
Universität Dortmund

Lehrstuhl Informatik XII

44221 Dortmund

Comparison of Cache- and
Scratch-Pad based
Memory Systems with respect to
Performance, Area and
Energy Consumption

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee,

M. Balakrishnan, Peter Marwedel

Technical Report # 762

28.9.2001



Comparison of Cache- and Scratch-Pad based Memory Systems

with respect to Performance, Area and Energy Consumption

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, Peter Marwedel

{steinkej leej marwedel}@ls12.cs.uni-dortmund.de

University of Dortmund, Dept. of Computer Science

Otto-Hahn-Strasse 16

44221 Dortmund, Germany

{banakarj mbala}@cse.iitd.ernet.in

Indian Institute of Technology, Delhi

Abstract

In this report we evaluate the options for low power on-chip memories during system design and configura-

tion. Specifically, we compare the use of scratch pad memories with that of cache on the basis of performance,

area and energy. The target architecture used in our experiments is the AT91M40400 microcontroller containing an

ARM7TDMI core. A packing algorithm is used to map the memory objects of the benchmarks to the scratch pad.

Area and energy for different scratch pad and cache sizes are computed using the CACTI tool while performance is

derived using the trace results of the ARMulator. We observe area and performance improvements by using a scratch

pad memory. For example, for bubble sort there is a performance improvement of 18% from a hardware which needs

34% less area. The scratch pad also needs less energy per access, due to the absence of tag comparison.

1 Introduction

Processor-based information processing can be used conveniently in many embedded systems. The detailed architec-

ture of such systems is very much application driven to meet power and performance requirements. In particular, this

applies to the memory architecture, since this architecture does have a major impact on the overall performance and

the power consumption. In this report we analyze the effect of different options that exist for the design of memory

architectures.

In order to work with realistic values, we are using an existing processor core, the ARM7TDMI, as an example.

The ARM7TDMI core has found many applications in embedded systems. A typical example is a mobile telephone

handset, where the core incorporates digital signal processing hardware and associated memories. In our work we

use an AT91M40400 chip comprising an ARM7TDMI core, on-chip RAM-based scratch-pad memory (SPM) and

peripherals. The scratch pad memory is a memory which is mapped into the processor’s address space. The SPM is



involved whenever addresses within the SPM’s address window are used. There are two key advantages of using the

SPM: references to the SPM are faster and they consume less energy than references to larger or off-chip memories.

In a recent report [12], we have shown that a major amount of references to the main memory can be replaced by

references to a faster, less energy hungry scratch pad memory if a compiler statically allocates instructions and data to

the scratch pad. In that report, no comparison with caches was included. In the current report, we explore the benefits

of the on-chip scratch pad memory vis-a-vis on-chip caches. On-chip caches using static RAM consume power in

the range of 25% to 45% of the total chip power [3]. For example, in the StrongARM 110 the cache consumes 43%

[14]. A number of researchers have concentrated on power reduction of caches both at the device level, and at the

architectural level. Techniques like sub-banking and block buffering which reduce the cache power consumption at the

organizational level, are described in [3]. In this report, we are proposing to add scratch pad memories to the memory

system to reduce the power consumption.

Recently, interest has been focused on having on-chip scratch pad memory to reduce power consumption and improve

performance. Scratch pad memories are considerably more energy and area efficient than caches. On the other hand,

they can replace caches only if they are supported by an effective compiler. The mapping of memory elements of

the application benchmarks to the scratch pad memory can be done only for data [5], only for instructions [17] or

for both data and instructions [12]. Current embedded processors particularly in the area of multimedia applications

and graphics controllers have on-chip scratch pad memories. Panda et.al [5] associate the use of scratch pad memory

with data organization and demonstrate its effectiveness. Benini et.al [7] focus on memory synthesis for low power

embedded systems. They map the frequently accessed locations onto a small application specific memory.

In our work we address the on-chip memory configuration and selection issue. Specifically, we make the following

contribution.

� We present a comparison of on-chip scratch pad memories and on-chip caches on the basis of area, performance

and energy consumption. Such a comparison helps the designer to make effective decisions at the architectural

level.

This comparison is carried out by evaluating performance through simulation and estimating area and energy

using the scratch pad and cache memory models over a range of scratch pad and cache sizes. The performance

and energy results for a specific application also evaluate the technique incorporated into the compiler for iden-

tifying and packing the most suitable instruction and data blocks into scratch pad memory. Results clearly show

scratch pad memory to be a promising alternative to caches in many embedded applications.

The rest of the report is organized as follows: In section 2 we give an overview of the methodology that we have used.

Section 3 describes the mapping of the memory elements to the scratch pad. In section 4, we present energy and area

models of the caches and the scratch pad. Section 5 covers the method used for performance prediction. In section

6 we describe the experimental results followed by the conclusion and future work in section 7. In Appendix A we

present some experimental data obtained using the CACTI tool.

2 Overview of the methodology

In this section we explain the methodology used in our work to explore the benefits of using on-chip scratch pad

memory. We use the AT91M40400 as our target architecture. The AT91M40400 is a member of the ATMEL AT91

16/32 bit microcontroller family based on the ARM7TDMI embedded processor. This processor is a high performance



RISC with a very low power consumption. It has an on-chip scratch pad memory of 4 KBytes. The AT91M40400 can

be used as a cost effective solution in many computationally intensive applications in the default configuration[10]. The

ARM7TDMI comes with a 32 bit data path and two instruction sets. The ARM instruction set is a 32 bit instruction.

The THUMB instruction set is a 16 bit instruction set that has a better code density than the ARM instruction set.

Instructions can be simulated using the ARMulator [11] instruction set simulator.

