Optimized Address Assignment for DSPs
with SIMD Memory Accesses

Markus Lorenz, David Kottmann, Steven Bashford, Rainer Leupers, Peter Marwedel
Dept. of Computer Science 12
University of Dortmund, Germany
email: {lorenz, kottmann, bashford, leupers, marwé@ils12.cs.uni-dortmund.de

Abstract interconnection networks and heterogeneous register files in or-
. . :) . der to reduce execution time, chip area, and/or power consump-
This paper deals with address assignment in code generation for
digital signal processors (DSPs) with SIMD (single instruction o6 are gifferent strategies for memory accesses. For exam-
multiple data) memory accesses. In these processorsdata are orgaﬁle the DSP56000 [1] and GEPARD [2] contain dual data-
nized in groups (or partitions), whose elements share one commonme’mory banks in order to overcome limited memory band-
memory address. In order to optimize program performance for widths. In these cases one goal of code generation is to maxi-
processors with such memory architectures it is important to have mize tﬁe number of parallel loads in order to reduce the execu-
a suitable memory layout of the variables. We propose a two-steption time [3, 4]
address assignment technique for scalar variables using a genetiﬁ\/licroUnity’,s rﬁedia processor [5] and the M3-DSP platform
algorithm based partitioning method and a graph based heuristic [6] use a wide memorygtoup memory. Here, addressing of
which makes use of available DSP address generation hardware. one memory word means to access ail data ;Nords”ig}i!hg to
We show that our address assignment techniques lead to a signifi-the addressed group. Processing is perforatarding to the
cant code quality improvement compared to heuristics. single instruction multiple data (SIMD) principle, and does not
allow to access arbitrary sets of wordsdgps) in the memory.
. Thus, in these cases techniques for computing a suitable order
l. Introduction of variables in the memory are essential for high code perfor-

The growing number digital signal processoréDSPs) in em- Mance. L .
bedded systems makes the use of optimizing compilers m&}gthermore, itis typlcaé for D?}Psh thl?t the()j/dhave spea
and more desirable. However, in order to meet given constrafffesS generation unithGUs) which allow address computa-
with respect to execution-time, code size and/or energy c8@h in parallel to other machine instructions. Thus, exploitation
sumption, many programs are still written in assembly co .AhG.US is also essential for efﬁmer(;tdcode generation. ¢ scal
Unfortunately, hand crafting code is a very time consuming pt8-t ISI pa]E)er h""e concentrathe %n_ adaress assgrfm;}ent Of scalar
cess which potentially leads to incorrect and hardly portalyl%r'ab es for the M3-DSP which is an instance of the M3-DSP
code. P aggqr(g [g]_. Thﬁé}prqpose? aﬂdress allssgjnr_’nent tecthlque is
G , , to thénorizontalandvertical orderingstep: Hor-
Compilation first transforms a given high level source prgsodivideain . N e
gram into an intermediate representation (IR). After performirlzé)m"’t‘.lt.orqe”ng ?ks]sgr;)s vaélables to ngCi’Up?' -:—i?rlmfnlihdct)rr]r?int}y
machine independent standard optimizations, a code generatBf'''ONING Method based on a genetc algorithm that mini-
maps the IR to assembly code by solving the following sufli2€S the number of memory accesses. The vertical ordering
tasks: Step assigns memory groups to addresses by optimizing the use
' of AGUs with respect to code size.

. The remainder of this paper is organized as follows: In the next
¢ Code selectiomovers the nodes ofdata flow grapfDFG ot e introduce the main features of our target architec-
using suitable processor instructions.

ture. Algorithms for the horizontal and vertical ordering step
qre described in section Il and IV. Results for both subprob-

i i i X ion order : . . . :
* {Ezm’:gt(':ggssoﬁr}ﬁgﬁt@ggggrm'nes the execution orde %ems are given in section V. Section VI will conclude the paper
P ' with a summary.

