
Evaluating Register File Size in ASIP Design

Manoj Kumar Jainy Lars Wehmeyer� Stefan Steinke� Peter Marwedel� M. Balakrishnany

y Department of Computer Science & Engg., Indian Institute of Technology Delhi, India
fmanoj,mbalag@cse.iitd.ernet.in

� Department of Computer Science 12, University of Dortmund, Germany
fwehmeyer,steinke,marwedelg@ls12.cs.uni-dortmund.de

ABSTRACT
Interest in synthesis of Application Specific Instruction Set Proces-
sors or ASIPs has increased considerably and a number of method-
ologies have been proposed for ASIP design. A key step in ASIP
synthesis involves deciding architectural features based on appli-
cation requirements and constraints. In this paper we observe the
effect of changing register file size on the performance as well as
power and energy consumption. Detailed data is generated and
analyzed for a number of application programs. Results indicate
that choice of an appropriate number of registers has a significant
impact on performance.

Keywords
Register file, Synthesis, Instruction set, Instruction power model,
Register spill, Application specific instruction set processor

1. INTRODUCTION
An Application Specific Instruction Set Processor (ASIP) is a pro-
cessor designed for one particular application or for a set of specific
applications. An ASIP exploits special characteristics of applica-
tion(s) to meet the desired performance, cost and power require-
ments. ASIPs are a balance between two extremes: Application
Specific Integrated Circuits (ASICs) and general programmable pro-
cessors [7, 10, 4]. ASIPs offer the required flexibility (which is
not provided by ASICs) at a lower cost than general programmable
processors. Thus ASIPs can be efficiently used in many embed-
ded systems such as digital signal processing, servo-motor control,
automatic control systems, avionics, cellular phones etc [10, 4].

A recent survey of the approaches suggested for ASIP design method-
ologies during the 90’s [8] identified five key steps as follows (fig.
1).
1. Application Analysis
2. Architectural Design Space Exploration
3. Instruction Set Generation
4. Code Synthesis
5. Hardware Synthesis

Application Analysis

Architectural Design

Space Exploration

 Instruction Set

Hardware

Synthesis

Code

Synthesis

Object Code

Design Constraints
 Application(s) and

Generation

Processor
Description

Figure 1: Flow diagram of ASIP design methodology

An application written in a high-level language is analyzed stat-
ically and dynamically. The analyzed information is stored in a
suitable intermediate format, which is used in the subsequent steps
of ASIP design. Almost all the approaches consider a parameter-
ized architecture model for design space exploration. Inputs from
the application analysis step are used along with the range of archi-
tecture design space to select a suitable architecture(s) by a design
space explorer. The selection process typically can be viewed to
consist of a search technique over the design space driven by a
performance estimator. The instruction set is generated either by
synthesis or by a selection process. A retargetable compiler is used
to generate code. The hardware is synthesized using the ASIP ar-
chitecture template and instruction set architecture starting from a
description in VHDL/ VERILOG using standard tools.

Some approaches attempted to establish a relationship between ar-
chitectural features and application parameters [8, 6, 5, 1]. Meth-
ods are suggested to find the parameters which in turn decides ar-
chitectural features. Sato et al [10] have developed an Application
Program Analyzer (APA) which finds data types and their access
methods, execution counts of operators and functions used, the fre-
quency of individual instructions and sequences of contiguous in-
structions. Gupta et al [6] and Ghazal et al [5] considered applica-
tion parameters like average basic block size, number of Multiply-
Accumulate (MAC) operations, ratio of address computation in-
structions to data computation instructions, ratio of input/output in-
structions to total instructions, average number of cycles between
generation of a scalar and its consumption in the data flow graph

etc. The architectural features considered by these approaches are
number of operation slots in each instruction, concurrent load/store
operations and latency of functional units and operations, address-
ing support, instruction packing, memory pack/ unpack support,
loop vectorization, complex arithmetic patterns etc. Number of
registers were assumed to be infinite when scheduling is done.

There is a need to consider more architectural features as well as
study the relationship between application parameters and these
features in terms of user constraints on cost, performance, power
and energy. In this work we consider varying the number of regis-
ters for ASIP design space exploration and the attempt is to study
its effect at the application behavioral level. A specific architecture
(ARM7TDMI) along with a compiler (encc) and a simulator has
been used in this study. The intent is to study the effect of varying
register file size on a particular processor and use this to understand
the trend for power and performance estimation in a general ASIP
synthesis framework.