The main goal of our work is to achieve a low power on-chip memory configuration. To study the benefits of using

a scratch pad memory, we have to estimate the area, performance and energy consumption of the on-chip caches and

scratch pad memory and compare them.

Application

scratch pad
(includes a

On-chip 
memory

configuration

Binary code

ARMulator

Trace file

Trace analysis

estimates
Performance

option)

Energy

CACTI

estimates
Area

estimates

Energy 
computation

Number of

accesses

Energy
per

access

encc

Figure 1: Memory configuration flow diagram

Fig. 1 shows the flow diagram of our evaluator. The encc compiler generates the code for the ARM7 core. It is a

research compiler used for exploring the design and new optimization techniques. The input to this compiler is an

application benchmark written in C. Constant propagation, copy propagation, dead code elimination, constant folding,

jump optimization and common subexpression elimination are supported standard optimizations. The compiler is an

energy aware compiler supporting, for example, the selection of instructions based on their energy consumption. This

data can be built using the instruction level power model as referred by Steinke et al. [18]. As a post pass option, encc

uses a special packing algorithm, known as the knapsack algorithm, for assigning code and data blocks to the scratch

pad memory. The result is that blocks of instructions and data which are frequently accessed, and are likely to generate

maximum energy savings, are assigned to the scratch pad. This algorithm is discussed in detail in section 3.

The output of the compiler is a binary ARM code which can be simulated by the ARMulator to produce a trace file.

For on-chip cache configuration, the ARMulator accepts the cache size as parameter and generates the performance as

the number of cycles. The on-chip memory configuration has an impact on the number of wait states for accessing a



location which are added during the post analysis of the trace file. This is explained in section 5.

The predicted area and energy for the cache is based on the CACTI [9] model for 0.5�m technology. The same model

has been used with the hardware pruned to predict area and energy of scratch pad memory. This is discussed in section

4.

3 Scratch pad packing algorithm

For the use of the scratch pad, an algorithm in the compiler is responsible for the selection of program parts and data

to be moved to the limited on-chip memory. In this section we explain how this algorithm assigns a set of functions,

basic blocks and/or variables to the scratch pad on a static basis. First we describe the identification and evaluation of

program parts. Then, the identification and evaluation of data memory objects and finally the selection of the best set

of memory objects is explained.

3.1 Program memory objects

Off-chip memory accesses account for high energy consumption and reduction of performance because of the neces-

sary wait states and the number of gates which are activated to read or write the data.

In this report, we try to identify functions and basic blocks that should be assigned to the scratch pad memory. A

basic block is a consecutive sequence of instructions without any jump instruction. The end of a basic block is always

defined by a jump or by a following instruction which is a jump destination from another program instruction. All

instructions of an individual basic block are executed the same number of times, so it is sufficient to analyze the

number of executions for the whole basic block.

The identification of functions and basic blocks which can be assigned to the scratch pad memory is shown for the

example codebiquad_N_sections (see fig. 2) from the DSPStone benchmark suite [16].

The execution of each function is started at its beginning and is terminated by a return statement. There are no further

jumps into a function. Thus, each function can be handled as one memory object which possibly can be moved and

which does not require changing any of the included instructions.

The calling hierarchy of our programbiquad_N_sections can be represented by a call graph (see fig. 3). This

call graph has the body of the main program as its root. At the next level, we have all code blocks (basic blocks or

functions) that are called from the main program. In our case, functionpin_down is the only function at this level.

One more level down, we have all blocks that can be called from functionpin_down .

For each memory blocki, we can compute the energy consumption of all executions by multiplying the energy con-

sumption of a single executionEinstr_fetch;i with the number of executionsni of this memory object:

E(BBi) = ni �Einstr_fetch;i

This energy consumption can be reduced by a relocation of the function or basic block to on-chip scratch pad memory.

The best set of functions and/or basic blocks are chosen by our algorithm described in section 3.3.

Moving functions does not require any change of its opcodes, but moving basic blocks requires the addition of jump

instructions to jump from blocks mapped to regular memory to blocks stored in the scratch pad memory and back. The



int pin_down(int x, int coefficients[], int wi[]) {
int f;

// pd_1:
for (f = 0; f < 20; f++)

// pd_2:
coefficients[f] = 7;

// pd_3:
for (f = 0; f < 8; f++)

// pd_4:
wi[f] = 0;

// pd_5:
return (1);

}

int main() {
int w, f;
int *ptr_coeff, *ptr_wi1, *ptr_wi2;
int wi[8];
int coefficients[20];
int x,y;

// main_1:
ptr_coeff = &coefficients[0];
ptr_wi1 = &wi[0];
ptr_wi2 = &wi[1];
x = pin_down(x, coefficients, wi);

// main_2:
y = x;
for (f = 0; f < 4; f++) {

// main_3:
w = y - *ptr_coeff++ * *ptr_wi1 ;
w -= *ptr_coeff++ * *ptr_wi2;
y = *ptr_coeff++ * w;
y += *ptr_coeff++ * *ptr_wi1;
y += *ptr_coeff++ * *ptr_wi2;
*ptr_wi2++ = *ptr_wi1;
*ptr_wi1++ = w;
ptr_wi2++;
ptr_wi1++;

}
// main_4:

pin_down(y,coefficients,wi);
// main_5:

return(y);
}

Figure 2:biquad_N_sections program code

jump instructions are an overhead especially if there are a number of small basic blocks. In order to minimize jump

instructions, moving consecutive basic blocks is preferred.

Note that the program is statically allocated to the scratch pad memory. There is no dynamic reloading of memory

blocks even though this could be useful for long programs having more hot spots than the SPM can accommodate.

The extension to dynamic reloading (a kind of program-controlled paging) will be part of the future work.