¢ Register allocatiomletermines which variables have to re-

side in registers or be spilled to memory. I Target architecture (M3 DSP)

¢ Address assignmedetermines the memory positions (ad- ' . .
dresses) of the variables which have to be stored. dThe M3-DSP (fig. 1) is an instance of the scalable DSP plat-

form [6] for mobile communication applications. The platform
allows for a fast design of DSPs adapted to special applica-

In order to meet the specified constraints with respect to cqifs ™ | order to meet constraints w.r.t. real-time processing,

quality, the code generator has to make use of special archifia area and energy dissipation the platform supports some
ture features in these optimization steps. Thus, it is especiall}f | fentures:

necessary to exploftne grainparallelism to handle restricte here is a scalable number of data paths that allow process-

*This work has been sponsored by the DFG (Deutsche Forschungsger&@ﬁ-either on a single data} pc_’:lth or on all data paths in parallel
schaft) and Agilent Technologies, USA. according to the SIMD principle. In the case of the M3-DSP

AGU ’ Wlde Data Memory (Group I\/Iemdbry)
H . (16X 16) bit |

TVLIW | WC || Fu# | Fw | Fu# | FIW |
| ¥ !} !}

. 1
i Intermediate Register M

VLIW-Cache --

Iy
' Infer Communication Unit

T8 Is 5| v ' ' v
ik ‘EE gl VLIW [FW [Fw [Fw [Fw [[Fw |
12IMAC||g 2

ALU E g Fig. 2: Tagged VLIW Instruction Decoder

slice

for up to four (pre-assembled) VLIW instructions.

Fig. 1: Architecture of the M3-DSP
[ll. Horizontal address assignment

e entire task of address assignment (fig. 3) is subdivided into

there are 16 data path slices. In order to provide an eﬁect% zontalandvertical order: ten. Inout thariabl
use of all data path slices in parallel, the memory is organiZeg°"'zontalandvertical oraering step. nputs are thvarabvie

as agroup memory Addressing one 16-bit data word meandcCeSS Sequenc¥s for the horizontal and thgroup access
addressing an entire group of 16 such words. The addresggég]uenceT;AS for the vertical (see section IV.) optimization
tR

group is loaded into an intermediate register from which
values are distributed to thggoup registersn the data paths by

an application-specific inter-communication network. The term Address Assignment

group register denotes the set of the data path input registers in horizontal vertical

all slices with the same label (e.g. A or B in fig.1). ordering ordering

Here, the greatest challenges in code generation are to mak R address | group
use of the whole memory bandwidth and the SIMD datapathin- 2 R Golale]-] Go R 0
structions. In order to demonstrate our address assignment tect a sz G Go W : Go
nigue it is sufficient to perform processing on one slice (slice 0), ¢ G1 R —
while still exploiting the whole memory bandwidth. Exploiting ﬁ]év ! G W 2 G
all data paths is one topic of our current research. In this paper b R 3

we will concentrate on code generation for the gray shaded are: g ﬁ mﬂ! e 4 | G2
in fig. 1. We do not use group registers C and D of the other i G W 5

data paths because storing is not allowed from these registers. *'! variable Go R
The address generation unit (AGU) contains four address vas grouping GAS memory layout
pointer registershy, . .., Ps which allow auto-increment ad-

dressing with an offseatff € {—8,...,7}. If there is need for Fig. 3: Horizontal and vertical address assignment

larger offsets, the address pointer registers can be used orthogo-

nally with the four modify registers/y, . . ., M3 in auto-modify

operations. Th@age pointer register Plean be used with a 6- Lo

bit offset.. A. Problem definition

The M3-DSP is organized as \ery long instruction word The horizontal address assignment has the goal of assigning
(VLIW) architecture which allows an independent control e.gach variable to a group (g#ion), while minimizing the

for data manipulation, data transfer, program control, and thiember of memory accesses. Thwariable access sequence
address generation unit. Unfortunately, the use of VLIW iNWAS contains (memory-)accesses of scalar variables and is
struction set architectures leads to a code size overhead bectigseesult of the instruction selection, instruction scheduling,
sub-instructions for idle units are also stored in the instructiand register allocation phases. These phases are performed by
memory. In order to reduce the code size overheddgged using only one memory slice. Thus, the same VAS can be taken
VLIW (TVLIW) method is used [7]. The idea is that the nexas input for DSPs with different memory widths. Each element
VLIW is assembled by an instruction decoder (fig. 2) for one of VAS is tagged either by an R (read) or a W (write) in order
more TVLIW’s which contain onlyfunctional unit instruction to distinguish between different memaagcess modes.
words(FIWSs) for twofunction units(FUs). The number of re- We say that two variables:r; andvar; of VAS areneighbors
quired FIWs for assembling the next VLIW is indicated by thend have aneighbor relationif there are successive accesses in
IWC (instruction word clasp VAS to these variables. For example the varialkiemnd e of
Only those parts of a VLIW need to be stored, which are riég. 3 are neighbors twice. Two variablesr; andvar; have
quired for assembling the next VLIW. This means on the oA unexploited neighbor relatioif they are neighbors and are
hand that code size overhead is avoided for idle units andrsit members of the same group.

