
Optimized Address Assignment for DSPs
with SIMD Memory Accesses�

Markus Lorenz, David Kottmann, Steven Bashford, Rainer Leupers, Peter Marwedel
Dept. of Computer Science 12

University of Dortmund, Germany
email:florenz, kottmann, bashford, leupers, marwedelg@ls12.cs.uni-dortmund.de

Abstract
This paper deals with address assignment in code generation for
digital signal processors (DSPs) with SIMD (single instruction
multiple data) memory accesses. In these processorsdata are orga-
nized in groups (or partitions), whose elements share one common
memory address. In order to optimize program performance for
processors with such memory architectures it is important to have
a suitable memory layout of the variables. We propose a two-step
address assignment technique for scalar variables using a genetic
algorithm based partitioning method and a graph based heuristic
which makes use of available DSP address generation hardware.
We show that our address assignment techniques lead to a signifi-
cant code quality improvement compared to heuristics.

I. Introduction
The growing number ofdigital signal processors(DSPs) in em-
bedded systems makes the use of optimizing compilers more
and more desirable. However, in order to meet given constraints
with respect to execution-time, code size and/or energy con-
sumption, many programs are still written in assembly code.
Unfortunately, hand crafting code is a very time consuming pro-
cess which potentially leads to incorrect and hardly portable
code.
Compilation first transforms a given high level source pro-
gram into an intermediate representation (IR). After performing
machine independent standard optimizations, a code generator
maps the IR to assembly code by solving the following sub-
tasks:

� Code selectioncovers the nodes of adata flow graphDFG
using suitable processor instructions.

� Instruction schedulingdetermines the execution order of
the processor instructions.

� Register allocationdetermines which variables have to re-
side in registers or be spilled to memory.

� Address assignmentdetermines the memory positions (ad-
dresses) of the variables which have to be stored.

In order to meet the specified constraints with respect to code
quality, the code generator has to make use of special architec-
ture features in these optimization steps. Thus, it is especially
necessary to exploitfine grainparallelism to handle restricted

�This work has been sponsored by the DFG (Deutsche Forschungsgemein-
schaft) and Agilent Technologies, USA.

interconnection networks and heterogeneous register files in or-
der to reduce execution time, chip area, and/or power consump-
tion.
There are different strategies for memory accesses. For exam-
ple, the DSP56000 [1] and GEPARD [2] contain dual data-
memory banks in order to overcome limited memory band-
widths. In these cases one goal of code generation is to maxi-
mize the number of parallel loads in order to reduce the execu-
tion time [3, 4].
MicroUnity’s media processor [5] and the M3-DSP platform
[6] use a wide memory (group memory). Here, addressing of
one memory word means to access all data words belonging to
the addressed group. Processing is performedaccording to the
single instruction multiple data (SIMD) principle, and does not
allow to access arbitrary sets of words (groups) in the memory.
Thus, in these cases techniques for computing a suitable order
of variables in the memory are essential for high code perfor-
mance.
Furthermore, it is typical for DSPs that they have specialad-
dress generation units(AGUs) which allow address computa-
tion in parallel to other machine instructions. Thus, exploitation
of AGUs is also essential for efficient code generation.
In this paper we concentrate on address assignment of scalar
variables for the M3-DSP which is an instance of the M3-DSP
platform [6]. The proposed address assignment technique is
subdivided into thehorizontalandvertical orderingstep: Hor-
izontal ordering assigns variables to groups. This is done by
a partitioning method based on a genetic algorithm that mini-
mizes the number of memory accesses. The vertical ordering
step assigns memory groups to addresses by optimizing the use
of AGUs with respect to code size.
The remainder of this paper is organized as follows: In the next
section we introduce the main features of our target architec-
ture. Algorithms for the horizontal and vertical ordering step
are described in section III and IV. Results for both subprob-
lems are given in section V. Section VI will conclude the paper
with a summary.

II. Target architecture (M3-DSP)
The M3-DSP (fig. 1) is an instance of the scalable DSP plat-
form [6] for mobile communication applications. The platform
allows for a fast design of DSPs adapted to special applica-
tions. In order to meet constraints w.r.t. real-time processing,
chip area, and energy dissipation the platform supports some
special features:
There is a scalable number of data paths that allow process-
ing either on a single data path or on all data paths in parallel
according to the SIMD principle. In the case of the M3-DSP



Inter Communication Unit

Accu

Intermediate Register M

A B C D

AccuAccu Lo
c

a
lC

o
m

m
u
n
ic

a
tio

n

...