3.2 Data memory objects

Apart from the program, variables can be allocated to the SPM, too. Each variable is viewed as one data memory

object. The number of accesses of a variableacc(v) is the sum of the number of accessesacci(v) in each of the

blocksi. acci(v) is computed as the number of static referencesstati(v) to variablev in block i times the number of

executions of blocki:



times: 1
main

basic block 6

basic block 1
main_1

pd_1

pin_down

times: 2 times: 1

times: 2

function 1

function 2 basic block 2 
main_2

times: 1

basic block 3
main_3

times: 10

basic block 4

times: 1

basic block 10
pd_5

times: 2

basic block 9
pd_4

times: 20

basic block 8
pd_3

times: 2

basic block 7
pd_2

times: 20

basic block 5
main_5

times: 1

main_4

Figure 3: Call Graph of functions and basic blocks inbiquad_N_sections

acc(v) =
X

i

acci(v) =
X

i

stati(v) � ni

For example, in the benchmarkbiquad_N_sections the arraywi is accessed 7 times inmain_3 and once in

pd_4 . The total number of accesses can thus be computed as follows:

acc(wi) = 7 � nmain_3 + 1 � npd_4 = 7 � 10 + 1 � 20 = 90

For the energyE(v) consumed by all the accesses to the variable, this number of accesses has to be multiplied by the

energy costEdataword of a single memory access with a load or store instruction:

E(v) = acc(v) �Edataword

After the identification and evaluation of the energy costs for program and data memory objects, the best set of objects

has to be chosen to fit in the limited space of the scratch pad.

3.3 Selection of memory objects for the scratch pad

The best set of memory objects which fit into the scratch pad and save the highest amount of energy now has to be

identified. Moving a certain memory object to the scratch pad will result in a certain gain in terms of saved energy.

Moving has to be such that the combined size of the memory objects does not exceed the size of the SPM. The size of

each memory object is independent from the other objects. Maximizing the total gain is a problem calledknapsack

problem [19].

Our formulation of the problem uses the following definitions concerning moving basic blocks, functions and vari-

ables:



E(BBi) = energy consumption for instruction fetches in basic blockBBi

S(BBi) = size of basic blockBBi

m(BBi) = 1 if BBi is moved to the scratch pad, = 0 otherwise

E(Fj) = energy consumption for instruction fetches in functionFj

S(Fj) = size of functionFj

m(Fj) = 1; if Fj is moved to the scratch pad, = 0 otherwise

E(vark) = energy consumption for all loads or stores of variablevark

S(vark) = size of variablevark

m(vark) = 1 if vark is moved to the scratch pad, = 0 otherwise

To optimize the energy saving, the following cost function needs to be maximized:

energy_saving =
X

i2I

m(BBi) �E(BBi) +
X

j2J

m(Fj) �E(Fj) +
X

k2K

m(vark) �E(vark) (1)

Index setsI; J; andK correspond to index values for all basic blocks, all functions and all variables, respectively.

The size constraint can be modeled as follows:

X

i2I

m(BBi) � S(BBi) +
X

j2J

m(Fj) � S(Fj) +
X

k2K

m(vark) � S(vark) � scratchpadsize (2)

Taking jump instructions into account turns the problem into a multidimensional knapsack problem. This can be

solved using integer linear programming [2] with a set of equations which are presented in this section.

To account for the saved jump instructions between consecutive basic blocks, additional memory objects have to

be used for all possible combinations of consecutive basic blocks. For example, forbiquad_N_sections the

combinations for functionpin_down are as follows:

BB_11 = (pd_1, pd_2)

BB_12 = (pd_1, pd_2, pd_3)

BB_13 = (pd_1, pd_2,pd_3, pd_4)

BB_14 = (pd_1, pd_2,pd_3, pd_4,pd_5)

BB_15 = (pd_2, pd_3)

BB_16 = (pd_2, pd_3, pd_4)

BB_17 = (pd_2, pd_3, pd_4, pd_5)

BB_18 = (pd_3, pd_4)

BB_19 = (pd_3, pd_4, pd_5)

BB_20 = (pd_4, pd_5)

For all these combinations of basic blocks, memory objects are constructed.

To prevent a basic block from being selected twice, e.g. as a single basic block and as part of a function or a multi

basic block memory object, the equations of the following type (here forpd_1 ) have to be added:



m(BB6) +m(F2) +m(BB11) +m(BB12) +m(BB13) +m(BB14) � 1 (3)

Based on the above equations, an IP solver [2] can find the best possible solution for the use of a scratch pad memory

in an average runtime of 1.4 s. The chosen memory objects can then be placed in the scratch pad memory.

Fig. 4 shows the final mapping of memory components to the scratch pad and the main memory for the biquad

benchmark example.

variable

wicoefficients

variable main pin_down

pd_4main_3 pd_2

pin_down

main_1

main

main_2

main

main_4

main

main_5

pin_down

pd_1

pin_down

pd_3

pin_down

pd_5

main

Scratch pad

Ju
m

p

Ju
m

p

Ju
mp Ju

m
p

Ju
m

p

Ju
mp

Main memory

Figure 4: Allocation of basic blocks and variables to scratch pad and insertion of connecting jumps

In the next section we describe the energy models of the on-chip memories used in our approach.

4 On-chip memory area and energy models

The on-chip energy model of the cache and the scratch pad are essential to compare the energy estimates of both. We

will first describe the analytical cache energy model and then the scratch pad energy model.

4.1 Cache and Scratch pad organization

4.1.1 Cache power model

The basic organization of the cache taken from [8, 9] is shown in Fig. 5.

The main components are the decoder, the tag memory array, the tag column multiplexers, the tag sense amplifiers, the

tag comparators, the tag output drivers, the data memory array, the data column multiplexers, the data sense amplifiers

and the data output drivers.