the other hand that identical sub-instructions of two successive

VLIW’s can be reused and do not need to be stored as instrlilge main concept of utilizing the whole memory width is
tions in memory. In order to provide an effective use of thits follows: Load the group containing the required data and
method in loops the M3-DSP also containsmstruction cache work on these data as long as possible without further memory
accesses. If another groupaald be loaded into the group

Ln addition, addressing can be also done by using a circular buffer. register and the currently loaded group is modified (indicated

by a write access of a variable in VAS) it is necessary B. Genetic partitioning
store the current group back to memory. Obviously, we c@enetic algorithms (GA) have proven to solve complex
minimize the number of memory accesses by minimizing thptimization problems by imitating the natural optimization

number of unexploited neighbor relations. process (see e.g. [11, 12] for an overview). A population of a
GA consists of several individuals, each of them representing
Optimizing should be done under the condition that a potential solution for the optimization problem. The repre-

sentation of an individual is given by ehromosomewhich
o the number of elements in a group is restricted by tfesubdivided intogenes The genes are used to encode the
memory widthmaz,; ., variables of the optimization problem. This means that finding
a suitable combination @flleles(concrete values) for the genes
e every variable must be assigned to exactly one group is the same as finding good solutions for the optimization prob-
lem. By applying genetic operators lilselection mutation
and crossoverto the members of the population, the fithess of

the position of a variable in the group is irrelevant, and SIS L , :
¢ P group the individuals will increase in the course of the generations.

* the number of resulting groups is not known in advancem the next section, we first describe the coding mechanism and

afterwards the initialization, evaluation, crossover, and muta-

Now, we can represent the horizontal address assign steps of our genetic partitioning technique in more detail.

problem as a graph partitioning problem using a graph repre-
sentation as described in [8]:

B.1. Chromosomal representation
Definition: The Variable Access GrapiWAG = (V,E) is Finding an appropriate chromosomal representation is essential
an undirected graph with node sét = {v;,...,v,}. Each for employing genetic algorithms. In our case we have to as-
nodev has a corresponding variabler in VAS. The edge sign each variable to agup. Thus, we represeaach variable
set E contains an edge;; between the nodes andv; if the occurring in the given variable access sequence as a gene of a
corresponding variables:r; andvar; of VAS are neighbors. chromosome. An allele indicates to which group the variable
An edge which represents an unexploited neighbor relatighould be assigned. For example, variableside in fig. 5 are
is calledexternal edgeotherwise this edge is callddternal members of the same groQp
edge The weightw;; of an edgee;; is given by the number

times thatar; andvar; are neighbors. a R variable
Fig. 4 depicts the graph tation VAG of a gi iabl ; l‘}v set of variables grouping
. representation Oor a given variaple e
access sequence VAS and three different memagmyuts. ;E genes - {2, ¢, ¢, f, b, dj
T awon[0]0]1]1]2]2]
variable grouping b R pog;ci?i?)n% 123 4 556
(@ (b) () d ﬁ
8 @@ [l] [ofalb] [ofale] a
a W I Gi[b] | [Gield] [Gife|f] VAS
T, g [l [olelr] bl I | .
W .
Sy ®1 § Gla] | [&] | | [&] | | 19. 5: Chromosomal representation
gﬁ \C@ Gaf e G4 G4
_ Gs| f Gs Gs
VAG using only lexical order of optimized B.2. Initial iZing
one slice variables e s . . .
. .) Initialization of each gene islone by traversing the chromo-
cost: 8 cost: 8 cost: 3