Section 2 describes the experimental set up used and the procedure
adopted to make the observations. Results of the observations are
presented in Section 3. The last section concludes the paper with
directions for future work.

2. EXPERIMENTAL SETUP
Some benchmark programs were chosen and code generation and
performance evaluation was performed with varying number of reg-
isters for theARM7TDMIprocessor using the parameterizable com-
piler enccbeing developed and in use at the University of Dort-
mund, Germany. The benchmark programs were then analyzed to
identify application characteristics responsible for the observed be-
havior.

2.1 TheARM7TDMI Processor
TheARM7TDMIby ARM Ltd [2] is a 32-bit RISC processor and
offers high performance combined with low power consumption.
This processor employs a special architectural strategy known as
THUMB, with the key idea of a 16-bit reduced instruction set. Thus
theARM7TDMIhas two instruction sets :

1. The standard 32-bit ARM set
2. The 16-bit THUMB set

THUMBcode operates on the same 32-bit register set as ARM code
so it achieves better performance compared to traditional 16-bit
processors using 16-bit registers and consumes less power than tra-
ditional 32-bit processors. Various portions of a system can be opti-
mized for speed or for code density by switching betweenTHUMB
andARMexecution as appropriate. TheARM7TDMIprocessor has
a total of 37 registers (31 general purpose 32-bit registers and 6 sta-
tus registers) but these are not visible simultaneously. The proces-
sor state and operating mode dictate which registers are available to
the programmer. InTHUMBmode only 8 general purpose registers
are available to the user, requiring 3 bits for register coding, thus
reducing the instruction size.

2.2 Benchmark Suite
The following applications were selected as benchmark programs.
These applications are either from the domain of media applica-
tions, DSP or implementations of standard sorting algorithms. An
attempt has been made to study applications requiring typical ar-
ray access patterns. These benchmark programs are available at

http://www.cse.iitd.ernet.in/ manoj/research/benchmarks.html.

1. biquad N sections(DSP domain)
2. lattice init (DSP domain)
3. matrix-mult (multiplication of twom� n matrices)
4. meivlin (media application)
5. bubblesort
6. heapsort
7. insertion sort
8. selectionsort

2.3 TheenccCompiler
Theencccompiler was used for code generation and performance
evaluation.enccwas developed for the RISC class of architectures
and generates code for reduced energy consumption. It features
a built-in power model which is used to take decisions during the
compilation process. Configuration of the compiler is possible by
changing a parameter file which contains several constant declara-
tions and processor specific information. Using this configuration
file for the target processor, a customized compiler is generated. In
our case, we took the configuration file for theARM7TDMIproces-
sor and changed the number of registers in the range from 3 to 8.
For each case, a compiler was generated which was used to compile
and evaluate the performance of the benchmark programs.

Taking an application program written in C an intermediate repre-
sentation (IR) file is generated usingLANCE [9]. Some standard
optimizations are performed on this IR file usingLANCE library
functions. The optimizations performed byLANCEon the IR in-
clude constant propagation, copy propagation, dead code elimina-
tion, constant folding, jump optimizations and common subexpres-
sion elimination.

Taking an IR file as input, the code generator generates a forest of
data flow trees for each function. A cover is obtained for each tree
based on tree pattern matching. At this stage, the internal power
model is used to generate a valid cover with minimal power con-
sumption. A low level intermediate representation is generated.
Register allocation, instruction scheduling, spill code generation
and peephole optimizations are performed using this representation
to generate assembly code. An assembler and a linker are used to
create the object code. An instruction set simulator produces out-
puts required for validation. A trace of instructions is also produced
which is analyzed by a trace analyzer. Theenccprovides informa-
tion on spilled registers as well. The optimization options available
are time, energy, size and power. One optimization can be selected
at a time.

2.4 Power Model
The power model used in the compiler is based on the processor
power model developed by Tiwari et al [11], which distinguishes
between basic costs and inter-instruction effects. Basic costs con-
sist of the measured current during execution of a single instruction
in a loop. An approximate amount is added for stalls and cache
misses. The change of circuit state for a different instruction and
resource constraints are summed up in the inter-instruction effects.
For computing the basic power costs and inter-instruction effects,
actual measurements have been done for theTHUMB instructions.

Change in the register file size not only changes the number of data
accesses but also the associated instruction accesses. To isolate the
effects on power consumption due to data and program with chang-
ing register file size, two configurations were studied.