The estimation of power can be done at different levels, from the transistor level to the architectural level [13]. In

CACTI [9], transistor level power estimation is done. The total energy consumption in a cache is the sum of energy

consumptions of all the components identified above and is obtained from CACTI.



,

Figure 5: Cache Memory organization

4.1.2 Scratch pad power model

The scratch pad is a memory array with the decoding and the column circuitry logic. This model is designed keeping

in view that the memory objects are mapped to the scratch pad in the last stage of the compiler. Thus, we need not

check for the availability of the data/instruction in the scratch pad. It reduces the comparator and the signal miss/hit

acknowledging circuitry. This contributes to the energy as well as area reduction.

The scratch pad memory array cell is shown in Fig. 6(a) and the memory cell in 6(b).

The 6 transistor static RAM cell is shown in Fig 6(c). The cell has one R/W port. Each cell has two bit-lines, bit and

bit bar, and one word-line. The column circuitry consists of the sense amplifiers, column multiplexers, pre-charge unit

and the output driver circuit.

The decoder circuit for a 1 kbyte SPM is as shown in Fig. 7. Fig. 7(a) shows the circuit with 2-to-4 decoder logic. Fig.

7(b) shows the decoder using 3-to-8 logic.

The complete scratch pad organization is as shown in Fig. 8.

The scratch pad memory energy consumption can be estimated from the energy consumption of its components i.e.

decoderEdecoder and memory columnsEmemcol.

Escratchpad = Edecoder +Ememcol (4)

Energy in the memory array consists of the energy consumed in the sense amplifiers, column multiplexers, the output

driver circuitry, and the memory cells due to the word-line, pre-charge circuit and the bit line circuitry. The energy



oVdd Vdd

Word  select

bit bit_bar

(a)

Memory array                                    Memory cell                       Six transistor Static RAM

Pre-charge circuit, Output drivers
Sense amplifiers, Column Mux

Column circuitry
(d)

(b) (c)

Figure 6: Scratch memory array

consumption in the decoding logic is around 10% to 15% of the total power dissipation as observed in all our on-chip

memory configurations. The major energy consumption is due to the memory array unit. The procedure followed in

the CACTI tool to estimate the energy consumption is to first compute the capacitances for each unit. Then, energy

is estimated. As an example we only describe the energy computation for the memory array. Similar analysis is

performed for the decoder circuitry also, taking into account the various switching activity at the inputs of each stage.

Let us consider the energy dissipationEmemcol. It consists of the energy dissipated in the memory cell. Thus

Ememcol = Cmemcol � V
2

dd � P0�>1 (5)

Cmemcol in equation (5) is the capacitance of the memory array unit.P0�>1 is taken as 0.5

Cmemcol = ncols � (Cpre + Creadwrite) (6)

Cmemcol is computed from equation (6). It is the sum of the capacitances due to pre-charge and read access to the

scratch pad memory.Cpre is the effective load capacitance of the bit-lines during pre-charging andCreadwrite is the

effective load capacitance of the cell read/write.ncols is the number of columns in the memory.

In the preparation for an access, bit-lines are pre-charged and during actual read/write, one side of the bit lines are

pulled down. Energy is therefore dissipated in the bit-lines due to pre-charging and the read/write access. When

the scratch pad memory is accessed, the address decoder first decodes the address bits to find the desired row. The

transition in the address bits causes the charging and discharging of capacitances in the decoder path. This brings



2-
4 

de
co

de
r

2-
4 

de
co

de
r

3-
8 

de
co

de
r

3-
8 

de
co

de
r

64 word lines

(a) (b)

a0

a1

a2

a3

a4

a5

a0

a1

a2

a3

a5

a4

Using 2-to-4 decode blocks  Using 3-to-8 decode blocks

2-
4 

de
co

de
r

64
 n

or
 g

at
es

64 word lines

Figure 7: Decoder circuit for 1k scratch pad memory

about energy dissipation in the decoder path. The transition in the last stage, that is the word-line driver stage triggers

the switching in the word-line. Regardless of how many address bits change, only two word-lines among all will be

switched. One will be logic 0 and the other will be logic 1. The equations are derived based on [9] [3] [8].

Esptotal = SPaccess �Escratchpad (7)

whereEsptotal is the total energy spent in the scratch pad memory. In case of a scratch pad as a contrast to cache we

do not have events due to write miss and read miss. This is because of the mapping algorithm that is used in the encc

compiler’s last phase. The only possible case that holds good is the read hit.SPaccess is the number of read hits which

we obtain from the simulator for the scratch pad configuration for the AT91M40400 microcontroller.Escratchpad is

the energy per access obtained from our analytical scratch pad model.

4.2 Area model

The area model that we use in our work is based on the transistor count in the circuitry. All transistor counts are

computed from manual designs of the circuits. The area model of the cache is described followed by the explanation

of the scratch pad memory area model.

4.2.1 Cache Area Model

From the organization shown in Fig. 5, the area of the cache (Ac) is the sum of the area occupied by the tag array

(Atag) and data array (Adata).



Unit
Decoder

Column Circuitry

S
cr

at
ch

 P
ad

 M
em

or
y 

C
ol

um
ns

(Sense amplifiers, column
mux, output drivers, pre−
charge logic)

Memory Array

Figure 8: Scratch pad memory organization

Ac = Atag +Adata (8)

Atag andAdata is computed using the area of its components.

Atag = Adeco�tag +Atag�array +Acolmux�tag +Apre�tag +Asense�tag +Acomp +Amuxdrv�tag (9)

whereAdeco�tag , Atag�array, Acolmux�tag, Apre�tag , Asense�tag , Acomp andAmuxdrv�tag is the area of the tag

decoder unit, tag array, column multiplexer, the pre-charge, sense amplifiers, tag comparators and multiplexer driver

units respectively.