Lo
c

a
lC

o
m

m
u
n
ic

a
tio

n

Lo
c

a
lC

o
m

m
u
n
ic

a
tio

n

MAC
ALU

MAC
ALU

MAC
ALU

slice0 151

A B C D A B C D

AGU
Wide Data Memory (Group Memory)

(16 x 16) bit

Fig. 1: Architecture of the M3-DSP

there are 16 data path slices. In order to provide an effective
use of all data path slices in parallel, the memory is organized
as agroup memory: Addressing one 16-bit data word means
addressing an entire group of 16 such words. The addressed
group is loaded into an intermediate register from which the
values are distributed to thegroup registersin the data paths by
an application-specific inter-communication network. The term
group register denotes the set of the data path input registers in
all slices with the same label (e.g. A or B in fig.1).
Here, the greatest challenges in code generation are to make
use of the whole memory bandwidth and the SIMD data path in-
structions. In order to demonstrate our address assignment tech-
nique it is sufficient to perform processing on one slice (slice 0),
while still exploiting the whole memory bandwidth. Exploiting
all data paths is one topic of our current research. In this paper
we will concentrate on code generation for the gray shaded area
in fig. 1. We do not use group registers C and D of the other
data paths because storing is not allowed from these registers.
The address generation unit (AGU) contains four address
pointer registersP0; : : : ; P3 which allow auto-increment ad-
dressing with an offsetoff 2 f�8; : : : ; 7g. If there is need for
larger offsets, the address pointer registers can be used orthogo-
nally with the four modify registersM0; : : : ;M3 in auto-modify
operations. Thepage pointer register PPcan be used with a 6-
bit offset1.
The M3-DSP is organized as avery long instruction word
(VLIW) architecture which allows an independent control e.g.
for data manipulation, data transfer, program control, and the
address generation unit. Unfortunately, the use of VLIW in-
struction set architectures leads to a code size overhead because
sub-instructions for idle units are also stored in the instruction
memory. In order to reduce the code size overhead aTagged
VLIW (TVLIW) method is used [7]. The idea is that the next
VLIW is assembled by an instruction decoder (fig. 2) for one or
more TVLIW’s which contain onlyfunctional unit instruction
words(FIWs) for two function units(FUs). The number of re-
quired FIWs for assembling the next VLIW is indicated by the
IWC (instruction word class).
Only those parts of a VLIW need to be stored, which are re-
quired for assembling the next VLIW. This means on the one
hand that code size overhead is avoided for idle units and on
the other hand that identical sub-instructions of two successive
VLIW’s can be reused and do not need to be stored as instruc-
tions in memory. In order to provide an effective use of this
method in loops the M3-DSP also contains aninstruction cache

1In addition, addressing can be also done by using a circular buffer.

TVLIW

VLIW

IWC FU# FIW FU# FIW

VLIW-Cache

FIW FIW FIW FIW...FIW

...

Fig. 2: Tagged VLIW Instruction Decoder

for up to four (pre-assembled) VLIW instructions.

III. Horizontal address assignment
The entire task of address assignment (fig. 3) is subdivided into
a horizontalandvertical ordering step. Inputs are thevariable
access sequencesVAS for the horizontal and thegroup access
sequenceGAS for the vertical (see section IV.) optimization
step.

...

GAS

a R
e R
a W
c R
f R
c W
b R
d R
a R

...

Address Assignment

memory layout

address

0

1

2

3

4

5
...

group

...

vertical
ordering

horizontal
ordering

G

G

G

G

G

G

G

0

0

1

1

2

2

0

R

W

R

W

R

W

R

G0

G1

G2

VAS

G0 a e

variable
grouping

...

G1 c f ...

G2 b d ...