1. Both data and instruction in external or off-chip memory
2. Data in off-chip and instruction in on-chip memory

The off-chip data and on-chip instruction is an interesting possibil-
ity as in many embedded systems implementations a “fixed synthe-
sized code” could be stored in an on-chip memory (usually ROM).

The power consumption models of the two memories were again
generated from actual current measurements. For off-chip memory,
measurements were carried out on the four 128KX8 SRAM chips
(IDT71V124SA) used in the ATMEL evaluation board (AT91M40400).
For on-chip instruction memory the processor current measurements
for instructions were carried out with and without the use of on-
chip memory for programs. In effect the processor instruction set
power model mentioned earlier is based on measurements carried
out without the use of on-chip memory. Based on these measure-
ments, the power consumption of each of the two memories for dif-
ferent possible access bit-widths and for read and write operations
was computed which constituted the memory power models.

Thus effectively, the results presented in the next section utilize the
following power models associated with each instruction for the
two configurations.
1. Off-chip data and instruction:
Ptot(inst) = Pcpu(inst)+Poffchip(read;16)+Poffchip(read=write;width)

2. On-chip instruction and off-chip data:
Ptot(inst) = Pcpu(inst)+Ponchip(read;16)+Poffchip(read=write;width)

ThePcpu(inst) includes the inter-instruction effects. The instruc-
tions beingTHUMB instructions are 16 bits wide and are read from
off-chip or on-chip memory respectively. The third term in both the
equations is optional as only some instructions require data access.
Also the data width could be different for different instructions and
that is accounted for. This power model has been integrated in the
encccompiler.

2.5 Observations
The number of physical registers was varied in the range from 3
to 8 for theARM7TDMI processor. The number of registers was
increased beyond 8 as well, but in that case only assembly code
could be generated as no instruction set simulator was available
to execute the code. However, we were able to get information
about spilling and static code size in such cases. For each different
number of physical registers,enccwas compiled to generate a cus-
tomized compiler which was then used to generate code and other
trace information for our benchmark programs. In a similar way,
we have generated spilling information for theLEON processor as
well. LEON is a RISC type of processor having SPARC architec-
ture.

3. RESULTS
We present the results obtained for number of executed instruc-
tions, number of cycles, ratio of spill instructions to total static code
size, power and energy consumption. The results and its analysis is
based on the following two assumptions.

1. Processor cycle time does not change with the change in the
number of registers. This implies that change in the number
of cycles is directly related to performance.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

N
um

be
r

of
 I

ns
tru

ct
io

ns

 (
m

illi
on

s)

biquad (x 500)
lattice_init (x 2)
matrix-mult (x 250)
me_ivlin (x 1)
bubble_sort (x 4)
heap_sort (x 14)
insertion_sort (x 6)
selection_sort (x 3)

Figure 2: Number of Executed Instructions

0

0.5

1

1.5

2

2.5

3

3.5

3 4 5 6 7 8

Number of Registers

N
um

be
r o

f C
yc

le
s

(m
illi

on
s) biquad (x 650)

lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 3: Number of Cycles

2. Power consumed by each instruction does not change signif-
icantly with the change in the number of registers.

3.1 Number of Executed Instructions
The results obtained for number of executed instructions are shown
in figure 2. Values for different programs are scaled to produce the
results on a single plot. Scale factors are shown in the figure. This
is acceptable since the general trends can still be observed. We can
observe one sharp curvature (knee) in some curves. The Curve for
the programbiquad N sectionshas its knee at 4 registers, whereas
the programsbubblesort and insertion sort both have their knee
at 5 registers. The curves for some of the other programs do not
contain such a knee. In the programbiquad N sections, there are
two for loops with high iteration count. Each contains a statement
like somearray[loop counter] = value; which needs 4 registers
for its execution without spilling. One each for storing the value
of loop counter, base address of the arraysomearray, offset value
and the value to be written into the array. Thus the number of in-
structions shoots up significantly when we lower the number of
physical registers from 4 to 3, since additional spill code has to be
inserted within the loop. Looking at the programsbubblesort and
insertion sort, we observe that each contains a 2-level nested loop.
The statements in the innermost loop in both the cases need 5 reg-
isters for execution, that is why we observe a knee at 5 registers in
the curves for these programs.

