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Code selection is an important task in code generation for programmable processors, where the
goal is to �nd an eÆcient mapping of machine-independent intermediate code to processor-speci�c
machine instructions. Traditional approaches to code selection are based on tree parsing, which
enables fast and optimal code selection for intermediate code given as a set of data-
ow trees.
While this approach is generally useful in compilers for general-purpose processors, it may lead to
poor code quality in the case of embedded processors. The reason is that the special architectural
features of embedded processors require to perform code selection on data-
ow graphs, which are
a more general representation of intermediate code. In this paper, we present data-
ow graph
based code selection techniques for two architectural families of embedded processors: media
processors with support for SIMD instructions and �xed-point DSPs with irregular data paths.
Both techniques exploit the fact that, in the area of embedded systems, high code quality is a much
more important goal than high compilation speed. We demonstrate that certain architectural
features can only be utilized by graph based code selection, while in other cases this approach
leads to a signi�cant increase in code quality as compared to tree based code selection.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors|code gen-

eration

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: code selection, data-
ow graphs, SIMD instructions, irregular
data paths, embedded processors

1. INTRODUCTION

Code generation is the problem of mapping an intermediate representation (IR)
of a given source program to an equivalent machine program for a given target
processor. This involves the subtasks of code selection, register allocation, and
instruction scheduling. In this paper, we primarily focus on code selection, where
the goal is to �nd an eÆcient mapping of an IR to machine instructions without
considering detailed register allocation and instruction scheduling.
Code selection can be visualized as a problem of pattern matching between a data-


ow based IR and available instruction patterns. An example is shown in �g. 1,
where part a) shows the data-
ow tree (DFT) representation of a computation, part
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Fig. 1. Visualization of code selection

b) shows three sample instruction patterns, and part c) shows a possible covering
of the DFT by instruction pattern instances, where each instance matches a certain
subtree of the DFT.
There is an eÆcient and optimal algorithm for code selection [1] which is based

on tree parsing. Tree parsing can be implemented by tree pattern matching and
dynamic programming (see [2] for an overview). Given a certain cost metric for
instruction patterns (such as size or execution cycles), tree parsing computes opti-
mal DFT covers by instructions patterns, such as the one shown in �g. 1 c). More
formally, tree parsing computes an optimal derivation of a DFT w.r.t. a given tree
grammar speci�cation. This algorithm, a variant which is used in many code gen-
erators for general-purpose processors, requires only linear time in the DFT size,
and its has largely replaced earlier tree-oriented code generation techniques, such
as [3; 4].
However, tree parsing also requires that the IR is actually given in the form of

DFTs. Furthermore, optimality is only guaranteed, if potential parallelism at the
instruction level is neglected.
These restrictions lead to two problems when applying standard tree parsing to

certain classes of embedded processors.

(1) If the target processor instruction set allows for instruction level parallelism,
which is commonly the case for digital signal processors (DSPs), then the code
selected by tree parsing may strongly deviate from the optimum. An example
is given in �g. 2, where the DFT represents a sum-of-products computation.
If the target processor o�ers ADD, MULT, and MAC (multiply-accumulate)
instructions, where the latter execute an addition and a multiplication in par-
allel, then the optimum DFT cover is that one shown in �g. 2 a). However, as
tree parsing is not capable of detecting potential parallelism, it generates the
cover shown in �g. 2 b), which requires 7 instead of 5 instructions.

(2) If the IR code to be compiled contains common subexpressions (CSEs), then its
data-
ow based representation has the form of a general data-
ow graph (DFG),
whose nodes, in contrast to DFTs, may have a fanout larger than one. Let us
assume that re-computation of CSEs on demand is always more expensive that
computing the CSE once and keeping it in a register during its lifetime. Then,
the common approach to make tree parsing applicable is to break the DFG at
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Fig. 3. Decomposition of a DFG into DFTs

the CSEs, such that the DFG is transformed into a set of DFTs (�g. 3), and the
CSE is communicated between DFTs via register write/read operations. For
RISC-like processors with homogeneous register �les, this is usually a reason-
able approach. However, this is not true for many DSPs which frequently show
an irregular data path with special-purpose registers (or register �les) of very
limited storage capacity. For such architectures, the routing of values between
registers via "move" instructions may signi�cantly contribute to the amount of
code generated. The common approach in DSP compilers is to route a CSE
through the memory, since in DSPs the memory is the only resource capable
of storing values for a relatively long time. However, in certain situations, it
might be much more eÆcient to hold a CSE in a certain special-purpose reg-
ister. These opportunities cannot be directly detected with tree parsing, since
the interface for transporting CSEs between DFTs must be �xed in advance.
In addition, the opportunity of using complex instructions for CSEs (such as a
MAC for the CSE in �g. 3) is excluded in advance when splitting a DFG into
DFTs.

Since high code quality is of great importance for embedded processors, special
code selection techniques, tuned for the speci�c architectures of embedded proces-
sors, are obviously required. This paper presents two such code selection techniques.
These techniques are complementary in the sense that they have been designed for
di�erent families of embedded processors. However, the common approach is to
perform code selection on complete DFGs instead of (decomposed) DFTs. In this
way, the problems mentioned above can be circumvented, and better code can be
generated. A further common characteristic of the two presented techniques is that,
in a �rst phase, alternative solutions are generated, while the detailed code selection
is performed only later when suÆcient global information about an entire DFG is
available.
The structure of the paper is as follows. In the next section, we discuss related

work in the area of code selection for embedded processors. In section 3, we describe
a graph based code selection technique for media processors showing a special kind
of instruction level parallelism in the form of so-called SIMD (single instruction,
multiple data) instructions. We demonstrate that graph based code selection is
necessary for exploiting SIMD instructions, and we present results for two existing
media processors. Section 4 deals with code selection for DSPs with irregular data
paths. We present a code selection technique, based on the paradigm of constraint
logic programming, which is capable of optimal code selection for DFGs. Due to the



� 4

high runtime requirements, its applicability is restricted to small to medium size
DFGs. Therefore, we also present a heuristic variant that produces near-optimal
results in comparatively short time, and we quantify the increase in code quality
as compared to the tree parsing technique. Finally, conclusions are given.