Fig. 3: Horizontal and vertical address assignment

A. Problem definition
The horizontal address assignment has the goal of assigning
each variable to a group (partition), while minimizing the
number of memory accesses. Thevariable access sequence
VAS contains (memory-)accesses of scalar variables and is
the result of the instruction selection, instruction scheduling,
and register allocation phases. These phases are performed by
using only one memory slice. Thus, the same VAS can be taken
as input for DSPs with different memory widths. Each element
of VAS is tagged either by an R (read) or a W (write) in order
to distinguish between different memoryaccess modes.
We say that two variablesvari andvarj of VAS areneighbors
and have aneighbor relationif there are successive accesses in
VAS to these variables. For example the variablesa ande of
fig. 3 are neighbors twice. Two variablesvari andvarj have
an unexploited neighbor relationif they are neighbors and are
not members of the same group.

The main concept of utilizing the whole memory width is
as follows: Load the group containing the required data and
work on these data as long as possible without further memory
accesses. If another group should be loaded into the group
register and the currently loaded group is modified (indicated



by a write access of a variable in VAS) it is necessary to
store the current group back to memory. Obviously, we can
minimize the number of memory accesses by minimizing the
number of unexploited neighbor relations.

Optimizing should be done under the condition that

� the number of elements in a group is restricted by the
memory widthmaxsize,

� every variable must be assigned to exactly one group2,

� the position of a variable in the group is irrelevant, and

� the number of resulting groups is not known in advance.

Now, we can represent the horizontal address assignment
problem as a graph partitioning problem using a graph repre-
sentation as described in [8]:

Definition: The Variable Access GraphVAG = (V;E) is
an undirected graph with node setV = fv1; : : : ; vng. Each
nodev has a corresponding variablevar in VAS. The edge
setE contains an edgeeij between the nodesvi andvj if the
corresponding variablesvari andvarj of VAS are neighbors.
An edge which represents an unexploited neighbor relation
is calledexternal edge, otherwise this edge is calledinternal
edge. The weightwij of an edgeeij is given by the number
times thatvari andvarj are neighbors.

Fig. 4 depicts the graph representation VAG of a given variable
access sequence VAS and three different memory layouts.

a R
e R
a W
c R
f R
c W
b R
d R
a R

VAS
using only
one slice

lexical order of
variables

optimized

(a) (b)

variable grouping

cost: 8 cost: 8 cost: 3

a
e

d

b
f

c

VAG

G0 a

G1 b

G2 c

G3 d

G4 e

G5 f

G0 a

G1 c

G2 e

G3

b

G4

d

G5

f

(c)

G0 a

G1 c

G2 b

G3

e

G4

f

G5

d

2

1

1
1

12

Fig. 4: Horizontal address assignment

The costs of the respective variable groupings are computed by
adding the weights of external edges. It can be seen that us-
ing only one memory slice (grouping a) or a naive partition-
ing (grouping b) are both poor. In contrast to this the variable
grouping (c) optimized for the concrete VAS has much lower
costs.
This example shows that it is desirable to optimize the variable
grouping by a suitable partitioning algorithm. Unfortunately,
this means solving an NP-complete problem [9]. For this rea-
son we have implemented some simple heuristical approaches
and the well known Kernighan-Lin algorithm [10]. In order to
improve the heuristical results we have developed a partitioning
algorithm based on genetic algorithm, which is presented in the
next section.

2This is necessary in order to avoid overhead which is caused by accesses.

B. Genetic partitioning
Genetic algorithms (GA) have proven to solve complex
optimization problems by imitating the natural optimization
process (see e.g. [11, 12] for an overview). A population of a
GA consists of several individuals, each of them representing
a potential solution for the optimization problem. The repre-
sentation of an individual is given by achromosomewhich
is subdivided intogenes. The genes are used to encode the
variables of the optimization problem. This means that finding
a suitable combination ofalleles(concrete values) for the genes
is the same as finding good solutions for the optimization prob-
lem. By applying genetic operators likeselection, mutation,
andcrossoverto the members of the population, the fitness of
the individuals will increase in the course of the generations.

In the next section, we first describe the coding mechanism and
afterwards the initialization, evaluation, crossover, and muta-
tion steps of our genetic partitioning technique in more detail.