some from left to right with growing gene positions. In order to
Fig. 4: Horizontal address assignment meet the given group size constraint we determine the set of al-
ternative alleles whose selection would lead to a valid solution.
)) . lements of this set are all non-empty groups which contain
The costs of the respective variable groupings are compute thanmaz,;.. variables and a new (empty) group. Obvi-
adding the weights of external edges. It can be seen that 45y, the cons]ZSIeexity of this step (] V).
ing only one memory slice (grouping a) or a naive partl'@IOiﬁ:ig_ 6 shows an initialized chromosome. The initialization pro-
ing (grouping b) are both poor. In contrast to this the varialgss is done for variables- d by performing a probabilistical
grouping (c) optimized for the concrete VAS has much lowggection of an element of the set of alternatives (depicted be-
costs. o _ . __low the genes). Assuming a partition size of two, initialization
This example shows that it is desirable to optimize the varialgleyariable f is only possible to the groupt andG- because
grouping by a suitable partitioning algorithm. Unfortunately; ajready contains the membersande. The resulting vari-
this means solving an NP-complete problem [9]. For this r;ﬁegr")?le grouping shows that the number of groups can be different

son we have implemented some simple heuristical approadgshe individuals. Thus, an assignment of variable group
and the well known Kernighan-Lin algorithm [10]. In order @7, would result in only three groups.

improve the heuristical results we have developed a partitioning

algorithm based on genetic algorithm, which is presented in the .
next section. B.3. Evaluation

The evaluation function of a genetic algorithm is necessary to
2This is necessary in order to avoid overhead which is caused by accessdistinguish the individual’s quality within a population. Thus,

variable grouping
Go

aecf bd
[0]1]1[2]3]2]

{0}

HE
=3
2]

(0,13 {0,1,2} {0.2} {023} {0.2,3.4}

2|
El
H

Fig. 6: Initialization of an individual

3.

4,

Correct the number of elements in groups which have more
thanmaz,;.. number of elements. This is done by dis-
tributing elements either to grou@,,.4z+1 Or to groups
which can pick up further elements.

Perform a renaming of the groups from left to right in the
chromosome in order to delete groups which are not used.

Fig. 8 illustratesthis procedure for the invalid offspring of fig. 7.

Analogous to the initialization phase the complexity of muta-
tion and crossover i@ (|V]).

solving a minimization problem indicates that the individual
with the lowest evaluation result is the best solution. In thj
case we want to minimize the number of memory accesses

a EXtensions to the partitioning algorithm

program. As we have seen in the last section, this is the saife have implemented the following extensions for our parti-
task as minimizing the sum of external edge weights. Howevéoning algorithm:

we need to modify this cost function in order to get a closer
relation to code generation: First, costs for accessing the firse
variable in VAS are not taken into account. Second, writing a
variablevar to memory means that the group containing this
variable must reside in a group register. Thus, we have to looR
at the variable access sequence and have to add oiteadd
memory access if a write access occurs for a variable while ac-
cessing variables of a group. This step can be dofK|WAS).

In the case presented in fig. 4 this will result in 11 memory ac-
cesses for grouping (a) and (b), and 6 for grouping (c).

[]
B.4. Crossover and Mutation
The crossover operator deals with generating new individuals
by probabilistically swapping genes between two selected indi-
viduals. In our case we are using a simpfee point crossover
(fig. 7). *
The crossover is performed by a probabilistic choice of a

Initialization of some individuals can be done with the re-
sult of heuristic partitioning algorithms.

In order to enable sharing of memory locations between
variables, dependent on their life ranges, we have com-
bined the mutation operator with theft edge algorithm
[13]. Thus, local variables without overlapping life ranges
can share one memory position in a group. This can lead
to group sizes which are greater thanx,; ..

It can be desirable to iterate the partitioning algorithm sev-
eral times with given partitioning constraints. Thus, it is
possible to specify constraints with respect to an existing
variable grouping.

Edge weights for variables used in loops can take into ac-
count the number of loop iterations.

crossover point (e.g. in fig. 7 this is gene c). Then, all genes
of the parents behind this point are swapped. In section IV we will propose a heuristical technique which de-

termines the address instructions for a given group access se-

aecf bd aecf bd quence (AS).
parenti [0 [1]1[2[3]2 [o[i[2]2]3]2]
mutation . i i n
paren2[0 [T 2|3]0T3] sy V. Vertical a_dq.ress assignment
: A. Problem definition
correction The goal of vertical address assignment is to determine an opti-
aecfbd 0[2]0]3]3]2] mized ordering of available groups in the memory which allows
chitd1 [0[1[1]2[0]3] valid L efliming to minimize the code size by choosing suitable address genera-
tion instructions. However, the following facts cause problems
chita2 [0112[2]3 2] invaiid [o]1]0]2]2][1] J P

in solving this task: First, the number of possible memory lay-
Fig. 8 Mutati outs is exponential with respect to the number of groups which
9. & Mutation have to be taken into account. Thus, testing all memory layouts