2. RELATED WORK

As already mentioned, DFT based code selection by the tree parsing algorithm [1]
is the technique of choice in many compilers for general-purpose processors, where
high compilation speed plays a major role.
Since throughout this paper we will refer to tree parsing several times, we will

give a simpli�ed summary of the technique here. The instruction set of the target
processor needs to be described as a tree grammar

G = (�T ;�N ; S;R; c)

where �T is a set of terminals, �N is a set of nonterminals, S 2 �N is the start
symbol, R is a set of rules, and c : R! IN0 is a function that assigns a cost value to
each rule in R. �T is a representation of the nodes occurring in a DFT (variables,
constants, and operators), while �N is primarily used to model hardware compo-
nents that can store data (registers, memories). Additionally, nonterminals are
used for factoring common parts of instruction patterns. The instruction patterns
themselves are modeled as rules in R. Each such rule describes the behavior of an
instruction. For instance, in order to model a MPY instruction which multiplies
two register contents and writes the result to a register, the following rule could be
used:

reg: MULT(reg,reg)

Here, MULT is a terminal representing the multiply operator, and reg is a nonter-
minal representing a (general-purpose) register. Function c would be used to assign
a cost value to that rule. Another example is the rule

dft: STORE(reg,PLUS(reg,offs))

which describes a store from a register to a memory location addressed by another
(pointer) register plus an o�set. Here, offs is another nonterminal that factors
di�erent o�set modes (such as long/short constant or register), while in this case
dft is the grammar start symbol. Using the start symbol at the left hand side of a
rule denotes that this rule is expected to match the root node of a DFT, as well as
possibly some of its children nodes.
The tree parsing algorithm computes an optimal derivation of a given DFT from

the start symbol of the tree grammar, while using function c as the cost metric.
The main idea is, that an optimal derivation of any subtree ST of a given DFT T
can be computed by considering combinations of three (usually quite small) sets:
the rules matching the root of ST , as well as the optimal derivations for the left and
right subtrees of ST w.r.t. each grammar nonterminal. Therefore, the optimization
paradigmof dynamic programming is applicable, and this is what makes tree parsing
eÆcient. Another important advantage of tree parsing is its easy retargetability:
Modi�cations of the instruction set directly translate into modi�cations of the tree
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grammar, and retargeting is supported by tools (e.g. twig [1] and iburg [5]) which
automatically generate code selector C source code for a given tree grammar.
Due to the limitations of tree parsing mentioned above, several recent contribu-

tions have dealt with the generalization of DFT based code selection towards DFGs.
In [6], the tree parsing technique has been generalized for DFGs, but the approach
is restricted to regular data path architectures and does not handle instruction-level
parallelism. Other DFG based techniques [7; 8] have been speci�cally designed for
DSP processors with irregular architectures. However, they do not adequately solve
the problem of eÆciently routing CSEs, but assume that CSEs are strictly stored
into memory. An approach to code selection with complex instructions (such as
the MAC from �g. 2 a) has been described in [9] which, however, is still restricted
to DFTs.
The main contributions of this paper, as compared to previous work, are twofold:

First, in section 3, we describe a code selection technique, capable of exploiting
SIMD instructions. To our knowledge, code selection with SIMD instructions, which
is needed for recent families of media processors, has so far not been addressed in
previous work. As a consequence, current compilers require the use of assembly
libraries and/or compiler intrinsics to exploit SIMD instructions. However, this
method results in comparatively high programming e�ort and low portability of
source code. In contrast, the technique proposed in this paper works for plain ANSI
C source code without machine-speci�c language extensions or assembly libraries.
Second, in section 4, we provide a technique for exact code selection for DFGs,
capable of optimally exploiting special-purpose registers and complex (chained)
instructions. This is an extension of work presented in [10], where primarily the
integration of code selection with register allocation and instruction scheduling has
been described.

3. CODE SELECTION FOR MEDIA PROCESSORS

In order to support the fast execution of computation-intensive multimedia appli-
cation programs, dedicated media processors are available on the semiconductor
market. These machines provide architectural support for eÆciently processing
di�erent data types on the same data path. Examples are the Texas Instruments
C6201 [11], the Philips Trimedia [12], and { to a certain extent { Intel's Pentium
MMX architecture [13].
Many media processors show a 32-bit data word length. However, applications

in the audio or video domain normally require only a precision of 16 or 8 bits,
respectively, resulting in a potential waste of computational resources. Therefore,
media processors show a special kind of machine instructions, that permit to virtu-
ally split each full data register into multiple sub-registers and to perform identical
computations on the sub-registers in parallel. These instructions are now commonly
called SIMD (single instruction, multiple data) instructions1.
A major problem with SIMD instructions is the missing capability of C compilers

to exploit such instructions due to the lack of dedicated code selection techniques.
As already mentioned, this problem can be circumvented by using compiler intrin-

1In the literature, there are sometimes other terms for this feature, such as split-ALU instructions,
short vector instructions, or sub-word parallelism.
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sics or hand-optimized assembly libraries. Also special language extensions have
been proposed [14]. The expense, however, is a high programming e�ort and low
portability of the source code. Our goal, therefore, is to exploit SIMD instructions
in code selection for plain ANSI C source code.