B.1. Chromosomal representation
Finding an appropriate chromosomal representation is essential
for employing genetic algorithms. In our case we have to as-
sign each variable to a group. Thus, we representeach variable
occurring in the given variable access sequence as a gene of a
chromosome. An allele indicates to which group the variable
should be assigned. For example, variablesa ande in fig. 5 are
members of the same group0.

set of variables
{a, e, c, f, b, d}

0 0 1 1 2 2
1 2 3 4 5 6gene

position

chrom.

genes

variable
grouping

a R

e R

a W

c R

f R

c W

b R

d R

a R

VAS

G0 a

G1 c

G2 b

e

f

d

Fig. 5: Chromosomal representation

B.2. Initializing
Initialization of each gene isdone by traversing the chromo-
some from left to right with growing gene positions. In order to
meet the given group size constraint we determine the set of al-
ternative alleles whose selection would lead to a valid solution.
Elements of this set are all non-empty groups which contain
less thanmaxsize variables and a new (empty) group. Obvi-
ously, the complexity of this step isO(jV j).
Fig. 6 shows an initialized chromosome. The initialization pro-
cess is done for variablesa - d by performing a probabilistical
selection of an element of the set of alternatives (depicted be-
low the genes). Assuming a partition size of two, initialization
of variable f is only possible to the groupsG0 andG2 because
G1 already contains the memberse andc. The resulting vari-
able grouping shows that the number of groups can be different
for the individuals. Thus, an assignment of variableb to group
G0 would result in only three groups.

B.3. Evaluation
The evaluation function of a genetic algorithm is necessary to
distinguish the individual’s quality within a population. Thus,



a e c f b d

0 1 1 2 3 2

{0} {0,1} {0,1,2} {0,2} {0,2,3} {0,2,3,4}

G0 a

G1 e

G2 f

c

d

G3 b

variable grouping

Fig. 6: Initialization of an individual

solving a minimization problem indicates that the individual
with the lowest evaluation result is the best solution. In this
case we want to minimize the number of memory accesses of a
program. As we have seen in the last section, this is the same
task as minimizing the sum of external edge weights. However,
we need to modify this cost function in order to get a closer
relation to code generation: First, costs for accessing the first
variable in VAS are not taken into account. Second, writing a
variablevar to memory means that the group containing this
variable must reside in a group register. Thus, we have to look
at the variable access sequence and have to add one additional
memory access if a write access occurs for a variable while ac-
cessing variables of a group. This step can be done inO(jVASj).
In the case presented in fig. 4 this will result in 11 memory ac-
cesses for grouping (a) and (b), and 6 for grouping (c).

B.4. Crossover and Mutation
The crossover operator deals with generating new individuals
by probabilistically swapping genes between two selected indi-
viduals. In our case we are using a simpleone point crossover
(fig. 7).
The crossover is performed by a probabilistic choice of a
crossover point (e.g. in fig. 7 this is gene c). Then, all genes
of the parents behind this point are swapped.

0 1 2 2 0 3parent2

a e c f b d

0 1 1 2 3 2parent1

0 1 2 2 3 2child2

a e c f b d

0 1 1 2 0 3child1 valid

invalid

Fig. 7: Crossover

a e c f b d

0 1 2 2 3 2

0 1 0 2 2 1

0 2 2 3 3 2

0 2 0 3 3 2

renaming

correction

mutation

Fig. 8: Mutation

The result consists of two individuals which contain the com-
bined information of the parents. However, the crossover step
can lead to invalid solutions. In order to avoid invalid solutions
we combine the subsequent mutation operator with a correct-
ness check. Thus, the main tasks of the mutation operator are
to generate the new gene material by exchanging alleles and
checking the correctness of the actual allele. This is done by
performing the following steps:

1. Mark probabilistically all genes which should be mutated.

2. Perform a probabilistic choice of a new allele from the
allele set for all marked genes. LetGmax be the actual
largest assigned group number. Then, the set of alleles
includes the groupsG1; : : : ; Gmax and the empty group
Gmax+1.

3. Correct the number of elements in groups which have more
thanmaxsize number of elements. This is done by dis-
tributing elements either to groupGmax+1 or to groups
which can pick up further elements.

4. Perform a renaming of the groups from left to right in the
chromosome in order to delete groups which are not used.

Fig. 8 illustrates this procedure for the invalid offspring of fig. 7.
Analogous to the initialization phase the complexity of muta-
tion and crossover isO(jV j).

C. Extensions to the partitioning algorithm
We have implemented the following extensions for our parti-
tioning algorithm:

� Initialization of some individuals can be done with the re-
sult of heuristic partitioning algorithms.