Adata = Adeco�data +Adata�array +Acolmux�data +Apre�data +Asense�data +Aoutputdrv (10)

whereAdeco�data, Adata�array, Acolmux�data, Apre�data, Asense�data, Aoutputdrv is the area of the data decoder

unit, data array, column multiplexer, pre-charge, data sense amplifiers and the output driver units respectively.

4.2.2 Scratch pad area model

From the organization shown in Fig. 8, the area of the scratch pad is the sum of the area occupied by the decoder, data

array and the column circuit. LetAs be the area of the scratch pad memory.

As = Adeco�data +Adata�array +Acolmux�data +Apre�data +Asense�data +Aoutputdrv (11)

whereAdeco�data, Adata�array, Acolmux�data, Apre�data, Asense�data andAoutputdrv is the area of the data de-

coder, data array area, column multiplexer, pre-charge, data sense amplifiers and the output driver units respectively.



5 Performance model

Clock cycle estimation is based on the ARMulator trace output for cache. This is assumed to directly reflect perfor-

mance: the larger the number of clock cycles the lower the performance. This holds only when the change in the

on-chip memory configuration (cache/scratch pad memory and its size) does not change the clock period because, for

example, these units are not in the critical path for the set of configurations considered. From the trace file it is possible

to obtain the number of cache read hits, read misses, write hits and write misses. Table 1 shows the number of cycles

used in the trace analysis.

Access Number of cycles
Cache Using Table 2

Scratch pad 1 cycle
Main Memory 16 bit 1 cycle + 1 wait state
Main Memory 32 bit1 cycle + 3 wait states

Table 1: Memory access cycles

From this data we compute the number of accesses to cache based on Table 2, where the number of cycles required

for each type of access is listed in Table 1. The cache is a write through cache. There are four cases of cache access

that we consider in our model. When the CPU requires some data, the tag array of the cache is accessed. If there is

a cache read hit, then data is read from the cache. No write to the cache is done, and main memory is not accessed

for a read or write. When there is a cache read miss, it implies that the data is not in the cache, and the line has to be

brought from main memory to cache. In this case we have a cache read operation, followed by L words to be written

in the cache, where L is the line size. Hence there will be a main memory read event of size L with no main memory

write. If there is a cache write hit, we have a cache write, followed by a main memory write. In case of a cache write

miss, a cache tag read (to establish the miss) is followed by the main memory write. There is no cache update in this

case.

Access typeCaread Cawrite Mmread Mmwrite

Read hit 1 0 0 0
Read miss 1 L L 0
Write hit 0 1 0 1

Write miss 1 0 0 1

Table 2: Cache model

Using this model we derive the cache energy equation as

Ecache = (Nc�read +Nc�write) �E (12)

WhereEcache is the energy spent in cache.Nc�read is the number of cache read accesses andNc�write is the number

of cache write accesses. Energy E is computed like in equation (5), taking the appropriate load and the number of

cycles into consideration. In the trace analyzer we model the cache as described above and use it in our energy

estimations.



Regarding the scratch pad, the performance estimation is done as follows. The scratch pad is assumed to occupy

part of the total memory address space. Based on the address values from the trace analyzer, the access is classified

as going to scratch pad or memory and an appropriate latency is added to the overall program delay. One cycle is

assumed if it is a scratch pad read access.

If it is a main memory 16 bit access then we take it as one cycle plus 1 wait state. If it is a main memory 32 bit access

we consider it as one cycle plus 3 wait states. In case of a scratch pad there will not be any read miss, write miss. This

is the reason for improved performance in case of scratch pad when compared to cache on-chip memory configuration.

6 Experimental Results

In this section we first give the experimental setup and then present the experimental results obtained for the cache

and scratch pad memory. To demonstrate the merits of using on-chip scratch pad memory and on-chip caches, we

conducted a series of experiments for both of these configurations. The trace analysis for the scratch pad and the

cache is done in the design flow after the compilation phase. We used the cache power estimator tool and modified

it to compute the energy estimates for varying address bit-widths. To compute the energy estimates of scratch pad

memory we modified the tool according to our design requirement. The organization of the scratch pad is explained

in the previous section. The two energy estimators that we use employ the same memory array unit organization.

The feature size of target architecture is 0.5�m technology. We use a 2-way set associative cache configuration for

comparison.

6.1 Performance

The benchmark suite we selected was compiled using the encc compiler. In Figs. 9 and 10 we present the graph of

CPU cycles vs. the size of the scratch pad and the cache respectively. In both figures, y axes represent CPU cycles

in 10s of thousands, whereas x-axes is the size of the on-chip memory. To observe the effect of on-chip memory

configurations on CPU cycles we have varied the cache and the scratch pad size from 64 bytes to 8192 bytes. For the

benchmark suite that we have chosen, after a certain knee point around 1024 bytes, both for cache and scratch pad,

there will not be any performance improvement by increasing their size. This is a reflection of the overall memory

requirements of these benchmarks.

Fig. 11 shows the performance variation for bubble sort, lattice and selection sort benchmarks for the two on-chip

memory options in the same graph.

The performance of the scratch pad is mostly better than the cache. For example, the number of CPU cycles required

for the lattice benchmark for a cache of size 1024 bytes is 169225, whereas for scratch pad size 1024 bytes is 141402

(a 16.4% improvement). Consider the bubble sort benchmark with a maximum of 240000 CPU cycles. The smallest

cache size is 512 bytes and the scratch pad size is 128 bytes. Generally the graph shows the positive effect of using

on-chip scratch pad memory. There are some points of exception. For example, the benchmark lattice for 180000

CPU cycles has a minimum cache size of 256 bytes and scratch pad size of 512 bytes.