3.1 SIMD instructions

We call an instruction a SIMD instruction, if it performs a manipulation (arithmetic
or logic operation, load or store) of data stored sub-registers instead of full registers.
For the use of SIMD instructions, the 32-bit data registers are considered to be
composed of either two 16-bit sub-registers or four 8-bit sub-registers (�g. 4). Thus,
in terms of the C programming language, any full register may store either four
"char" data, two "short" data, or a single "int" at a time. In the following, for
sake of simplicity, we will emphasize SIMD instructions on 16-bit data, although
the proposed technique can be easily scaled to 8-bit data as well.
Fig. 5 gives an example of the SIMD instruction "ADD2" of the TI C6201. It

performs two 16-bit additions in parallel and writes two results into the two sub-
registers of the destination register. While arithmetic SIMD instructions require
special hardware support, such as the suppression of carry propagation, there are
also "trivial" SIMD instructions like those performing logic operations (AND, OR,
XOR, NOT).
In order to take full advantage of SIMD instructions, it is necessary, that the

16-bit or 8-bit data to be manipulated are eÆciently loaded from and stored into
memory. Under certain conditions, one can use 32-bit instructions to load operands
and store results of SIMD instructions. As an example, consider the piece of C code
in �g. 6, which describes a vector addition on short data. In this example, the loop
body has been unrolled once, so as to reveal the potential parallelism.
Using the above "ADD2" instruction, the two additions in the loop body could

be executed in parallel. However, this requires that the operand pairs B[i], C[i] and
B[i+1], C[i+1] are loaded into the lower and upper halves of the argument registers,
respectively2. Therefore, B[i] and B[i+1] must be loaded by a single 32-bit load
instruction instead of two separate 16-bit loads, and the same applies to C[i] and

2On some processors this requires a memory alignment to word boundaries. We assume that an
appropriate alignment can be ensured by compiler or assembler directives.
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void f(short* A,short* B,short* C)

{ int i;

for (i = 0; i < N; i += 2)

{ A[i] = B[i] + C[i];

A[i+1] = B[i+1] + C[i+1];

}

}

Fig. 6. Source code for vector addition
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Fig. 7. Parallelization of vector addition with SIMD instructions

C[i+1]. Since adjacent array elements are stored in adjacent memory locations, this
can be accomplished with two 32-bit load instructions. After execution of "ADD2",
the results A[i] and A[i+1] are located in the lower and upper half of the destination
register, and a single 32-bit store operation suÆces to write the two results back to
memory. This is illustrated in �g. 7. In total, the number of instructions required to
execute the vector addition can be reduced by 50 % when using SIMD instructions.

There are two major diÆculties in exploiting SIMD instructions. Firstly, parallel
loading or storing of values located in sub-registers from/to memory requires to
establish that the memory address di�erence is correct. In our C compiler, we apply
a standard global data 
ow analysis technique to pointers in order to determine
those sets of operands that qualify for parallel loading and storing with 32-bit
instructions.
A more diÆcult task is to correctly pack potentially parallel instructions to-

gether during code generation, so as to form SIMD instructions. Generating SIMD
instructions on-the-
y only during the instruction scheduling and register alloca-
tion phases, although possible, would be very diÆcult, because a large number of
constraints need to be obeyed. If, for instance, multiple values share a single 32-bit
register, then their live ranges are tightly coupled. As a consequence, standard
register allocation techniques, such as graph coloring [15], cannot be applied.
Instead, we propose to generate SIMD instructions already early in the code gen-

eration process during the code selection phase. The generated code afterwards only
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operates on (symbolic) full 32-bit registers, so that existing instruction scheduling
and register allocation techniques can still be used.

3.2 Generation of alternative DFG covers

Our code selection technique operates on a DFG representation of basic blocks.
Using full DFGs (instead of separate DFTs) is necessary, since exploitation of SIMD
instructions frequently requires to pack together operations located in di�erent
DFTs. The DFGs are generated by means of the LANCE ANSI C frontend [16].
A given DFG is partitioned into multiple DFTs by cutting the DFG at the CSE

edges and computing optimal covers for each single DFT. Since media processors
tend to show a regular data path architecture, this does not incur signi�cant losses in
code quality. However, this standard approach is not directly capable of generating
SIMD instructions, since this in general requires the consideration of multiple DFTs
at a time.
We solve this problem by permitting the generation of alternative solutions during

tree pattern matching. Instead of annotating only a single optimal solution (i.e.,
a grammar rule matching at minimum cost) to each DFG node, we annotate all
optimal rules, including those for SIMD instructions, and only later determine
the best rules globally for the whole DFG. In order to achieve this, we introduce
dedicated nonterminal symbols in the tree grammar, which denote the di�erent
possibilities of using a register: either as a full 32-bit register or as two separate
16-bit registers. As an example, consider instructions for addition on a C6201
processor. Instruction "ADD" adds two 32-bit registers and also writes the result
to a 32-bit register. This can be expressed by the following tree grammar rule,
where nonterminal reg denotes a full register.

reg: PLUS(reg,reg)

The SIMD instruction "ADD2" (�g. 5) simultaneously performs two 16-bit addi-
tions. We use two separate rules for modeling the behavior of "ADD2":

reg_lo: PLUS(reg_lo,reg_lo)

reg_hi: PLUS(reg_hi,reg_hi)

The nonterminals "reg lo" and "reg hi" denote the lower and upper 16-bit sub-
registers of a full register. Both rules are assigned the same cost value as the 32-bit
version. As a consequence, there exist three alternative optimal covers for all DFG
nodes representing a PLUS operation. All other instructions that qualify for a
SIMD execution mode (arithmetic, logic, load, store) are modeled similarly.
Note that the rule costs for SIMD instructions are not counted twice. Rule costs

are only considered during the DFG covering phase in order to obtain alternative
optimal DFT covers. During the subsequent instruction packing phase described
below, which aims at maximizing the use of SIMD instructions, the rule costs are
no longer required. Additionally, rules representing operations on sub-registers may
not be considered as "stand-alone" instructions, since this would result in invalid
code. The constraint system presented in the following subsection ensures, that
such rules can only be used for covering pairs of DFG nodes, in which case only a
single SIMD assembly instruction is emitted.
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The overall DFG covering process works as follows. The DFG is partitioned into
DFTs by assigning each CSE to a symbolic register and replacing all uses of CSEs
by read operations on that register. Then, all DFTs are separately covered by
means of an extended tree parsing technique (cf. section 2): We use a modi�cation
of the tool olive (a variant of twig [1]) to generate the required code selector from
an instruction set tree grammar. Since olive in the original version only computes
a single optimal solution (with ties broken arbitrarily) for each DFT and thus only
annotates a single rule at each DFT node, we have modi�ed the tool in such a way,
that alternative optimal covers are retained during DFT covering. Our modi�ed
olive version annotates all minimum cost derivations for each nonterminal at the
DFT nodes. Whether or not SIMD instructions are selected is decided only later
globally for the entire DFG.