The result consists of two individuals which contain the cori§ NOt practical in most cases. Second, computing the quality
bined information of the parents. However, the crossover s given memory layout means to solve feneral offset as-
can lead to invalid solutions. In order to avoid invalid solutiorggnment(GOA) problem (see e.g. [8, 14, 15, 16] for detalils).
we combine the subsequent mutation operator with a corrd¢@'e, a set of address and modify registers are given, which are
ness check. Thus, the main tasks of the mutation operator@d to address variables in the memory. Unfortunately, this is
to generate the new gene material by exchanging alleles 8@ an NP-complete problem. In addition, we need to take into

checking the correctness of the actual allele. This is donedggount the VLIWcache (fig. 2) in our optimization technique.
performing the following steps: Thus, we can reduce the code size by maximizing the reuse of

address generation instructions which reside in a VLIW of the
1. Mark probabilistically all genes which should be mutatetistruction cache. o
For the example memory layout in fig. 9,g8oup access se-

2. Perform a probabilistic choice of a new allele from thguenceGAS indicating the order of addresses which have to be
allele set for all marked genes. Lét,,,. be the actual generated by address instructions, and three AGU instruction
largest assigned group number. Then, the set of alledeguences are given. The costs below the sequences are depen-
includes the groupé&/y, . .., G and the empty groupdent on the number of instructions which must be stored to the
Gmart+1- instruction memory (instructionsin bold in fig. 9).

Fig. 7: Crossover

memory layout GAS inst/::;cijions GAS inSt/:l?C:;Ol'lS GAS inst/::;cgons 1 Take the ﬁrSt/neXt unmarked nOgite
addr. | group GiiPo =1 G iPo =1 Gl iPo =1 . .
0 | G Po += 5 Po += 0 Po += 2 2. If (cache size - 1) is equal to the number of currently used
1 | Gi 86 ;o = ; CG‘m ;P & g Ge f;i = 61 address instructions in the instruction cache goto step 3d.
2 G2 5 0 —-= 5 1 = ==
3 [G | Gipo+=1 —— j=3° 85 PIE==ml 3. Determine the longest path starting from ngdenly by
a6 | guB? P RR G using edges with same weights. These nodes can all be
2 gz Gs i Po-=3 Gi|PP & 4 Gsip1 -= 1 addressed by the same address generation instruction, if
G2iPo -=2 Gi{P2 +=0 GsiPo += 2 the used address register is not modified between the first
e s g? — ‘11 gz S 20 gn S ; and last access.Hoose the address generation instruction
pe— Gsipo 44 GoiPP&O Giipi = 1 in the following order, taking into account that it is not
P1=0 GiiPo += 0 GsiP2 += 5 allowed to choose address registers which are still needed
P2 = 0 Gs iP1 += 0 for addressing of subsequent already marked nodes:
P3 = 0 cost =11 cost =10 cost=>5
e @ (®) © (a) Try to reuse one of the available address generation

instruction in the instruction cache. Candidates are
auto-increment or auto-modify instructions.
If success goto step 4.

Try to address all nodes on the path with an (new)

Fig. 9: Example of address assignment techniques

For sequence a) we assume that addressing is done only with (b) X ; ;
address registeP, and an offset. Without making use of the auto-increment instruction.

instruction cache this will result in 11 instructions to be stored. If success goto step 4.

In this case, code size reduction is only possible if the same ad- (c) Address these nodes with an auto-modify instruc-
dress instructions are used in successive instructions. Sequence tion. If necessary load the correct constant into the

b) is generated by determining those three groups (or addresses) modify register.

which are accessed most frequently. Then, addressing for these If success goto step 4.

groups is done by loading the group address into an unused (d) Address the current node by the page pointer register
address register which is used subsequently for addressing this PP and an offset. Choose always the same instruc-
group with a zero offset. All other (non-addressed) groups are tion cache entry.

addressed by the page pointer regiftBrand a suitable offset.