6.2 Area

The area is represented in terms of number of transistors. These are obtained from the cache and scratch pad orga-

nization using [9]. Fig. 12 shows the area vs. performance for the cache and the scratch pad for biquad_N_sections,



0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

C
P

U
 c

yc
le

s 
[in

 1
0 

th
ou

sa
nd

s]

Size in bytes 

bi_quadN_sections 
bubble_sort 

heap_sort 
insertion_sort 

lattice_init 
matrix_mult 

quick_sort 
selection_sort 

Figure 9: CPU cycles vs scratch pad size in bytes.

quick-sort and matrix mult.

Fig. 13 contains results for heap sort, lattice and selection sort.

Fig. 14 comprises results for the bubble sort and insertion sort benchmarks.

Table 3 gives the area/performance tradeoff. Column 1 is the size of scratch pad and cache in bytes. Columns 2

and 3 are the cache and scratch pad area in transistors. Columns 4 and 5 are the number of CPU cycles for cache-

and scratch-pad based memory systems, respectively. As shown in table 2 there is an improvement in the area and

performance using scratch pad.

Column 6 is the area improvement due to replacing a cache by an SPM, column 7 the corresponding improvement in

the number of cycles and column 8 the improvement of the area-time product AT (assuming constant cycle times):

AT = (As �Ns)=(Ac �Nc) (13)

The average area-, time-, and AT-product improvements are 34%, 18% and 48%, respectively.

6.3 Energy

Firstly, we describe the effect of varying address width on the energy for scratch pad and cache. Next, we give

an example of the energy consumption required for a main memory access. Finally, we describe the total energy

consumption for the various benchmarks that we have used in the experimental setup.



0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

C
P

U
 c

yc
le

s 
[in

 1
0 

th
ou

sa
nd

s]

Size in bytes 

bi_quadN_sections 
bubble_sort 

heap_sort 
insertion_sort 

lattice_init 
matrix_mult 

quick_sort 
selection_sort 

Figure 10: CPU cycles vs cache size in bytes

6.3.1 Address width variation

Fig. 15 shows the graph of cache size, scratch pad size in bytes vs the energy estimates per access obtained from

estimation using CACTI. The x axis is the size in bytes and the y axis represents energy in nJ.

Firstly, we observe that by parameterizing the address width (which influences the cachable area) there is a notable

change in the energy consumption of the 4 way set associative cache. The reason is that the number of tag-bits depends

on the address width, which affects the circuit organization in the tag array side. Secondly the energy consumption

of scratch pad memory is less than cache energy consumption, the reduction being in the range of 60% to 82%. We

observe a very slight variation in the energy consumption per access for the scratch pad, when the address width is

varied.

6.3.2 Main memory

Various technologies can be used for implementing the slowest and largest memory in the memory hierarchy, called

“main memory". For PCs, dynamic memory (DRAM) is employed. Due to more predictable and smaller access times,

supercomputers and DSP systems typically contain static main memory, implemented with SRAM technology. In

general, SRAM memory consumes more energy per access than DRAM.

Our cycle count considerations in section 5 are based on the static RAM chips found on an ATMEL evaluation board.

Accordingly, we are using the same chips for energy considerations. The energy required per access is listed in table



0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

C
P

U
 c

yc
le

s 
[in

 1
0 

th
ou

sa
nd

s]

Size in bytes 

bubble_sort cache 
          Scratch Pad 

lattice_init cache 
          Scratch Pad 

selection_sort cache 
          Scratch Pad 

Figure 11: CPU cycles for cache and scratch pad memory

4.

Note that -for the technology which we are considering- there is a factor of up to about 50 between the access to a

small scratch pad memory and the main SRAM memory. This is the key factor affecting the energy savings that are

possible by using a scratch pad memory.

Future extensions of our current work will also consider the savings that are possible with DRAM-based main memo-

ries.

6.3.3 Application of the evaluator

Using our evaluator described in section 2, we compare the energy consumption of several benchmarks.

Figs. 16 to 20 show that most of our benchmarks have a similar behaviour:

� For very small memories (less than 600 bytes), none of the two types of memories is superior in all cases.

Sometimes the cache-based architecture consumes less energy, in other cases it is the cache-based architecture.

The reason for this is that SPMs have to be large enough to hold entire basic blocks; otherwise, only references

to data can be mapped to the SPM. Caches, in contrast are useful even if only fractions of the important basic

blocks and loops can be stored in the cache.

� For larger memories, the scratch-pad architecture requires less energy, due to its inherently lower energy con-

sumption per access.



0

0.5

1

1.5

2

0 5 10 15 20

C
P

U
 c

yc
le

s 
in

 1
0s

 o
f t

ho
us

an
ds

Area in 10s of thousands of transistors

 bi_quad Cache 
 matrix mult Cache 
 quick_sort Cache 
 bi_quad Scratch 

 matrix mult Scratch 
 quick sort Scratch 

Figure 12: Area vs Performance biquad, matrix mult, quick sort

The cache-based architecture could be superiour for larger memories also if this architecture would have fewer

references to the main memory. For our benchmarks, we have observed no such case, see fig 20.

Table 5 shows the energy/performance tradeoff for the bubble-sort benchmark. Column 1 is the size in bytes. Column

2 and 3 are the energy consumption for cache and scratch pad. Column 4 and 5 represent the CPU cycles for cache

and scratch pad configurations respectively. Column 6 is the improvement in energy consumption of cache vs scratch

pad. Column 7 is the performance improvement of cache-based architecture vs. the SPM-based architecture.

There is only a single case (size: 512 bytes) in which the cache-based architecture outperforms the SPM-based archi-

tecture in terms of the energy-consumption. For all the other cases, the latter requires less energy and is faster.