3.3 Packing of SIMD instructions

After DFG covering we determine the detailed DFG node covers to be selected
from the available alternatives. In this phase, the goal is to maximize the use of
SIMD instructions across the entire DFG. We solve this problem by transforming
the code selection problem into a (quite compact) Integer Linear Program (ILP)
formulation.
For each DFG node ni, the DFG covering phase returns a set of alternative rules

R(ni), which match ni at minimum costs. We use Boolean variables xij to express
that node ni is (or is not) covered by rule rj 2 R(ni). A valid code selection
requires that each node is covered by exactly one rule. Therefore, for each node ni,
we impose the constraint

X

rj2R(ni)

xij = 1

3.4 Constraints due to DFT edges

Selecting a certain rule rj for some node ni has implications on the covering of its
children nodes in the DFT. If, for instance, node ni is covered by rule

reg_lo: PLUS(reg_lo,reg_lo)

then it must be ensured that the �rst and second child of ni are derived to non-
terminal "reg lo", i.e., the arguments of the PLUS operation reside in lower 16-bit
sub-registers. More generally, let rj 2 R(ni) be the rule selected for node ni, let nk
be the m-th child (counting left-to-right) of ni in a DFT, and let rl 2 R(nk) be the
rule selected for nk. Since nk is the m-th child of ni, the nonterminal on the left
hand side (LHS) of rl must be equal to the m-th nonterminal, say ntm, on the right
hand side of rj. Let Rm(nk) � R(nk) denote the set of rules rl for nk, such that
LHS(rl) = ntm. Then, the following constraint expresses the dependence between
ni and nk:

xij �
X

rl2Rm(nk)

xkl

3.5 Constraints for common subexpressions

The next class of constraints concerns code selection for common subexpressions
(CSEs) in the DFG. As already mentioned, each CSE is strictly assigned to a reg-
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ister, and we insert register read/write nodes (using dedicated grammar terminals)
into the DFG so as to replace the CSE edges.
There may exist alternative covers for storing 16-bit "short" CSEs, since these

may reside in either full registers or sub-registers. This should not be neglected,
since SIMD instructions can sometimes also be exploited for parallel computation
of CSEs. A correct code selection requires that the locations (i.e., either upper,
lower, or full register) for a CSE de�nition and its uses are identical across the
entire DFG. Thus, for any "short" CSE de�nition/use pair, the ILP model contains
constraints that enforce the assignment of the de�nition and the use to the same
(sub-)register. This is achieved by simply unifying the corresponding xij variables
of the de�nition and the use.

3.6 Constraints for selecting SIMD instructions

Another class of constraints ensures a valid packing of instructions to SIMD instruc-
tions. For this purpose, we introduce the notion of SIMD pairs. A pair (ni; nj) of
DFG nodes is called a SIMD pair, if the following conditions are satis�ed:

|There is no scheduling precedence between ni and nj

|ni and nj have the same operator

|According to the tree grammar rules, ni may be located in an upper sub-register
and nj may be located in a lower sub-register.

|If ni and nj represent load or store operations of 16-bit values, where ai and aj
are the corresponding memory addresses, then the di�erence aj � ai equals the
number of memory words occupied by a 16-bit value (e.g. 2 for a byte-addressable
memory).

The latter condition ensures, that parallel loads and stores of sub-registers imple-
mented by SIMD instructions actually refer to adjacent data in memory.
The set P of all SIMD pairs can be computed from the information generated

by DFG covering. The required runtime is quadratic in the number of DFG nodes.
Any DFG node contained in a SIMD pair can potentially be mapped to a SIMD
instruction. However, it must be guaranteed that any selected SIMD instruction
actually covers a pair of DFG nodes and that any DFG node is covered by at most
one SIMD instruction.
In order to express these conditions in terms of ILP constraints, we introduce one

auxiliary Boolean variable yij for each SIMD pair (ni; nj). The setting of yij = 1
denotes that ni and nj are packed into a single SIMD instruction, i.e., ni operates
on the upper sub-register and nj operates on the lower sub-register of the same full
register.
For any ni let Rhi(ni) � R(ni) and Rlo(ni) � R(ni) denote the sets of rules for

ni operating on an upper or a lower sub-register, respectively. If ni is covered by
some rule in Rhi(ni), then there must be a node nj , such that (ni; nj) 2 P , and nj
is covered by a rule in Rlo(nj). Conversely, if ni is covered by some rule in Rlo(ni),
then there must be a node nj , such that (nj; ni) 2 P , and nj is covered by a rule in
Rhi(nj). For any ni contained in a SIMD pair, this is modeled by two constraints:

X

j:(ni;nj)2P

yij =
X

rk2Rhi(ni)

xik
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j:(nj;ni)2P

yji =
X
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xik

Since the right hand sides of the equations are always less or equal to 1, it is also
guaranteed, that any node ni is packed into at most one SIMD instruction.

