT covering. Our modi-

we annotate all optimal rules, including those for SIMD infied olive version annotatedl minimum cost derivationfor

structions, and only later determine the best rules globallgch nonterminaat the DFT nodes. Whether or not SIMD

for the whole DFG. In order to achieve this, we introduciastructions can be selected is decided only later globally for

dedicated nonterminal symbols in the tree grammar, whitie entire DFG.

denote the different possibilities of using a register, i.e. either

as a full 32-bit register or as two separate 16-bit registegs. .

As an example, consider instructions for addition on a C62§< Code selection

processor (all other arithmetic and logic SIMD instructions

are modeled in the same way). Instruction "ADD” adds two After DFG covering, the actual code selection phase de-

32-bit registers and also writes the result to a 32-bit registégrmines the detailed DFG node covers to be selected from

This can be expressed by the following rule, where nontéhe available alternatives. In this phase, the goal is to maxi-

minal symbol "reg” denotes a full register and "PLUS” is amize the use of SIMD instructions across the entire DFG. We

terminal symbol. solve this problem by transforming the code selection prob-
lem into an Integer Linear Program (ILP) formulation. For
reg: PLUS(reg,reg) each DFGnoden;, the DFG covering phase returns a set of

alternative rulesk(n;), which matchn; at minimum costs.

The SIMD instruction "ADD2” (fig. 1) simultaneously per—We use Boolean variables, to express that node; is (or

forms two 16-bit additions. We use two separate rules f

modeling the behavior of "ADD2”; IS not) covered by rule; € R(n;). A valid code selection
requires that eachode is covered by exactly one rule. There-
reg_lo: PLUS(reg_lo,reg_lo) fore, for eacthoden;, we impose the constraint
reg_hi: PLUS(reg_hi,reg_hi)
The nonterminals "redo” and "reg_hi” denote the lower and Z zij = 1
upper 16-bit subregisters of a full register. Both rules are ri€R(nq)

assigned the same cost value as the 32-bit version. As a con-

sequence, there exist three alternative optimal covers for allSelecting a certain rule; for some nodey; has implica-
DFG nodes representing a PLUS operation. Note that thiens on the covering of its children nodes in the DFT. If, for
rule costs for SIMD instructions are not counted twice. Rulestance, node; is covered by rule

costs are only considered during the DFG covering phase in

order to obtain alternative optimal DFT covers. During the reg_lo: PLUS(reg_lo,reg_lo)

subsequent code selection phase (section 5), which a'm?g%tn it must be ensured that the first and second child; of

maximizing the use of SIMD instructions, the rule costs a2 derived to nonterminal "rel”. i.e., the arguments of the

no longer required. f S . \
; ; _hi ; ; LUS operation reside in lower 16-bit subregisters. More
As mentioned earlier, 32-bit load/store instructions cajn nerally, let; € R(n;) be the rule selected for node, let

also be used to simultaneously load/store two 16-bit valu ; ;
For instance, a 32-bit load into a full register from an addreté‘niiebe them-th child ofn; in a DFT, and let; € R(ny) be

i i i i rule selected fat;. Sinceny is them-th child ofn;, the
pointed to by some other register is described by the rule nonterminal on the left hand side (LHS)ofmust be equal to

reg: LOAD_INT(reg) them-th nonterminal, sayt,,, on the right hand side of;.
Let R, (nx) C R(ni) denote the set of rules for ny, such

Similar to the above "ADD2” instruction, we use two addijpat | HS6) = nt... Then. the following constraint expresses
tional rules to describe the use of a 32-bit load for SIM e depe%enﬁemb'etweebandnk: 9 P

instructions:

reg_lo: LOAD_SHORT(reg) vig <>
reg_hi: LOAD_SHORT(reg) r€Rm (1)

The next class of constraints concerns code selection farde contained in a SIMD pair can potentially be mapped
common subexpressions (CSEs) in the DFG. As alreattya SIMD instruction. However, it must be guaranteed that
mentioned, each CSE is strictly assigned to a register, amty selected SIMD instruction actually coverpair of DFG
we insert register read/write nodes (using dedicated grammades and that any DFG node is coveredabymostone
terminals) into the DFG so as to replace the CSE edges. Sisé®ID instruction. In order to express these conditions in
we are dealing with general-purpose registers, it is not necésrms of ILP constraints, we introduce one auxiliary Boolean
sary to commit to certain physical registers during code sele@riable y;; for each SIMD pair(n;, n;). The setting of
tion, but the use of symbolic registers, which can be mappgd = 1 denotes that; andn; are packed into a single SIMD
to physical registers only later, is sufficient. However, theiastruction, i.e.,n; operates on the upper subregister and
stillmay be alternatives for storing 16-bit "short” CSEs, sinceperates on the lower subregister of the same full register.
these may reside in either full registers or subregisters. ThisFor anyn; let Ry;(n;) C R(n;) and R, (ni) C R(n;)
should not be neglected, since SIMD instructions can sormienote the sets of rules far; operating on an upper or a
times also be exploited for parallel computation of CSEs. lawer subregister, respectively.#f is covered by some rule
our tree grammar model, 16-bit CSEs can be written to aitdR; (n;), then there must be a node, such thatn;, n;) €
read from either "reg”, "rego”, or "reg_hi". The correspond- P, andn; is covered by a rule imk;,(n;). Conversely, if
ing rules are ("S” is the grammar start symbol): n; is covered by some rule i, (n;), then there must be
a noden;, such that(n;,n;) € P, andn; is covered by a