3.2 Number of Cycles
The results obtained for number of cycles are shown in figure 3.
Again, the values for different programs are scaled to produce the
results on a single plot and scale factors are shown. General be-
havior of the curves for the number of cycles is similar to that for
the number of instructions. Though as we lower the number of reg-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Number of Registers

R
at

io
 o

f S
pi

ll
In

st
ru

ct
io

ns
 to

 T
ot

al

C
od

e
(s

ta
tic

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 4: Ratio of Number of Spill Instructions to Total Num-
ber of Static Instructions

isters, more spill instructions are inserted. Since spill instructions
consist mainly of multi-cycle load and store instructions, the aver-
age number of cycles per instruction increases more than number
of instructions. Still, the general shape of the curves is the same.
Thus, the same application characteristics are responsible for simi-
lar behavior in both number of instructions and number of cycles.

3.3 Ratio of Spill Instructions to Total Static
Code Size

The results obtained for ratio of spill instructions to total static code
size is shown in figure 4. The values for the programlattice init are
high because of high register pressure. A 2-level nestedfor loop
is there. The inner loop contains two statements which needs 6
registers for execution. An interesting feature is observed for this
program: the presence of common sub-expressions in two state-
ments of the inner loop. Three additional registers are required
to avoid repetition of address calculations and memory accesses.
Values for programmeivlin are high due to the large number of
variables required to be live for a long time, so spilling is high, but
it is continuously decreasing with increasing number of registers.
To eliminate all spill code from this program, 19 registers are re-
quired. The values are drastically decreasing at 7 registers for the
programmatrix-mult, because 7 registers are sufficient to execute
the statement in the innermostfor loop (3-level nesting).

3.4 Average Power Consumption
We have used two different memory configurations in our study.
One considers only off-chip memory, while the other considers on-
chip instruction memory and off-chip data memory.

3.4.1 Off-chip memory
The results obtained for average power consumption while consid-
ering only off-chip memory are shown in figure 5. The power val-
ues are highest for thematrix-multprogram, because the innermost
loop (3-level nested looping) contains the statement
c[i][j] = c[i][j] + a[i][k] * b[k][j];
which accesses two 2-D array elements for reading and one 2-D
array element for reading as well as writing. Since all the arrays
are 2-D arrays, the address calculation requires an arithmetic shift
left (instead of another expensive multiplication) and an addition.
Since one power-hungry multiplication is still required for perform-
ing the actual arithmetic operation between the two matrices, the
power consumption is high. The values for the programlattice init
are also high due to the fact that it is also a memory access intensive
application. A 2-level nestedfor loop can be found and the inner
loop body contains statements, accessing two 2-D matrices and one

460

470

480

490

500

510

520

3 4 5 6 7 8

Number of Registers

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 5: Average Power Consumption based on only Off-chip
Memory

200

220

240

260

280

300

320

340

360

380

400

3 4 5 6 7 8

Number of Registers

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

biquad
lattice_init
matrix-mult
me_ivlin
bubble_sort
heap_sort
insertion_sort
selection_sort

Figure 6: Average Power Consumption based on On-chip In-
struction Memory and Off-chip Data Memory

1-D matrix. The values for the programmeivlin are quite high due
to high register pressure which leads to more spilling to memory.
Since power consumption of the external data memory is signif-
icantly higher than the power consumed within the processor, the
application’s power demands are high. The values for the programs
bubblesort andheapsort are similar because memory accesses in
both are of similar extent. The values for programselectionsort
are the lowest, because in selection sort data movement in mem-
ory is minimum. For the programinsertionsort the amount of data
movement in memory is more than that ofselectionsort but less
than that ofbubblesort, which justifies its position in the plot.

Our analysis shows that using more registers does not help signif-
icantly in saving power consumption, especially for memory in-
tensive applications (e.g. programsmatrix-mult and lattice init).
Though we observe that number of instructions executed and num-
ber of cycles taken for execution are being saved considerably with
increasing number of registers in our observation range. These ap-
plications have higher power consumptions and even providing ad-
ditional registers could not help in saving it. For other applications,
the saving in power consumption is marginal and that gets saturated
after a few registers.