3.7 Constraints for preserving schedulability

The last class of constraints is required for avoiding code selection decisions leading
to scheduling deadlocks. For any DFG node ni, let pred(ni) denote the set of nodes
that must be scheduled before ni (e.g. due to data or output dependence), and let
succ(ni) be the set of nodes to be scheduled after ni. Whenever a SIMD pair
(ni; nj) is covered by a SIMD instruction I1, and there is a SIMD pair (nk; nl) 2 P
with nk 2 succ(ni) and nl 2 pred(nj), or vice versa, then it must be ensured, that
nk and nl are not packed into another SIMD instruction I2 (�g. 8). Otherwise,
the resulting code could not be scheduled, since I2 would need to be executed both
before and after I1. For any SIMD pair (ni; nj), letXij � P denote the set of SIMD
pairs (nk; nl), such that nk 2 succ(ni) and nl 2 pred(nj), or nk 2 pred(ni) and
nl 2 succ(nj). Then, for (ni; nj) and any (nk; nl) 2 Xij, we specify the following
constraint to avoid scheduling deadlocks:

yij + ykl � 1

3.8 Objective function

For an optimized code selection under the above correctness constraints, the number
of selected SIMD instructions must be maximized across the entire DFG G. For
any node ni, let S(ni) = Rhi(ni)[Rlo(ni) � R(ni) denote the subset of rules for ni
operating on a sub-register. Then, we maximize the following objective function:

f =
X

ni2G

X

rj2S(ni)

xij

This task can be performed with any ILP solver. For our experiments we have
used "lp solve" [17]. The 0/1 binding of the xij solution variables accounts for the
detailed code selection and thus allows to emit assembly code for the DFG.

3.9 Experimental results

For an experimental evaluation, we have implemented code selectors for the Texas
Instruments C6201 [11] and the Philips Trimedia TM1000 [12]. We have compiled
ANSI C source codes into assembly code for several signal processing kernel rou-
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tines, which mainly consist of one �nite loop. "vector add" is the example from �g.
6, "image compositing" is taken from [18], and the remaining sources are from the
DSPStone suite [19].
Note that it was not the purpose of our experimentation to compare the code

quality gain achieved by a certain SIMD instruction set. Instead, we mainly wanted
to show that code selection with SIMD instructions frequently does result in higher
code quality, and more important, that exploitation of SIMD instructions in com-
pilers is possible without compiler intrinsics and assembly libraries. This is re
ected
by the fact, that we compiled identical sets of plain ANSI C source codes to the
two di�erent target processors.

source data type unroll without SIMD with SIMD CPU

TI C6201

vector add short 1 8 4 0.7

IIR �lter short 0 21 17 2.9

convolution short 1 8 6 0.6

FIR �lter short 1 15 11 0.9

N complex updates short 1 20 16 3.0

image compositing short 1 14 11 3.1

Trimedia TM1000

vector add short 1 8 4 0.7

IIR �lter short 0 22 22 5.1

convolution short 1 8 8 0.9

FIR �lter short 1 15 9 0.9

N complex updates short 1 20 20 4.7

image compositing short 1 14 7 3.2

vector add char 3 16 4 5.0

FIR �lter char 3 36 18 26.5

Table I. Experimental results: code selection with SIMD instruction

The experimental results for the TI C6201 are listed in the upper part of table I.
The unrolling factor speci�es the number of duplications of the loop body, which
is necessary to exhibit enough parallelism for exploitation of SIMD instructions.
Columns 4 and 5 give the number of generated machine instructions for the loop
body without and with exploitation of SIMD instructions. Column 6 mentions the
required CPU seconds (Sun Ultra-1, including both DFG covering and ILP solving)
when using SIMD instructions.
The TI C6201 shows a comparatively limited support for SIMD instructions,

essentially parallel additions and subtractions on 16-bit sub-registers. Therefore,
all experiments have been carried out with 16-bit "short" data types. The maximum
reduction in instruction count (50 %) was obtained for the "vector add" example,
since using the C6201 SIMD instructions permits to unroll the loop once without
increasing the instruction count.
The lower part of table I shows the corresponding results for the Trimedia archi-

tecture. While for some source codes, such as the "IIR �lter" and "convolution",
SIMD instructions were not applicable, the code quality gains for "FIR �lter" and
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"image compositing" were more signi�cant as compared to the C6201. This is due
to the more powerful SIMD capabilities of the Trimedia (e.g. special instructions
for FIR computations), which become particularly obvious for certain algorithms
on 8-bit char data. As shown for the "vector add" and "FIR �lter" examples, the
use of SIMD instructions for char data results in a reduction of instruction count
of 75 % and 50 %, respectively.
Even though we use ILP for a part of code selection, the runtime consumed by

our approach is moderate if the DFGs to be compiled are not too large. This is a
consequence of the fact, that most decisions concerning code selection are already
made during the DFG covering phase, which only takes polynomial time in the
DFG size. The largest example (FIR �lter on char data), whose DFG comprises
95 nodes, took 26.5 CPU seconds. We believe that this is acceptable for embedded
applications and systems-on-a-chip, where code quality is of much higher concern
than compilation speed. Current limitations of the code selection technique concern
the required memory alignment and determination of the optimum loop unrolling
factor, which so far have to be performed manually.

4. CODE SELECTION FOR IRREGULAR DATA PATHS

In this section we consider code selection approaches for DFGs mapped to irregular
data paths, such as commonly found in �xed-point DSPs. The approach is based
on constraint logic programming (CLP [20]). CLP foundations have already been
described in [10]. There we focused on a speci�c phase coupling approach of code
selection with register allocation and instruction scheduling. In this section we give
a detailed description of extended features and opportunities of the code selection
approach. It provides a framework to easily and quickly derive new code selection
techniques, comprising phase integration of code selection with other sub-tasks
of code generation. For embedded processors, development of new code genera-
tion techniques is mandatory, because new processors have special features which
also require special code generation techniques, in order to generate high quality
code. Di�erent processors may require di�erent degrees of phase coupling, but also
stand-alone code selection techniques may be required. The approach we present
here provides a uni�ed model for developing exact and heuristic techniques, while
handling features like: irregular data transfer paths, chained (complex) operations,
graph-shaped instruction patterns, and restricted instruction level parallelism. We
�rst describe a concept for modeling alternative DFG covers, which is the basis
of our approach. We then demonstrate how this concept is used to easily de�ne
several strategies for optimal and heuristic DFG code selection.