Sequence c) shows that the cost can be further reduced bysa mark all addressed nodes on this path as addressed and
dedicated address generation technigue which makes better usegelete all edges adjacent to thesedes. If there are un-

of the instruction cache. marked nodes goto step 1 else stop.
We can represent this task as a graph problem where the graph
nodes are given by the group setcessed in GAS. Applying this algorithm to the group access sequence of fig. 9

o . would result in the AGU instruction sequence c).
Definition: The Group Access GraplAG = (V,F) is a

directed acyclic graph with node sét= {gi,...,9x}. Each et ez Po+=2 | Pri=s
nodeg; represents one group access in GAS.4f j we insert !
an edge:;; from nodey; to nodey;. The weighto;; of an edge . (, 5] 4] 5 7 0 \ ;
ei; is given by the address offset of the corresponding groups ‘Pl:ff TPE— _:1‘ Tl [T)
G of g; andg;. PL-=1

. , ig. 11: i in fig.
The corresponding GAG of the groagcess sequence of fig. 9 Fig. 11: Graph representation of sequence c) in fig. 9

is depicted in fig. 10. Obviously, finding long paths (with re-

spect to the number of nodes) along edges with same off§a¢ described algorithm optimizes the address generation
tends to minimize the code size. Instructions forone given memory layout while minimizing

code size. It can be shown that the complexitP{$GAI?).
Usually, it is possible to find better solutions by comparing
different memory layouts with respect to the resulting code
size. But, testing all memory layouts will in most cases not be
practical. Thus, we use a modified genetic algorithm of the
horizontal ordering step to search for a suitable memory layout.
Evaluation of the different memory layouts is done using the
described heuristic algorithm.

Fig. 10: Problem graph representation (GAG)

V. Experimental results

First, we compare the quality of the Kernighan-Lin (KL) and
. the genetic partitioning algorithm from section 11l with optimal
B. Heuristical approach solutions obtained by a time-intensive CLP (constraint logic
Our heuristic algorithm for vertical address assignment is as fptogramming) partitioning algorithm. The results for four test
lows. As long as the graph contains unmarked nodes perfareguences are depicted in table 1. Column 1 contains the num-
the following steps: ber of different variables occurring in the test sequence. For

genetic KL
group size|| #mem | cycles | AGU ops | cpu[s] || #mem | cycles | AGU ops | cpu[s]
4 17 82 6 8 21 91 10 <1
8 10 71 6 8 15 79 8 <1
12 10 71 4 8 10 71 4 <1
16 6 65 4 8 7 67 ! <1

Table 2: Results for the IIR example

CLP imal neti KL ; : :

‘ svar ” smenm |(°ptcpuats)] H #meﬁfégu[sl H smem | cpuls] performance scalable SIMD architecture. In a first phase, vari-
5 - =T = T = = ables are partitioned into variable groups, reflecting the M3's
10 127 v 157 17 26 <1 SIMD-like group access mechanism. A newly designed opti-
15 134 4140 134 22 139 | <1 mization based on a genetic algorithm has been shown to be
20 136 | > 2weeks|[136 26 44 | <1 capable of outperforming the traditional Kernighan-Lin algo-

Table 1: Comparison of optimal, genetic, and KL partitioninr hmﬂiins?ssggggdbphe?(s?c’)i\{ﬁ‘”at?]lg &rg,ggz arg;l\l;)ﬁ%eﬁé?nrjrgm-
algorithm with |[VAS| = 200 and partition size = 4 (for thetioﬁ cache architec)t/urep 9 99
horizontal address assignment step) Results have shown that optimizing the variable grouping can
save a significantamount of memagcesses and increase code
L . i performance. So far, the technique is mainly tuned for the M3
each patitioning technique also the number of resulting memychitecture. However, adaptations for other SIMD DSP pro-

ory accesses (#mem), which are important from a performage@sor architectures would be relatively straightforward.
or power consumption viewpoint, and the respective runtimes

(on a 333 MHz Sun Ultra-10) are mentioned. The main resrét
here is that the genetic algorithm computes the optimal so eferences

ion® [ithin le run-
tion (for these Sequences) in all cases wit acceptab € ';%T] Motorola. DSP56000, Digital Signal Processor, User's ManE886.