g wggg-g:gg;gggggg o) /*/* r£1 */*/ rule in Ry,;(n;). For anyn; contained in a SIMD pair, this is
S: WRITE_SHORT CSE(reg_hi) /* 13 */ modeled by two constraints:
reg: READ_SHORT_CSE I or4 ¥ vi; = Tik
reg_lo: READ_SHORT_CSE [15 % ,,(nzn:) o e;(n) Z
reg_hi: READ_SHORT_CSE % 16 * JAn RE TR
A correct code selection requires that the locations for Z Yii = Z Tik
a CSE definition and its uses are identical across the en- Ji(njni)eP ri€Ro (1)

tire DFG. If, for instance, rules is selected for some node

n; defining a CSE, then all uses; of that CSE have to Since the right hand sides of the equations are always less
be covered by rule;. Conversely, the selection of for OF €qualto 1, itis also guaranteed, that any nedis packed

n; enforces the selection of, for n,. In general, for any INt0 at most one SIMD instruction.

"short” CSE definition/use paifn;, n;) the following three The last class of constraints is required for avoiding code
constraint& have to be specified: T selection decisions leading to scheduling deadlocks. For any

DFG noden;, letpred(n;) denote the set of nodes that must
o be scheduled before; (e.g. due to data or output depen-
Til = j4, Tiz = L45, iz = Lje dence), and letucc(n;) be the set of nodes to be scheduled

Another class of constraints ensures a valid packingrg?l\e/lr[)n?' tW h(ta.ne\l/er adS:Ir\]/ID p.al(né',l&j[)) IS _covered b);a
instructions to SIMD instructions. For this purpose, we i,/ ° Instructiony, and nere 1S a paimy;, i) € P
troduce the notion oSIMD pairs A pair (n;, n;) of DFG Wit n € suce(ng) andn; € pred(n;), or vice versa, then it

: L : " ust be ensured, thag, andn; arenot packed into another
ggtcii;iseg: called a SIMD pair, if the following conditions arg]IMD instruction/,. Otherwise, the resulting code could not

be scheduled, sindg would need to be executed both before

e There is no scheduling precedence betwegandn; and after/;. Forany SIMD pail(n;, n;), letX;; C P denote
the set of SIMD pairgny, n;), such thaty, € suec(n;) and

¢ n; andn; have the same operator n € pred(n;), orny € pred(n;) andn; € suce(n;). Then,

for (n;, n;) and any(ng, n;) € X;;, we specify the following

¢ According to the tree grammar rules, may be located constraint to avoid scheduling deadlocks:

in an upper subregister amg may be located in a lower
subregister. vty <1

¢ If n; andn; represent load or store operations of 16-bit . .
values, where:; anda; are the corresponding memory For an optimized code selection under the above correct-
addresses. then the diﬁerertgea» equals the number N€SS constraints, the number of selected SIMD instructions

- hi ust be maximized across the entire DEG For any node

of memory words occupied by a 16-bitvalue (.9- 216 ey 1,y 2 Ry () () R(n) denote the subset
of rules forn; operating on a subregister. Then, we maximize

The latter condition ensures, that parallel loads and storegfg following objective function:

subregisters implemented by SIMD instructions actually re-

fer to adjacent data in memory. f= Z Z 24

The set? of all SIMD pairs can be computed from the ni€G reS(ny)
information generated by DFG covering. The required run-

time is quadratic in the number of DFG nodes. Any DF@pjs task can be performed with any ILP solver. For our

2These can also be replaced by unifying the variables on the left and rigiP€riments (section 6) we have usedstgve” [9]. The 0/1
hand sides in the ILP. inding of thex;; solution variables accounts for the detailed

code selection and thus allows to emit assembly code for {i#R filter” and "image compositing” were more significant
DFG. as compared to the C62xx. This is due to the more powerful
The code selection technique described above can be &i84D capabilities of the Trimedia (e.g. special instructions
ily scaled to SIMD instructions operating on 4 subregistefer FIR computations), which become particularly obvious
of 8 bit each. The necessary changes mainly concern fbecertain algorithms on 8-bit data. As shown for the "vector
nonterminals for subregisters and the definition of ILP var&dd” and "FIR filter” examples, the use of SIMD instructions
ables. For instance, we have to &#&D quadruplesnstead for 8-bit "char” data types results in a reduction of instruction
of SIMD pairs, and the decision variablgs have to be re- count of 75 % and 50 %, respectively.
placed by four-index variableg;;x;. Naturally, due to the Even though we partially use ILP for code selection, the
larger number of variables, code selection for 8-bit subregrsmtime consumed by our approach is moderate if the DFGs

ters requires more runtime than in the case of 16 bits. to be compiled are not too large. The largest example (FIR
filter on char data), whose DFG comprises 95 nodes, took
6. Experimental results 26.5 CPU seconds. We believe that thisatxeptable for

embedded applications and systems-on-a-chip, where code

uality is of higher concern than compilation speed. Exhaus-

/e compilation times can be avoided (possibly at the ex-
se of lower code quality) by specifying a threshold value

[the maximum size of DFGs passed to the code selector at
me.