4.1 Constraint Logic Programming

In contrast to the DFT based approach using tree parsing, optimal code selection
for DFGs is NP-complete. In the last years, constraint logic programming has been
successfully applied to solving instances of quite large NP-complete problems, where
other approaches failed [23]. A basic concept is to model problems as constraint
satisfaction problems (CSPs). CSPs are represented by a set of variables and a
set of constraints which de�ne mutual dependencies between the variables. Each
variable is associated with a certain domain (a set of values) containing the possible
candidates for the variable, that can occur in a solution of the problem. The vari-
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ables are therefore called domain variables but we simply use the notion variable
throughout the paper. We will denote a domain member of a domain variable V
as an element of V . A simple CSP is given by variables X and Y , both associated
with the domain f1; ::; 4g, and the constraint set fY < 4; X < Y g. A solution for
a CSP is a mapping of the variables to domain elements, such that all constraints
are met. One approach for �nding a solution is to assign elements to variables
in a certain order, which is called labeling. Throughout labeling, the constraints
ensure feasibility and trigger backtracking in case of constraint violations. E�ec-
tive search is supported by applying good pruning techniques throughout labeling
(e.g. constraint propagation). In our implementation we use ECLiPSe [22], which
is an extension of the logic programming language PROLOG. ECLiPSe provides
a library for �nite domains, comprising prede�ned constraints and labeling strate-
gies. Furthermore, there are generic optimization procedures, expecting a labeling
strategy l(V ) over variable set V together with an objective function cost(V ) as
an input (e.g. minimize(l(V ); cost(V ))). The user may de�ne custom constraints
and problem speci�c labeling and optimization strategies. In ECLiPSe, constraints
are handled in the background, i.e. consistency checking and backtracking are
performed automatically by the runtime system.

4.2 Representing alternative covers

An essential point in our code selection methodology is a new representation of all
alternative machine operation covers of a DFG via mapping the covering problem
into a CSP.We make use of a compact representation capable of representing a set of
machine operations within a single representation, by means of a factored machine
operation (FMO3). A FMO is given by the tuple (Op;R; [O1; : : : ; On]; ERI;Cons):
In a �rst step Op denotes an operation available on the processor (we will extend
this view to sets later). R and each Oi are variables whose elements are the avail-
able alternative storage resource locations (SRs4) for the result and the operands,
to which the functional units providing operation Op have access. ERI is a set
of entities specifying further resources used by machine operations, e.g. the vari-
able FU speci�es the alternative functional units on which Op can be executed.
Generally, not all assignments of the variables of a FMO to elements will yield
machine operations actually available on the target processor. Therefore, we in-
troduce a set of constraints Cons for each FMO, describing mutual dependencies
between the variables, actually re
ecting the machine constraints for resource us-
age in legal machine operations of the processor. For a certain target processor the
initial domains and the constraints for FMOs can be derived statically and inde-
pendently from any DFG. FMO templates are provided, from which instances of
the constraints and initial domains of variables are generated5.
A �rst step in code generation is to associate each node nk 2 DFG with a corre-

sponding FMOk. Operations of a DFG node generally need not to be operations

3In [10] we used the notion factored register transfer operation (FRT) but we think that the notion
FMO is more adequate.
4SRs comprise the set of register �les and memories of a processor.
5In [10] the details of how FMOs are used to specify target processors are described. The mecha-
nisms for specifying constraints in ECLiPSe allow an elegant and concise methodology for speci-
fying the instruction set of a processor.
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available on the target machine. Furthermore, there often is a set of matching FMOs
at a DFG node, obtained when algebraic transformations are applied. Therefore,
the FMO templates are extended by a variable SOp denoting the operations that
can be found in a DFG.Op is extended to a set of operations available on the proces-
sor, either matching SOp immediately or after applying algebraic transformations
to SOp. These extensions impose additional constraints relating the elements of
Op to elements of the other variables of the FMO6.
To instantiate an FMOk, the FMO templates are accessed via a interface proce-

dure fmo(SOpk ; Opk; Rk; [Ok;1; ::; Ok;m]; ERIk) (Ok;j denotes the j-th operand of
node nk). The constraint set Consk is handled implicitly and all further constraint
handling of the constraints in Consk is performed automatically by the ECLiPSe
system in background. We now consider the data 
ow between node nd and node
nu, such that there exists an edge (nd; nu) 2 edges(DFG). The function def(nu; i)
yields nd, such that nd produces operand i of nu. For a DFG it now has to be
ensured, that there exists a transfer path from Rd to Ou;i if def(nu; i) = nd. This
is ensured by transfer constraints which are also speci�ed as templates and are ac-
cessed via the interface function!� (Rd; Ou;i). Note that it only has to be ensured
that for each element rf1 2 Rd there is at least one element in rf2 2 Ou;i with
either rf1 = rf2 or there exists a sequence of data transfers so that values can be
moved from rf1 to rf2.
A DFG covered with FMOs re
ects the available alternative machine operations

at each node. The constraints ensure the selection of legal machine operations at
each node so that only resources are selected that meet the machine constraints.
The constraints also ensure the existence of at least one legal transfer path between
the de�nition of values and their uses. Furthermore, the following features are
supported by the model:

|Representation and handling of chained operations, e.g. the MAC operation,
which also allows CSEs to be a sub-operation of a chained operation. Chained
operations are modeled by introducing virtual SRs (VSRs) for result locations of
FMOs which may be a sub-operation of other operations. These virtual locations
can be interpreted e.g. as wires or latches (for details see [10]).

|A large class of restrictions on instruction level parallelism can already be mod-
eled by variables FU; IT 2 ERI de�ning the alternative functional units and
instruction word types available for an FMO.

|Modeling of graph patterns, like the square function, which is enabled by includ-
ing constraints over the graph structure, that impose relations between di�erent
FMOs. Therefore the actual DFG node is also passed to the interface function.

|From a result location to a certain operand location, the set of all alternative
transfer paths of bounded length can be represented by a single transfer path of
FMOs. All transfer paths of length i (0 � i � l) can be modeled with a single
FMO sequence of length l.

