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Abstract

This paper presents a new approach for improving energy consumption of compiler generated software by using

on-chip Scratch-Pad RAM more efficiently. This memory allocation technique moves program parts (functions or

basic blocks and global data objects) into the limited Scratch-Pad RAM.

Experimental results show that this technique saves up to 80% of the total energy consumption depending on the

application, the system architecture and the size of the Scratch-Pad RAM.
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1 Introduction

The number of applications using embedded processors is steadily increasing. Their flexibility and size allows ar-

bitrary applications on very small space with an increasing computing power. This enables the development of new

applications like car navigation systems or redesigned systems, e.g. electronic control units for engine management.

Mobile devices like PDAs, mobile phones, digital cameras or eBooks have limited running time due to the capacity

of their batteries. Other products like notebooks are furthermore limited concerning the heat dissipation of their

processors.

New technical developments are being implemented to overcome these limitations. The fabrication technology of

VLSI circuits is steadily improving and the chip structures are being scaled down. But the number of transistors on

a chip is increasing at a higher ratio and demands further improvements. Besides voltage scaling and clock reduction

techniques, possibilities of software modifications will have to be considered to further decrease the energy consump-

tion of electronic systems. Improvements in software technology have the advantage of nearly zero production costs

and the possibility of late changes in the development process or even later in the field without any redesign or change

of the hardware components.
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During the last five years, research efforts have been spent to develop techniques for software modifications that

reduce energy consumption for the whole system including processor, memory and I/O, while maintaining the system’s

behavior.

Besides the processor itself, off-chip memory accesses come to a high percentage of total energy consumption. The

reduction of these memory accesses therefore promises a high potential of energy savings. Several optimization

techniques are known which take advantage of this fact. In this paper we present a novel technique which improves the

usage of Scratch-Pad memory by assigning variables, program functions or even parts of functions either to Scratch-

Pad or main memory. This replaces the off-chip memory accesses by Scratch-Pad memory accesses with lower energy

consumption. Unlike Caches, the organization of objects to Scratch-Pad memory is left to the compiler.

In the next chapter, an overview about research work using memory hierarchy for energy models, energy related

software generation and compilers using memory hierarchy is given.

In chapter 3, the algorithm for our new technique is presented in detail. The experimental setup described in chapter 4

forms the basis for the results obtained by evaluating the energy reduction using different benchmark applications.

Following the conclusions, possible future work is outlined in the last chapter.

2 Related Work

Tiwari et al. [8-11] presented measurements of processor energy consumption based on the executed processor in-

structions. Their model consists of base costs for a single instruction and the inter-instruction costs which represent

the additional energy consumption due to changes in circuit state for consecutive instructions. Tiwari’s model does

not incorporate the energy consumption of memory accesses.

A different model was proposed by Simunic et al. [7]. For hardware components like processor or memory, the two

states ’active’ and ’idle’ are being distinguished. This allows the simulation and calculation of energy consumption

based on data sheets without requiring specific measurements.

Based on Tiwari’s model, we developed a power model which includes the memory costs, taking into account data

width and direction.

Possible reductions of energy consumption with well known compiler optimizations (linear loop transformations,

tiling, unrolling, fusion, fission and scalar expansion) were presented by Kandemir et al. [4]. They consider both the

processor core and the memory system together. Their results indicate that, using unoptimized code, more energy is

consumed within the memory system than in the core itself.

The aspect of assigning data objects of an application to different memories was described by Sjödin et al. [3]. They

presented a memory allocator which assigns global data objects to either on-chip Scratch-Pad or off-chip memory.

Simple, static and dynamic profiling techniques are compared with the result that a static profile is generally sufficient

for small applications.

Panda et al. [5,6] presented a technique for exploiting on-chip Scratch-Pad memory by partitioning the application’s

scalar and array variables into off-chip DRAM and on-chip Scratch-Pad SRAM and D-Cache. They proposed a combi-

nation of SRAM and D-Cache together with a partitioning algorithm. This results in a 30% performance improvement

compared to the sole utilization of SRAM or D-Cache.

In this paper we consider processors withoutcaches like the AT91M40400 processor which includes an ARM7TDMI

core and a 4K Scratch-Pad Memory. Taking advantage of von Neumann’s architecture model where program and data



objects are stored in the same memory, our memory allocator assigns data as well as program objects to the Scratch-

Pad or the main memory. Program objects in the Scratch-Pad memory lead to reduced energy consumption during

instruction fetch whereas moved data objects reduce the memory access cost of load/store instructions.