Using the techniques described above, we have imp
mented code selectors for the Texas Instruments C62xx
the Philips Trimedia TM1000. We have compiled ANSI
source codes into assembly code for several signal proc
ing kernel routines, which mainly consist of one finite loop.
"vector add” is the example from fig. 2, "image composit- .
ing” is taken from [8], and the remaining sources are frorh. Conclusions
the DSPStone suite [7]. In order to ensure that exploitation
of SIMD instructions takes place without machine-specific SIMD instructions are so far not really exploited by com-
source code constructs, the sets of C source codesidesre pilers for media processors. Taking advantage of such in-

tical for both target processors. structions is only possible, if processor-specific assembly
routines or compiler intrinsics are used, resulting in low
| source [fype [unroll [noSIMD [SIMD [CPU sec] portability of software. The presented code selection tech-
| —_———— T'1C62XX - } — | nique is capable of exploiting SIMD instructions without the
IIR filter short | O 21 17 29 need for processor-specific code. Our approach builds on the
cgp&/gmggn gﬂgﬁ ! 185 8 8-3 classical tree-based code selection paradigm, but it generates
N complexupdates| short | 1 20 16 30 alternative covers. The detailed code selection is performed
image compositing| short | 1 14 11 3.1 only later, when enough information for generation of SIMD

| Trimedia TM1000 | instructions for an entire data flow graph is available. The

vector add short 1 8 4 0.7 H ili i
R fiter ot | o > 2 el applicability has been demonstrated experimentally by com-
convolution short | 1 £ g 09 piling the same set of C sources for two different media pro-
ilter short . it 1 i i
N complex updates short | 1 0 20 a7 cessors and exploiting SIMD instructions in both cases.
image compositing| short 1 14 7 3.2
vector add char 3 16 4 5.0
FIR filter char | 3 36 18 265 References
Table 1. Experimental results [1] A.V. Aho, M. Ganapathi, S.W.K TjiangCode Generation Using Tree

Matching and Dynamic ProgrammingCM Trans. on Programming
Languages and Systems 11, no. 4, 1989, pp. 491-516

The experimental results for the TI C62xx are listed in[2] ﬁ _Liaoé_s. Decvadas_, Kf Kegtzder,ss_. Tj(isamgnstru%ion gel?ction
the upper part of table 1. The unrolling factor specifies the Using Binate Covering for Code Size Optimizafidnt. Conf. on
number of duplications of the loop body, which isaessary Computer-Aided Design (ICCAD), 1995, pp. 393-399
to exhibit enough parallelism for exploitation of SIMD in- [3] G. Araujo, S. Malik, M. Lee:Using Register Transfer Paths in Code
structions. Columns 4 and 5 give the number of generated ~Generation for Heterogeneous Memory Register Architeciia@sl
machine instructions for the loop body without and with ex- esign Automation Conference (DAC),
ploitation of SIMD instructions. Column 6 mentions the re- [4] R. Leupers, P. Marwedelnstruction Selection for Embedded DSPs
quired CPU time (Sun Ultra-1, including both DFG covering with Complex Instruction€European Design Automation Conference

, LA A ; EURO-DAC), 1
and ILP solving) when using SIMD instructions. (EURO-DAC), 1996

The Tl C62xx shows a comparatively limited support for [5] S.Bashford, R. Leuper€onstraint Driven Code Selection for Fixed-
SIMD instructions, essentially parallel additions and subtrac- Point DSPs36th Design Automation Conference (DAC), 1999
tions on 16-bit subregisters. Therefore, all experiments havgs] G.J. Chaitin: Register Allocation and Spilling via Graph Coloring
been carried out with "short” data types. The maximum re- ACM SIGPLAN Symp. on Compiler Construction, 1982, pp. 98-105
duction in the instruction count (50 %) was obtained for the[7} v. zivojnovic, J.M. Velarde, C. Schkjer, H. Meyr: DSPStone — A
"vector add” example, since using the C62xx SIMD instruc- =~ DSP-oriented Benchmarking Methodologt. Conf. on Signal Pro-
tions permits to unroll the loop once without increasing the cessing Applications and Technology (ICSPAT), 1994
code size. The lower part of table 1 shows the corresponding) A. peleg, S. Wilkie, U. Weiser:Intel MMX for Multimedia PCs
results for the Trimedia architecture. While for some source =~ Comm. of the ACM, vol. 40, no. 1, 1997
codes, such as the "lIR filter” and "convolution”, SIMD in- t{g]

. . ; - Eindhoven University of Technology: ftp.es.ele.tue.nl/pulstyve/
structions were not applicable, the code quality gains fo b 9y-1tp P