� In order to enable sharing of memory locations between
variables, dependent on their life ranges, we have com-
bined the mutation operator with theleft edge algorithm
[13]. Thus, local variables without overlapping life ranges
can share one memory position in a group. This can lead
to group sizes which are greater thanmaxsize.

� It can be desirable to iterate the partitioning algorithm sev-
eral times with given partitioning constraints. Thus, it is
possible to specify constraints with respect to an existing
variable grouping.

� Edge weights for variables used in loops can take into ac-
count the number of loop iterations.

In section IV we will propose a heuristical technique which de-
termines the address instructions for a given group access se-
quence (GAS).

IV. Vertical address assignment
A. Problem definition
The goal of vertical address assignment is to determine an opti-
mized ordering of available groups in the memory which allows
to minimize the code size by choosing suitable address genera-
tion instructions. However, the following facts cause problems
in solving this task: First, the number of possible memory lay-
outs is exponential with respect to the number of groups which
have to be taken into account. Thus, testing all memory layouts
is not practical in most cases. Second, computing the quality
of a given memory layout means to solve thegeneral offset as-
signment(GOA) problem (see e.g. [8, 14, 15, 16] for details).
Here, a set of address and modify registers are given, which are
used to address variables in the memory. Unfortunately, this is
also an NP-complete problem. In addition, we need to take into
account the VLIWcache (fig. 2) in our optimization technique.
Thus, we can reduce the code size by maximizing the reuse of
address generation instructions which reside in a VLIW of the
instruction cache.
For the example memory layout in fig. 9, agroup access se-
quenceGAS indicating the order of addresses which have to be
generated by address instructions, and three AGU instruction
sequences are given. The costs below the sequences are depen-
dent on the number of instructions which must be stored to the
instruction memory (instructions in bold in fig. 9).



addr. group

0

1

2

3

4

5

6

G0

G1

G2

G3

G4

G5

G6

G

G

G

G

G

G

G

G

G

G

G

1

6

5

3

4

3

5

2

0

1

5

P = 1

P += 5

P -= 1

P -= 2

P += 1

P -= 1

P += 2

P -= 3

P -= 2

P += 1

P += 4

0

0

0

0

0

0

0

0

0

0

0

P += 40

cost = 11

memory layout
GAS AGU

instructions

G

G

G

G

G

G

G

G

G

G

G

1

6

5

3

4

3

5

2

0

1

5

P = 1

P += 0

PP & 6

P = 5

P += 0

P = 3

P += 0

PP & 4

PP & 2

PP & 0

0

0

1

1

2

2

P += 0

P += 0

P += 0

P += 0

2

1

0

1

cost = 10

GAS AGU
instructions

(a) (b)

G

G

G

G

G

G

G

G

G

G

G

1

6

5

3

4

3

5

2

0

1

5

P = 1

P += 2

P = 6

P -= 1

P += 5

0

0

1

1

2

P -= 1

P += 2

P -= 1

P -= 1

P += 2

P -= 1

P -= 1

P += 5

1

0

1

1

0

1

1

2

cost = 5

GAS AGU
instructions

(c)

P = 0

P = 0

P = 0

P = 0

PP = 0

0

1

2

3

initialized
address registers

Fig. 9: Example of address assignment techniques

For sequence a) we assume that addressing is done only with
address registerP0 and an offset. Without making use of the
instruction cache this will result in 11 instructions to be stored.
In this case, code size reduction is only possible if the same ad-
dress instructions are used in successive instructions. Sequence
b) is generated by determining those three groups (or addresses)
which are accessed most frequently. Then, addressing for these
groups is done by loading the group address into an unused
address register which is used subsequently for addressing this
group with a zero offset. All other (non-addressed) groups are
addressed by the page pointer registerPP and a suitable offset.
Sequence c) shows that the cost can be further reduced by a
dedicated address generation technique which makes better use
of the instruction cache.
We can represent this task as a graph problem where the graph
nodes are given by the group setaccessed in GAS.

Definition: The Group Access GraphGAG = (V;E) is a
directed acyclic graph with node setV = fg1; : : : ; gkg. Each
nodegi represents one group access in GAS. Ifi < j we insert
an edgeeij from nodegi to nodegj. The weightwij of an edge
eij is given by the address offset of the corresponding groups
G of gi andgj.