0

5

10

15

20

25

30

35

0 5 10 15 20

C
P

U
 c

yc
le

s 
in

 1
0s

 o
f t

ho
us

an
ds

Area in 10s of thousands of transistors

heap_sort Cache 
lattice_init Cache 

selection_sort Cache 
heap_sort Scratch 
lattice_init Scratch 

selection_sort Scratch 

Figure 13: Area vs Performance heap, lattice and selection sort

Size Ac As Nc NsAs=Ac Ns/Nc AT
[transistors][transistors] [k] [k]

64 6744 4032481.9347.5 0.61 0.720.44
128 11238 7104302.4239.9 0.65 0.790.51
256 21586 14306264.0237.9 0.61 0.900.55
512 38630 26722242.6237.9 0.68 0.900.61

1024 74680 53444241.7192.0 0.69 0.790.55
2048 142224 102852241.5192.0 0.71 0.800.57

Average 0.66 0.820.54
ratio

Table 3: Area/Performance ratios for bubble-sort

Read access, 2 bytes24 nJ
Read access, 4 bytes49.3 nJ
Write access, 4 bytes41.1 nJ

Table 4: Energy per access to SRAM chips on our evaluation board



0

20

40

60

80

100

120

0 5 10 15 20

C
P

U
 c

yc
le

s 
in

 1
0s

 o
f t

ho
us

an
ds

Area in 10s of thousands of transistors

 me_ivlin Cache 
me_ivlin Scratch 

 bubble_sort Cache 
 bubble_sort Scratch 
insertion_sort Cache 

insertion_sort Scratch 

Figure 14: Area vs performance bubble sort and insertion sort

Size energy, energy, cyclesNc cyclesNs EnergyPerformance
cache-basedSPM-basedcache-basedSPM-basedimprove- improve-

memory memory memory memory ments ments
system system system system [%] [%]

[nJ] [nJ] [k] [k]
64 3,520,380 2,808,619 481.9 347.5 -20.2 -27.9

128 1,431,713 982,567 302.4 239.9 -31.4 -20.7
256 989,092 950,135 264.0 237.9 -3.9 -9.9
512 749,824 962,413 242.6 237.9 28.4 -1.9

1024 773,549 281,949 241.7 192.0 -63.6 -20.6
2048 810,656 324,150 241.4 192.0 -60.0 -20.5

Table 5: Energy/performance results for bubble-sort



0

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

E
ne

rg
y 

in
 n

J 

Size in bytes (Cache/Scratch pad memory) 

4 way set associative Cache (Address width 32) 
Scratch Pad Memory (32) 

Cache (24) 
Scratch Pad Memory (24) 

Cache (20) 
Scratch Pad Memory (20) 

Figure 15: Scratch pad memory and cache energy comparison



500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

 Insertion sort Scratch Pad
 Insertion  sort Cache 

Figure 16: Energy consumed by the memory system for insertion-sort [nJ]



1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

lattice Scratch Pad
Lattice Cache 

Figure 17: Energy consumed by the memory system for lattice filter



0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

 Selection sort Scratch Pad
Selection sort Cache 

Figure 18: Energy consumed by the memory system for selection sort

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

 Heap sort Scratch Pad
 Heap sort Cache 

Figure 19: Energy consumed by the memory system for heap-sort



0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

 Meivlin Scratch Pad
 Meivlin Cache 

Figure 20: Energy consumed by the memory system for meivlin

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y 

in
 n

J

Size in bytes 

 Biquad_N_sections Scratch Pad
 Biquad_N_sections Cache 

 matrix_mult Scratch Pad 
 matrix_mult Cache

 quick_sort Scratch Pad 
 quick_sort Cache

Figure 21: Energy consumed by the memory system



7 Conclusion and future work

In this report we present an approach for selection of memory configurations. The report presents a comprehensive

methodology for computing area, energy and performance for various sizes of cache and scratch pad memories. Area

and energy models are based on CACTI [9], whereas performance is based on trace analysis using a simulator. The

technique implicitly evaluates a knapsack algorithm for identifying and judiciously assigning a given scratch pad

memory area to contending code and data blocks. Experiments are performed on a set of benchmarks. The target used

is the ARM7TDMI core with the ARMulator for trace analysis.

Results indicate that, for the programs considered, the performance of scratch-pad based compile-time memory alloca-

tion does usually exceed that of cache-based run-time memory allocation, except for very small scratch-pad memories.

For a given performance, the SPM can be much smaller than the cache.

Similar results are obtained for the area. As long as the SPM is large enough to hold some of the important blocks,

significantly less transistors are required in order to meet a certain maximum cycle count constraint.

Combining area and time, we can observe that the area/time product AT can be reduced by 46% on the average by

introducing the SPM.

For the energy consumed per access, the SPM is about a factor of 3 more efficient than a 4-way set associative cache.

This factor can be exploited unless the hit ratio of the caches is larger than that of the SPM. We found that, for many

applications and memory configurations, the total energy consumption of SPM-based memory systems is less than

that of cache-based systems. In other cases, the energy consumption is very much comparable. There is only one case

in which there is a minor advantage for the cache-based architecture.

These results indicate that the approach proposed in a recent report [12] potentially more efficient than the use of

caches and should be further analyzed.

Future work will aim at extending the current work in the following ways:

1. Larger benchmarks have to be considered. For such benchmarks, it may be necessary to consider dynamic

reloading of the SPM.

2. An analysis of access times for the SPM and the cache is required. Currently, the performance is compared

using the number of CPU cycles. In the future, changes of clock frequencies should also be considered. SPMs

will have another advantage there, since no tags have to be compared.

3. For direct mapped caches, the overhead for fetching tags is reduced. Cost/performance tradeoffs for direct

mapped caches should also be analyzed.

4. A more detailed analysis of DRAM main memory should be added.

5. Integration of SPM support in the system level has to be analyzed. For example, multiprocess systems require

operating system support for SPMs. Fast context switching has to be maintained.