2] GEPARD - Familiy of Embedded Software Programmable DSP Cores
http://asic.amsint.com/ddiaoks/digital/gepard.html.

time. For 20 variables the result of the KL heuristic is 5,8 ¢
worse than the optimal solutibnFurther experimental results
have shown t.hat using an optimized variable grouping can S? A. Sudarsanam and S. Malik. Memory Bank and Register Allocation
up to approximately 60 % of the number of memory accesses in software Synthesis for ASIPs. IRroceedings of the International

in contrast to an arbitrary (unoptimized) grouping. Conference on Computer Aided Desigages 388-392, 1995.

Table 2 gives results for a real DSP code example: an infinil4g M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting Dual Data-Memory
impuise response (IR) fier. In addiion to the pure address Bkt Dote Sne Processors oceadiios of e Sn e
assignment results, also the total effect on code quality is re- ,nyoperation Systemgages 234-243, 1996.

flected. For this purpose, the results Of the address ass'gnmSTtCraig Hansen. MicroUnity’s MediaProcessor ArchitectuteEE Micro,
phase have been propagated to an existing M3 DSP code gen-16(4):34-41, Aug 1996.

erator, so as to obtain a complete assembly program for the I} G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
example. Again, we compared the proposed genetic algorithm S. Kobayashi. Breaking new grounds over 3000 MOPS: A broadband
approach to the use of the KL heuristic. Column 1 gives the T505bl"eT”:U'rgltmeg'anmdodelgg%SP- IAroc. of ICSPAT'98 pages 1547—
group Siz-e’ i-'e" the number of 16-bit data words per memo 1M HY \/?Ie(i)ssoa’mdaGa Ii’ FettV\;eis Dynamic Codewidth Reduction for
word, which is a parameter to the M3 DSP platform_ Column VLIW Instruction Set Architectures in Digital Signal Processors3itd
labeled "#mem”, like in table 1, denote the resulting number |nternational Workshop on Image and Signal Processiagies 517-520.

of memory (i.e. groupaccesses. Column "cycles” denotes the IEEE, 1996.

number of instructions cycles required by the assembly pr8] S. Liao and S. Devadas. Storage Assignment to Decrease Code Size.
grams generated based on the given address assignment inforin ACM SIGPLAN Conference on Programming Language Design and
mation. Column "AGU ops” denotes the number of differeny IMPlementation (PLD)1995. N
address computation instructions needed to be stored in VLI M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide

. - - - . to the Theory of NP-CompletenesSreeman and Company, New York,
instructions, thereby reflecting the code size. Finally, the re- 1979 y P pany

quired CPU times are giveh in seconds. . _ [10] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Par-
Naturally, the KL heuristic is faster than the genetic algorithm, titioning Graphs. InBell System Technical Journalolume 49, pages
but the latter generates significantly better code both in terms 291-307,1970.

of memory accesses and performance_ Also w.r.t. the num[éé]f J. H. Holland. Adaption in Natural and Artificial System$MIT Press,

. . . . 2.

f required AGU operations, the genetic algorithm performs at . .
Feasetqal.JS ood as KpL 9 9 P [12] T. Back. Evolutionary Algorithms in Theory and Practic©xford Uni-

g - versity Press, 1996.
[13] K. R. Baker. Introduction to Sequencing and Scheduling/iley, New
York, 1974.
V| COﬂClUSlonS [14] R.Leupersand P. Marwedel. Algorithms for Address Assignment in DSP
Code Generation. Ifnt. Conf. on Computer-Aided Design (ICCAD)

New high performance DSP processors need to be supported by1996. _ _ o _
advanced compiler algorithms. In this paper we have descrilbed R. Leupers and F. David. A Uniform Optimization Technique for Offset

f ; : ; Assignment Problems. IRroceedings of the 11th International Sympo-
memory allocation algorithms designed for the M3 DSP, high {°-= System Synthei998.
B. Wess and M. Gotschlich. Optimal DSP Memory Layout Generation
as a Quadratic Assignment Problem.Rroceedings IEEE International
Symposium on Circuits and Systemslume 3, pages 1712 — 1715, Hong
Kong, 1997.

3For this and the following results of the genetic partitioning algorithm V\QG]
have performed 10.000 generations with a population size of 50 and a replace-
ment rate of 10 individuals.

4Note that the KL heuristic is also adapted to our cost function.