6The speci�cation methodologies of ECLiPSe allow, that these extensions are speci�ed without
any modi�cation to the existing FMO templates. The extended FMO templates are speci�ed as
a second layer over the existing ones.
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source run-time nodes edges CSEs
iir �lter (iir) 0.62 17 19 2
complex update (cu) 0.96 17 18 4
complec multiply (cm) 0.85 13 14 4
lattice �lter (lf) 1.52 23 27 8
t1 2.41 24 38 8
t2 3.04 29 47 7
t3 2.15 21 33 9
t4 7.99 82 153 15

Table II. Runtimes for FRT covering

The set of FMO templates for a processor are denoted as the FMO model for
the processor. The process of associating a DFG with FMOs and the according
constraints is denoted as FMO covering. In table II the runtimes for FMO covering
for several benchmark DFGs for the Analog Devices ADSP-210x target processor
are shown. These comprise some benchmarks of the DSPStone suite [19] (iir,cu,
and cm) and some internal benchmarks with large basic blocks (lf and t1-t4). All
runtimes are given in UltraSparc CPU seconds. The runtime data indicate that
FMO covering is eÆcient. The table also shows some characteristics of the bench-
marks: the number of DFG nodes, edges, and CSEs. One can show that the worst
case complexity of FMO covering is O(N � D2), where N is the number of DFG
nodes, and D is the maximumnumber of SR locations. An important feature of our
approach is, that a generally exponential number of alternative covers are stored in
a representation of linear size (w.r.t. to the number N of DFG nodes).

4.3 Optimal code selection for DFGs

A DFG covered with FMOs re
ects all alternative potential covers of a DFG by
instruction patterns. The task of code selection is to select machine operations and
data transfer paths, so that a certain cost function is minimized. This is performed
by assigning certain elements to the variables of the FOMs. In this section we
consider optimal code selection for DFGs of each basic block of a program with
respect to a sequential instruction execution model, i.e., neglecting instruction-
level parallelism (we have also extended this model to take into account instruction
level parallelism - see section 4.5), and we show the improvements in code quality as
compared to the DFT based code selection approach. Costs are given in instruction
cycle counts. Each FMOk is associated with variable Ck and one variable TCk;i
for each Ok;i. Ck is initialized with the sum of the costs of each legal machine
operation of FMOk. TCk;i re
ects the transfer costs associated with!

� (Rd; Ok;i).
According to the set of possible transfer paths from elements of Rd to elements of
Ok;i we initialize TCk;i with the sum of minimal transfer cost to move each element
of Rd to an element of Ok;i.
For all leaf nodes nv representing a program variable, Rv is set to the possible

initial locations at the beginning of a basic block. With each node nc representing
a CSE we associate extra variables R0

c and TC0
c. CSEs rooted at nc are handled by

additionally de�ning transfer constraints between Rc, R0
c, and between R0

c and the
uses from nc (�g. 9). This allows to de�ne extra locations for CSEs and to com-
bine common pre�xes of transfer paths in the cost model. The set CVDFG denotes
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source cost tCS1 cost tCS2 cost tCS3 cost tCS4
CS1 CS2 CS3 CS4

iir 16 0.4 13 1.69 13 1.97 13 0.58
cu 16 0.3 12 4.80 12 5.30 12 0.95
cm 14 0.17 10 6.90 10 4.32 10 0.46
lf 39 0.7 24 235.37 24 687.40 25 4.94
t1 44 0.69 29 27107.61 28 24555.29 28 2.49
t2 42 0.9 28 timeout 26 53296.18 27 2.20
t3 47 0.55 31 1929.09 28 1490.33 30 3.51
t4 148 2.65 96 timeout 88 timeout 92 216.51

Table III. Results of di�erent code selection methods

the set of all cost variables associated with a DFG. The set SRDFG is the set of
all variables denoting SRs. Intuitively, optimal DFG covering can be speci�ed by
�nding a labeling of the variables in CVDFG [SRDFG, w.r.t. minimizing the costs
Cost(CVDFG) =

P
ci2CVDFG

ci. It can be shown, that it is suÆcient to label the
set of variables VDFG = (

S
CVDFG [ fR

0
cjcse(nc); nc 2 DFGg, which drastically

reduces the search space. Optimal covering can now be speci�ed, making use of
ECLiPSe's optimization procedures: minimize(l(VDFG ); Cost(CVDFG)). The la-
beling strategy l(VDFG) selects the most constrained variable in each labeling step.
We compare three code selection techniques (denoted as CS1, CS2, CS3) for DFGs
and provide experimental results, showing how the proposed techniques reduce the
code overhead as compared to DFT based covering.
CS1: Traditional DFT based covering, i.e. DFGs are split into DFTs at CSE