The corresponding GAG of the groupaccess sequence of fig. 9
is depicted in fig. 10. Obviously, finding long paths (with re-
spect to the number of nodes) along edges with same offset
tends to minimize the code size.

g1 g2 g3 g4 g10 g115 -1 -2 -1

4

2
0
4

-3

-5

-1

G1 G6 G5 G3 G1 G5

Fig. 10: Problem graph representation (GAG)

B. Heuristical approach
Our heuristic algorithm for vertical address assignment is as fol-
lows. As long as the graph contains unmarked nodes perform
the following steps:

1. Take the first/next unmarked nodegi.

2. If (cache size - 1) is equal to the number of currently used
address instructions in the instruction cache goto step 3d.

3. Determine the longest path starting from nodegi only by
using edges with same weights. These nodes can all be
addressed by the same address generation instruction, if
the used address register is not modified between the first
and last access. Choose the address generation instruction
in the following order, taking into account that it is not
allowed to choose address registers which are still needed
for addressing of subsequent already marked nodes:

(a) Try to reuse one of the available address generation
instruction in the instruction cache. Candidates are
auto-increment or auto-modify instructions.
If success goto step 4.

(b) Try to address all nodes on the path with an (new)
auto-increment instruction.
If success goto step 4.

(c) Address these nodes with an auto-modify instruc-
tion. If necessary load the correct constant into the
modify register.
If success goto step 4.

(d) Address the current node by the page pointer register
PP and an offset. Choose always the same instruc-
tion cache entry.

4. Mark all addressed nodes on this path as addressed and
delete all edges adjacent to thesenodes. If there are un-
marked nodes goto step 1 else stop.

Applying this algorithm to the group access sequence of fig. 9
would result in the AGU instruction sequence c).

P = 10

P -= 11

P += 20

P -= 11 P -= 11 P -= 11 P -= 11

P += 20

P = 61

G1 G6 G5 G3 G4 G3 G5 G2 G0 G1

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

G5

g11

P += 52

Fig. 11: Graph representation of sequence c) in fig. 9

The described algorithm optimizes the address generation
instructions forone given memory layout while minimizing
code size. It can be shown that the complexity isO(jGASj3).
Usually, it is possible to find better solutions by comparing
different memory layouts with respect to the resulting code
size. But, testing all memory layouts will in most cases not be
practical. Thus, we use a modified genetic algorithm of the
horizontal ordering step to search for a suitable memory layout.
Evaluation of the different memory layouts is done using the
described heuristic algorithm.

V. Experimental results
First, we compare the quality of the Kernighan-Lin (KL) and
the genetic partitioning algorithm from section III with optimal
solutions obtained by a time-intensive CLP (constraint logic
programming) partitioning algorithm. The results for four test
sequences are depicted in table 1. Column 1 contains the num-
ber of different variables occurring in the test sequence. For



genetic KL
group size #mem cycles AGU ops cpu[s] #mem cycles AGU ops cpu[s]

4 17 82 6 8 21 91 10 < 1

8 10 71 6 8 15 79 8 < 1

12 10 71 4 8 10 71 4 < 1

16 6 65 4 8 7 67 4 < 1

Table 2: Results for the IIR example

CLP (optimal) genetic KL
#var #mem cpu[s] #mem cpu[s] #mem cpu[s]
5 71 < 1 71 12 71 < 1

10 122 7 122 17 126 < 1

15 134 4140 134 22 139 < 1

20 136 > 2 weeks 136 26 144 < 1

Table 1: Comparison of optimal, genetic, and KL partitioning
algorithm with jVASj = 200 and partition size = 4 (for the
horizontal address assignment step)