8 Appendix A

CACTI Results

In this appendix we present sample results of the CACTI tool which we have used to estimate the energy consumption

of the caches and scratch pad memory.



CACTI tool is used to estimate the energy values for the scratch pad taking into consideration that tag memory and tag

comparison is not done. In the following example one computation is shown for a scratch pad size of 512 bytes.

Size in bytes: 512, Vdd: 3.3V

decode data (nJ): 0.130763

word-line and bit-line data word-line power (nJ) : 0.00430446

bit-line power (nJ) : 0.113766

sense amp data (nJ) : 0.763764

valid signal driver (nJ): 0.00422912

data output driver (nJ) : 0.189504

====================================

Sum of these is 1.206 nJ

====================================

Sample result for the cache using CACTI is shown below.

Input : Cache size, Block size, k way associative, Feature size
OUTPUT :
Cache Parameters:

Size in bytes: 512

Number of sets: 32

Associativity: 2

Block Size (bytes): 8

Read/Write Ports: 1

Read Ports: 0

Write Ports: 0

Technology Size: 0.50um

Vdd: 3.3V

Access Time (ns): 2.86322

Cycle Time (wave pipelined) (ns): 0.954407

Power (nJ): 3.9582

Wire scale from mux drivers to data output: 0.10

Best Ndwl (L1): 1

Best Ndbl (L1): 1

Best Nspd (L1): 1

Best Ntwl (L1): 1

Best Ntbl (L1): 1

Best Ntspd (L1): 1

Nor inputs (data): 2

Nor inputs (tag): 2

Time Components:

data side (with Output driver) (ns): 1.82604

tag side (with Output driver) (ns): 2.86322



decode data (ns): 0.404611

decode data (nJ): 0.0702961

word-line and bit-line data (ns): 0.574366

word-line power (nJ): 0.00807173

bit-line power (nJ): 0.211472

sense amp data (ns): 0.3625

sense amp data (nJ): 2.29058

senseext driver (ns): 0.198405

senseext driver (nJ): 0.527851

decode tag (ns): 0.404611

decode tag (nJ): 0.0702961

word-line and bit-line tag (ns): 0.298164

word-line power (nJ): 0.0042859

bit-line power (nJ): 0.0802263

sense amp tag (ns): 0.1625

sense amp tag (nJ): 0.372219

compare (ns): 0.821622

compare (nJ): 0.0269032

mux driver (ns): 0.769588

mux driver (nJ): 0.0712788

sel inverter (ns): 0.120583

sel inverter (nJ): 0.000785287

data output driver (ns): 0.286153

data output driver (nJ): 0.223938

total data path (without output driver) (ns): 1.53988

total tag path is set assoc (ns): 2.57707

References

[1] Steve Furber :ARM - System-on.chip architecture, Second edition, Addison-Wesley publications, 2000.

[2] G. L. Nehmhauser, L. A. Wolsey :Integer and Combinatorial Optimization, John Wiley and Sons, 1988.

[3] Milind B Kamble and Kanad Ghose :Analytical energy dissipation models for low power caches, ISPLED-97,

pp 143-148, Aug 1997.

[4] J Kin, M Gupta and WH Mangonie-Smith :The filter cache: An energy efficient memory structure, IEEE Micro-

30 December 1997.

[5] Preeti Ranjan Panda, Nikhil Dutt, Alexandru Nicolau :Memory issues in embedded systems on-chip - Optimisa-

tions and exploration, Kluwer Academic Publishers, 1999.

[6] J L Hennessy and D A Patterson :Computer Architecture - A Quantitative Approach, Morgan Kaufman, San

Francisco, CA, 1994.



[7] Luca Benini, Alberto Macii, Enrico Macii, Massino Poncino :Synthesis of application specific memories for

power optimisation in embedded systems, DAC 2000 Los Angeles, California, pp 300-303.

[8] Glenn Reinman, Norm Jouppi :An integrated cache timing and power model, Report - COMPAQ Western

Research Laboratory, Palo Alto,1999.

[9] S Wilton and Norm Jouppi :Cacti : An enhanced access and cycle time model, IEEE Journal of Solid State

Circuits, May 1996.

[10] AT91M40400 processor :www.atmel.com, ATMEL Corporation.

[11] ARM Processors :www.arm.com, Advanced RISC Machines Ltd.

[12] Stefan Steinke, Christoph Zobiegala, Lars Wehmeyer, Peter Marwedel :Moving program objects to scratch-pad

memory for energy reduction, Technical report number 756, Universitat Dortmund, Apr 2001.

[13] Rajeshwari M Banakar, Ranjan Bose, M Balakrishnan :Low power design - Abstraction levels and RTL design

techniques, Technical Report, IIT Delhi, May 2001

[14] Vasily G Moshnyaga :Reducing Cache Energy through Dual Voltage Supply, ASP DAC Jan 2001.

[15] V. Tiwari, Sharad Malik and A. Wolfe :Instruction Level Power Analysis and Optimization of Software, Journal

of VLSI Signal Processing Systems, August 1996.

[16] V. Zivojnovic, J. Velarde, and C. Schlager :DSPStone : A DSP-oriented benchmarking methodology, In Pro-

ceedings of the 5th International Conference on Signal Processing Applications and Technology, October 1994.

[17] T Ishihara and H Yasuura :A power reduction technique with object code merging for application specific

embedded processors, Proceedings of Design Automation and Testing, Europe Conference (DATE 2000), March

2000.

[18] S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel :An Accurate and Fine Grain Instruction-Level Energy

Model Supporting Software Optimizations, Proceedings of 11th International Workshop of Power And Timing

Modeling, Optimization and Simulation (PATMOS), Sep 2001.

[19] R. Sedgewick:Algorithms, Addison Wesley, 1988.