3 Memory Allocator

The memory allocator is called in the last phase of a compiler run. The main steps of its algorithm can be described

as follows:

1. Analysis of variable accesses

All load/store instructions are analyzed and the corresponding variables identified. The number of executions

and the variable size are evaluated to calculate the potential energy savings and the required memory size.

2. Analysis of functions and basic blocks

All functions and basic blocks which can be moved to the Scratch-Pad memory are identified. The number of

instructions in each basic block and the number of times each function is called are computed to determine the

potential energy savings and the required memory size. Necessary additional jumps between basic blocks have

to be taken into consideration at this point.

3. Solution of the knapsack problem

Using a branch and bound algorithm, the set of objects with the highest sum of total energy savings that will fit

in the Scratch-Pad memory is computed.

4. Move of selected memory objects

The identified variables, functions and basic blocks are moved into the Scratch-Pad memory and for instructions,

the necessary jumps are inserted.

The following sections present these steps in a more detailed manner.

3.1 Analysis of Variable Accesses

3.1.1 Identifying variables in memory

The algorithm described here has been integrated into a power aware C compiler developed for research purposes.

Whenever possible, during the compiler run, a link is added from each load/store instruction to the corresponding

variable which causes the memory access. This can be a scalar or anon-scalar variable.

Load and store instructions in the generated assembly code are identified and the associated variable is stored. If the

corresponding variable cannot be identified, those load and store instructions are not taken intoaccount.

Variables which do not cause a memory access because they are only held in registers are not relevant.



3.1.2 Number of executions of load/store instructions

A function call graph is generated and the number of execution times for each functionexef and each basic block

exebb is calculated. Basic blocks are those parts of a function which are executed sequentially without any interruption

of the control flow.

Branching points likeif statements split the control flow and the execution count is thus shared among the different

paths.

For a single load/store instruction the number of executionsexeloadstore is identical to that of the basic blockexebb
the statement is part of. The number of executions within each basic block is now summed up to the total access count

of the corresponding variable.

3.1.3 Determination of size of variables

The memory size of a variable has to be known to calculate energy savings: The cost function for scalar and non-scalar

variables is the ratio between the access count and the size of the variable.

Furthermore, the size of the variablessize(var) determines the limit for the maximum number of memory objects

which can fit into the Scratch-Pad memory.

Since information concerning size is easily available within the compiler but very difficult to extract from assembly

code alone, our approach of integrating the memory allocator into the compiler is a sensible approach.

3.1.4 Energy savings by moving variables

Based on the number of memory accesses which can be redirected to the Scratch-Pad memory, the difference in energy

consumption can be computed.

Concerning variables, only load/store instructions are relevant. The difference between the energy consumption of the

main memory and the Scratch-Pad memory along with potentially saved cycles due to faster memory access has to be

multiplied by the number of executions.

The result of this step is a list of memory objects along with their size and an amount of energy which could be saved

by moving the corresponding object to Scratch-Pad memory.

3.2 Analysis of functions and basic blocks

3.2.1 Identification of functions and basic blocks

In processors using one single memory for instruction and data, parts of the program could also be moved into the

Scratch-Pad memory, just like the variables.

There are two possibilities of moving program objects:

First, a whole function could be moved completely. This is easy to evaluate since the call to the function label is only

redirected to a different memory location. Thus no change in the generated assembly code is necessary, meaning the

required memory size is easy to determine. It is mainly the linker’s task to assign functions to different memories. A

function may potentially be moved if its size allows it to fit into the Scratch-Pad memory.

Second, the compiler evaluates basic blocks: A closer analysis shows that very often only parts of a function are

executed many times, whereas the remaining basic blocks are only executed once whenever the function is called.

This is especially true for the innermost loop of a function which is usually executed an order of magnitude more



frequently than e.g. the beginning of a function. If the whole function cannot be moved to the Scratch-Pad memory, it

still seems efficient to move at least the innermost loop.

However, basic blocks in leaf functions including an optimized return instruction cannot be moved. The jump from

the main memory to the Scratch-Pad memory is implemented by a long branch instruction which corrupts the return

address. Such basic blocks would require more complex code modifications.

3.2.2 Number of executed instructions within functions and basic blocks

The number of executed instructions of functionsnf and basic blocksnbb can be determined based on the function

call graph, just like the determination of the number of load/store accesses.

For basic blocks, the number of executionsexebb has to be multiplied with the number of instructionsinstrbb within

this block to get the total number of executed instructionsnbb.

nbb = exebb � instrbb

For a function, the sum of all executed instructionsnf of its basic blocks has to be computed.

nf =
X

i

nbb;i

3.2.3 Determination of the size of functions and basic blocks

The size of functionssize(f) can be determined on the basis of the assembly instructions generated by the compiler.