each partitioning technique also the number of resulting mem-
ory accesses (#mem), which are important from a performance
or power consumption viewpoint, and the respective runtimes
(on a 333 MHz Sun Ultra-10) are mentioned. The main result
here is that the genetic algorithm computes the optimal solu-
tion3 (for these sequences) in all cases within acceptable run-
time. For 20 variables the result of the KL heuristic is 5,8 %
worse than the optimal solution4. Further experimental results
have shown that using an optimized variable grouping can save
up to approximately 60 % of the number of memory accesses
in contrast to an arbitrary (unoptimized) grouping.
Table 2 gives results for a real DSP code example: an infinite
impulse response (IIR) filter. In addition to the pure address
assignment results, also the total effect on code quality is re-
flected. For this purpose, the results of the address assignment
phase have been propagated to an existing M3 DSP code gen-
erator, so as to obtain a complete assembly program for the IIR
example. Again, we compared the proposed genetic algorithm
approach to the use of the KL heuristic. Column 1 gives the
group size, i.e., the number of 16-bit data words per memory
word, which is a parameter to the M3 DSP platform. Columns
labeled ”#mem”, like in table 1, denote the resulting number
of memory (i.e. group)accesses. Column ”cycles” denotes the
number of instructions cycles required by the assembly pro-
grams generated based on the given address assignment infor-
mation. Column ”AGU ops” denotes the number of different
address computation instructions needed to be stored in VLIW
instructions, thereby reflecting the code size. Finally, the re-
quired CPU times are given in seconds.
Naturally, the KL heuristic is faster than the genetic algorithm,
but the latter generates significantly better code both in terms
of memory accesses and performance. Also w.r.t. the number
of required AGU operations, the genetic algorithm performs at
least as good as KL.

VI. Conclusions
New high performance DSP processors need to be supported by
advanced compiler algorithms. In this paper we have described
memory allocation algorithms designed for the M3 DSP, high

3For this and the following results of the genetic partitioning algorithm we
have performed 10.000 generations with a population size of 50 and a replace-
ment rate of 10 individuals.

4Note that the KL heuristic is also adapted to our cost function.

performance scalable SIMD architecture. In a first phase, vari-
ables are partitioned into variable groups, reflecting the M3’s
SIMD-like group access mechanism. A newly designed opti-
mization based on a genetic algorithm has been shown to be
capable of outperforming the traditional Kernighan-Lin algo-
rithm. In a second phase, variable groups are allocated to mem-
ory. This is done by exploiting the M3’s tagged VLIW instruc-
tion cache architecture.
Results have shown that optimizing the variable grouping can
save a significant amount of memoryaccesses and increase code
performance. So far, the technique is mainly tuned for the M3
architecture. However, adaptations for other SIMD DSP pro-
cessor architectures would be relatively straightforward.

References
[1] Motorola. DSP56000, Digital Signal Processor, User’s Manual, 1986.
[2] GEPARD - Familiy of Embedded Software Programmable DSP Cores.

http://asic.amsint.com/databooks/digital/gepard.html.
[3] A. Sudarsanam and S. Malik. Memory Bank and Register Allocation

in Software Synthesis for ASIPs. InProceedings of the International
Conference on Computer Aided Design, pages 388–392, 1995.

[4] M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting Dual Data-Memory
Banks in Digital Signal Processors. InProceedings of the 8th Interna-
tional Conference on Architectural Support for Programming Languages
and Operation Systems, pages 234–243, 1996.

[5] Craig Hansen. MicroUnity’s MediaProcessor Architecture.IEEE Micro,
16(4):34–41, Aug 1996.

[6] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broadband
mobile multimedia modem DSP. InProc. of ICSPAT’98, pages 1547–
1551, Toronto, Canada, 1998.

[7] M. H. Weiss and G. P. Fettweis. Dynamic Codewidth Reduction for
VLIW Instruction Set Architectures in Digital Signal Processors. In3rd
International Workshop on Image and Signal Processing, pages 517–520.
IEEE,1996.

[8] S. Liao and S. Devadas. Storage Assignment to Decrease Code Size.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1995.

[9] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman and Company, New York,
1979.

[10] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Par-
titioning Graphs. InBell System Technical Journal, volume 49, pages
291–307, 1970.

[11] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press,
1992.

[12] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, 1996.

[13] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New
York, 1974.

[14] R. Leupers and P. Marwedel. Algorithms for Address Assignment in DSP
Code Generation. InInt. Conf. on Computer-Aided Design (ICCAD),
1996.

[15] R. Leupers and F. David. A Uniform Optimization Technique for Offset
Assignment Problems. InProceedings of the 11th International Sympo-
sium on System Synthesis, 1998.

[16] B. Wess and M. Gotschlich. Optimal DSP Memory Layout Generation
as a Quadratic Assignment Problem. InProceedings IEEE International
Symposium on Circuits and Systems, volume 3, pages 1712 – 1715, Hong
Kong, 1997.