nodes. Each DFTi is covered optimally but separately. A constraint R0
c 2 Mem

ensures that all CSE nodes nc are located in memory. Covering is performed by ap-
plying minimize(l(VDFTi ); Cost(CVDFTi)). E�ectively, here we simulate the DFT
based approach with the CLP technique. CS2: Takes into account arbitrary trans-
fer paths of CSEs to their uses. As an example, consider �g. 9, where the insertion of
the extra result location R0 of CSEs is advantageous: The transfer paths from node
0 to nodes 1 and 2 both require a move from ar tomy. Both transfer paths are com-
bined into a single transfer path fromR to R0, thus reducing the transfer cost from 2
to 1. In CS2 we do not allow CSEs to be mapped to sub-operations of chained oper-
ations. Thus, covering is speci�ed by imposing a constraint cse(nc)) R0

c =2 V SR
and applying minimize(l(VDFG); Cost(CVDFG)). CS3: CSEs are allowed to be
mapped to chained operations without extra constraints.
Table III shows the resulting costs (number of RTs) and runtimes t of the DFG

code selection methods CS1 to CS3. The improvements from strategy CS1 to
CS3 range within 18%� 50% (on average 35%). The costs of benchmarks where
runtimes are given as "timeout" are costs computed within a runtime limit of
24 hours, while the optimization did not terminate within 24 hours. Thus, those
results are not proven to be optimal. Note: The approach yields a set of alternative
optimal covers: generally not all variables are strictly bound to elements (e.g. the
SR variables) and there are still alternative transfer paths also in the context of
bounded transfer costs. Mutual dependencies between the variables with remaining
alternative elements are still present in the form of their constraints which are
propagated into subsequent tasks.
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4.4 Partitioned DFG code selection

Since optimal DFG code selection is an exponential problem, it is obviously too
runtime intensive for large DFGs. We have therefore designed an additional code
selection method, where a DFG is split into a set of smaller, manageableDFGs. This
method (denoted as CS4) leads to much better runtimes than strategies CS2 and
CS3, while coming close to the optimal results. In CS4, the strategy for partitioning
the DFG is to split the DFG at its CSEs. However, unlike in CS1, the data routes
are not constrained to pass a certain location (e.g., the memory in CS1). The basic
idea is to postpone the labeling of the data route variables of CSEs to the labeling
of those DFGs, which use the corresponding values. We assume a certain labeling
order [DFG1; :::; DFGn] for the partitioned DFGs. The results of the method CS4
are also shown in table III. The partitioning of DFGs makes it possible to cover
large DFGs in acceptable time7 with results close to the optimal results (only 2%
average overhead compared to the optimal method CS3). Further code quality
improvements can be achieved by considering di�erent permutations for ordering
the DFGs. For instance, labeling the reversed sequence [DFGn; :::; DFG1] reduced
the average overhead to 1.5% for the considered benchmarks.

4.5 Further Applications of the FMO Model

New constraints can be easily added to the model. Therefore, new problem aspects
can be added in a very modular way without having to change the rest of the FMO
model. The di�erent code selection strategies (C1-C4) of sections 4.3 and 4.4 were
implemented by simply selecting di�erent sets of variables as input for labeling
and for the cost function, while the initial FMO model for the processor remained
unchanged. In the same way other strategies can be adapted: For instance, in
CodeSyn, CBC, and CHESS (see [24]), in a �rst step of code generation a mapping
of source operations to available machine operations is performed, and in a second
step chained operations are computed in order to globally minimize the amount of
operations. There, heuristics are used instead of considering transfer costs. These
techniques are easily adapted in our approach and can even be performed optimally

7Runtime can be further reduced as follows: Analyzing the optimization process showed, that
results very close to the optimum are generally computed very fast. The rest of the time is only
spent for verifying that there is no better solution. This could be exploited by de�ning appropriate
timeouts for the optimization process, and taking the best result computed within this time.
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for DFGs of limited size. Other optimization criteria can be accommodated by
rede�ning the cost function (e.g. exchanging the cost variables for instruction
cycle counts by code size). Mapping of DFG nodes to sequences of FMOs is also
possible. This can be implemented by associating a sequence of FMOs with the
FMOs resulting after covering and code selection. Thereby, the result and operand
locations must be related to corresponding locations in the sequence of FMOs.
In order to take into account register pressure and restricted instruction level

parallelism it is also possible to integrate code selection with register allocation and
instruction scheduling. This was implemented in two approaches, both based on
the presented FMO model: In [10] code generation phases were still performed in
a sequential order, but phase coupling was achieved by delaying several decisions
in one task (basically the binding of resources) and to propagate these decisions
to the subsequent tasks by means of constraints. In the second approach - for
the TI TMS320C5x (not published so far) - constraints for register allocation and
instruction scheduling were added to the initial FMO model and solved simultane-
ously. The optimization goal was to minimize instruction cycles. Both approaches
generated code coming close/equal to hand crafted code and showed drastic im-
provements compared to the code generated by the native commercial compilers.

5. CONCLUSIONS

This paper has concentrated on code selection for certain classes of embedded pro-
cessors: media processors with SIMD instructions and DSP processors with irregu-
lar data paths. We have pointed out that in both cases the traditional DFT based
code selection approach is insuÆcient, and we have described techniques that gen-
eralize code selection from DFTs to DFGs in order to generate more eÆcient code.
Code eÆciency is an extremely important goal in code generation for embedded
processors, which justi�es to spend more time for optimization than in the case
of general-purpose processors. Taking this into account, we have used unconven-
tional optimization techniques: Integer Linear Programming and Constraint Logic
Programming. By a careful modeling of the underlying optimization problems it
has been possible to obtain good solutions in a reasonable amount of compilation
time. As a net result, we were able to present techniques for two problems that, to
our knowledge, have not been solved in previous work: code selection with SIMD
instructions and optimal (or near-optimal) DFG code selection for irregular data
paths. We believe that such time-intensive, architecture-speci�c code optimization
techniques will be the key to ensure suÆcient quality of compiler-generated code for
embedded processors. Eventually, this will allow us to take the step from assembly
programming to the use of high-level language compilers for embedded processors,
which means a productivity boost in the design of software-dominated embedded
systems.
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