External functions cannot be evaluated since their instructions are unknown during the run of the memory allocator

within the compiler.

The size of basic blockssize(bb) is more difficult to compute. If e.g. one basic block within a function is moved to the

Scratch-Pad memory, the predecessor basic block needs an additional jump into the Scratch-Pad memory. The moved

basic block needs a jump back to main memory.

A special case occurs for the first basic block of a function. This basic block is only reached by a call, so no insertion

of an additional jump into the Scratch-Pad memory is necessary.

In the worst case a conditional branch can occur as the last statement of a basic block. In this case, if the jump

condition is not true, the control flow would usually continue with the first instruction of the consecutive basic block

3 (c.f. figure 1).

Consequently, two jump instructions have to be inserted:

If the jump condition is true, the branch is executed and leads to an additional instruction which implements a jump to

the basic block 4 in main memory.

If the jump condition is not true, an additional long branch is inserted to jump to the first statement of the following

basic block 3 in main memory.

The exact implementation of this methodology depends on the processor and the jump range. In the THUMB mode

of the ARM7TDMI processor, the range of conditional jumps is limited to 128 statements. In most cases this is not

sufficient for jumping to a different memory block and an insertion of a long branch is necessary.
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Figure 1: move of a basic block with conditional branch

3.2.4 Energy savings by moving functions or basic blocks

If functions or basic blocks are moved from main to Scratch-Pad memory, instruction fetching will change for the

instructions within the moved objects. The difference in energy and number of cycles between main memory and

Scratch-Pad memory for the instruction fetch has to be multiplied with the number of executed instructions within the

moved objects.

The overhead necessary due to the insertion of jumps can cause a negative value with respect to energy savings for

small basic blocks. This can occur if the energy consumption of the additional jumps is higher than the amount that

can be saved by moving these instruction into Scratch-Pad memory. In this case, the basic block is not considered

during the following steps.

The result of this step is a list of functions and basic blocks with a memory size which is needed in the Scratch-Pad

memory and the amount of energy which could be saved by movingeach object to Scratch-Pad memory.

3.3 Search best set of memory objects

In this phase, the combination of memory objects which fit into the Scratch-Pad memory and deliver the highest overall

energy saving has to be computed.

To solve this problem, we propose the use of the well-known knapsack approach [12]. The Scratch-Pad memory forms

the knapsack with a fixed sizek. A set of memory objectssopt has to be found which results in a maximum value for

a specific cost functionE. In the case presented here, energy savings are used as cost function.

The algorithm [12] works as follows:

1. sort all memory objectss by their valence, which is defined as:

val(si) =
E(si)

size(si)

2. put all memory objectss into the set of considered objectsscurrent



3. determine critical indexc such that all elements inscurrent up to but excludingsc fit into the knapsack:

k� =
c�1X

i=0

size(si) <= k <

cX

i=0

size(si)

4. compute the upper boundU :

U =
c�1X

i=0

val(si) +
(k � k�)

size(sc)
� val(sc)

5. compute the lower boundL in the following steps (n = total number of memory objects):

ktmp = 0; L = 0

for i = 1 ton

if ktmp + size(si) < k then

ktmp = ktmp + size(si)

L = L + val(si)

6. if lower boundL equals upper boundU , the set of objects is valid and added to a setTvalid of valid solutions

7. else branch to two subproblems:

(a) critical elementc is inserted into the setslocalopt and removed fromscurrent. The knapsacksizek is

reduced by size(sc).

(b) critical elementc is removed from the set of considered objectsscurrent

continue with step 3.

8. determine the elementsopt of Tvalid with highest energy savings

The computing time depends on the number of objectsn and the number of tree nodest which is limited by2n+1� 1:

O(n logn+ t � n)

The experimental results presented in the next section with functions and global variables require computing times

below 10 ms.

The described problem is a knapsack problem with one dimension. It could be extended to a multi dimensional

knapsack for two aspects:

1. If functions and basic blocks are considered at the same time, there is a dependency between a function and

its basic blocks. If the function is moved, the basic blocks inside the function are moved automatically and an

additional move of such a basic block does not help in finding a valid solution.

2. The size of the basic blocks depends on the necessary additional jumps. If two consecutive basic blocks are

moved, the jumps between these basic blocks can be omitted. This means that the memory size of one basic

block depends on the algorithm’s result for other basic blocks.

Our future work will include implementing the extensions described above which will further improve the obtained

results.



3.4 Move variables, functions and basic blocks

In the last phase of the memory allocator the functions, basic blocks and variables are actually moved to the Scratch-

Pad memory. This is done by the linker.

4 Experimental Environment

The technique presented in the previous section was implemented and integrated into the encc compiler for the

ARM7TDMI processor. This energy aware C compiler is being developed for research purposes. Besides the common

optimization strategies for size and time, it also allows an additional optimization for energy.

The values used as input for the power model were obtained by a series of measurements with the evaluation board

ATMEL AT91EB01 [2] which incorporates the AT91M40400 processor with a 4 KB Scratch-Pad RAM, but no data

or instruction cache (figure 2).

For each processor instruction the compiler has access to a data base entry with the number of instruction cycles,

memory size and energy consumption. The different kinds of memory are also modeled with a data base for the

energy consumption depending on data width and direction.

512 KB
Main

Memory

ARM7TDMI
core

4 KB
Scratch-Pad

Memory

AT91M40400

Figure 2: Evaluation Board AT91EB01

These two data bases are used by the code selector to choose optimal instructions and, later in the compiler run, by

the memory allocator to find the optimal set of memory objects. The generated assembly code is simulated using the

instruction set simulator included in the ARM software development toolkit ARM SDT 2.50 [1]. In our experiments,

the trace output is evaluated using a simulation trace analyzer which is part of the environment of the energy aware

compiler encc.

5 Results

The effectiveness of the presented technique was evaluated for three different types of benchmarks.

First, the technique was applied to a suite of different sorting algorithms (bubble sort, heap sort, quick sort, selection

sort, insertion sort).

Furthermore, two benchmarks often used for digital signal processing were used for evaluation (biquad_N_sections,

lattice filter).

Finally, a matrix multiplication (matrix_mult) and a multimedia application (me_ivlin) are part of the benchmark set.



In the following figures the energy consumption for the benchmarks described above is shown for varying Scratch-Pad

sizes from 0 Bytes to 2048 Bytes.

To allow a better comparison between the different benchmarks, the values were normalized to 100 percent for the

configuration without using Scratch-Pad memory (size = 0) foreach individual benchmark.

Figures 3 and 4 demonstrate the results for the assignment of functions and global variables to Scratch-Pad memory

in relation to its size. In figure 3, Scratch-Pad memory begins to show a positive effect on energy consumption at a

size between 64 and 1024 Bytes. Even with such a very small memory the energy consumption can be reduced by 40

to 65%. This value steadily increases up to the maximum value, where all functions and global variables fit into the

Scratch-Pad memory. The energy saving in this case varies between 55% and 80%, depending on the benchmark.

Figure 3: Moving functions and global variables

Figure 4: Moving functions and global variables (relative)

Since the size of the Scratch-Pad memory is limited, a part of the program usually remains in the main memory. The

ratio between total memory size of the benchmark and Scratch-Pad memory size is shown on the x axis in figure 4.

The lattice filter benchmark can save nearly 70% with less than 10% Scratch-Pad size, whereas other benchmarks like

matrix-mult require more than 50% to show first improvements. These results show that the optimal size or optimal

ratio between Scratch-Pad size and total application size is application dependent.

The same experiment was performed moving basic blocks instead of functions. These results are shown in figures 5



Figure 5: Moving basic blocks and global variables

Figure 6: Moving basic blocks and global variables (relative)

and 6. It can be stated that improvements start with smaller Scratch-Pad sizes compared to moving functions. This

is due to the smaller size of basic blocks in comparison with functions. If the available Scratch-Pad size increases

up to the total application size, the results are worse than those achievable by moving functions. The reason is the

overhead caused by the additional jumps which reduce the overall benefit. Also, there are some basic blocks e.g. in

the selection_sort benchmark which can not be moved at all.

6 Conclusion

In this paper a technique is presented which utilizes the Scratch-Pad memory for global variables and program func-

tions or basic blocks. Our experiments show energy reductions of up to 78% of system energy consumption.

For small Scratch-Pad memory sizes better results are obtained by moving basic blocks together with global variables.

For a high ratio between Scratch-Pad memory to total application memory size it is better to move whole functions

and global variables.

The described technique is easily integrated into existing compilers without fundamental modifications of the gener-

ated assembly code.



7 Future Work

The extension of the branch and bound algorithm for solving multidimensional knapsack problems will allow a com-

bined treatment of basic blocks and functions together with global variables.

Another object which could be moved to the Scratch-Pad memory is the program stack. In order to do this, an

evaluation of the maximum stack size will be necessary.

Furthermore experiments are planned with benchmarks which need more memory size.
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