3.4.2 On-chip Instruction Memory and Off-chip Data
Memory

The results obtained for average power consumption while con-
sidering on-chip instruction and off-chip data memory are shown
in figure 6. We observe a significant change in power consump-
tion by the applications which are not memory intensive but have
high register pressure (e.g. the programmeivlin). In such applica-

0

0.01

0.02

0.03

0.04

0.05

0.06

3 4 5 6 7 8

Number of Registers

En
er

gy
 C

on
su

m
pt

io
n

(W
S) biquad (x 650)

lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 7: Energy Consumption based on only Off-chip Mem-
ory

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

3 4 5 6 7 8

Number of Registers

En
er

gy
 C

on
su

m
pt

io
n

(W
S) biquad (x 650)

lattice_init (x 1)
matrix-mult (x 100)
me_ivlin (x 1)
bubble_sort (x 3)
heap_sort (x 12)
insertion_sort (x 5)
selection_sort (x 6)

Figure 8: Energy Consumption based on On-chip Instruction
Memory and Off-chip Data Memory

tions significant spilling is saved by providing additional registers.
On chip instruction memory consumes less power compared to off-
chip memory used for data accesses. This is due to several reasons:
on chip memory is usually smaller, the bus lines that need to be
driven are shorter since the boundaries of the chip are not left. The
average power consumption is less for all the benchmark programs
compared to the power consumption for other memory configura-
tion (i.e. considering only off-chip memory).

3.5 Energy Consumption
Energy is computed as product of average power consumption and
execution timeE = P � t. Execution time is calculated in terms
of number of cycles and constant cycle time is assumed. Again, we
present results for both memory configurations.

3.5.1 Off-chip memory
The results obtained for energy consumption while considering only
off-chip memory are shown in figure 7. For this memory configura-
tion the average power consumption is almost constant. The energy
is being computed as product of power and time. Thus, the curves
follow the same trend as number of cycles required for execution.

3.5.2 On-chip Instruction Memory and Off-chip Data
Memory

The results obtained for energy consumption while considering on-
chip instruction memory and off-chip data memory are shown in
figure 8. For this configuration the average power consumption
is lower in general, and there is significant saving in power con-
sumption while reducing spilling by providing additional registers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

No
rm

al
ize

d
va

lu
es

 fo
r l

at
tic

e_
in

it

Instructions (2.5
lakh)
Cycles (millions)

Energy (20 milli WS)

Power (W)

Spill Instructions
(thousands)

Figure 9: Results for the program lattice init

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

Number of Registers

No
rm

al
ize

d
va

lu
es

 fo
r m

e_
ivl

in # Instructions
(millions)
Cycles (5 millions)

Energy (62.5 milli WS)

Power (W)

Spill Instructions
(thousands)

Figure 10: Results for the program meivlin

This results in a significant reduction in energy consumption with
larger number of registers.This difference is visible especially for
the applications which are not too memory intensive and having
high register pressure such asme-ivlin.

3.6 Analysis of Results
We have analyzed the results for number of instructions executed,
number of cycles taken for execution, number of spilling instruc-
tions inserted in code, power and energy consumption for each pro-
gram separately. Here we analyze the results for two application
programs:lattice init andmeivlin. We used on-chip instruction
memory and off-chip data memory while generating these results.

Results obtained for programlattice init are shown in figure 9.
Please note that the y-axis is normalized for each parameter as indi-
cated in the figure to get their values in the same range. The intent
is to compare their shapes on the same plot. We find that in this
application, the power consumption does not change significantly
with change in number of registers, though there is some change
in number of spilling instructions. This is due to the fact that this
application is memory intensive. The energy consumption shows
a steady drop dominated by the reduction in the number of cycles
without any pronounced knee.

Results obtained for programmeivlin are shown in figure 10. We
can see the change in power consumption for this program as we
vary the number of registers. This is because the application is not
memory intensive but it has high register pressure, so additional
registers helps in saving the spilling and thus reducing the memory
accesses. A careful analysis shows two knees in the energy curve,
the one at register value 4 is due to the knee in the cycle count and
the knee at register value 6 is due to the knee in the power curve.

Application Performance Power Energy
program Reg. size % inc. Reg. size % red. Reg. size % red.

biquadN sections 3! 4 57.5 3! 4 12.6 3! 4 62.9
lattice init 4! 5 20.5 6! 7 1.0 4! 5 21.0

matrix-mult 3! 4 29.7 7! 8 7.4 3! 4 33.4
me ivlin 3! 4 53.4 5! 6 15.3 3! 4 59.3

buublesort 4! 5 46.3 4! 5 17.3 4! 5 55.6
heapsort 6! 7 25.6 6! 7 10.3 6! 7 33.2

insertionsort 4! 5 44.8 4! 5 22.3 4! 5 57.1
selectionsort 3! 4 22.2 5! 6 14.0 5! 6 30.1

Average 37.5 12.5 44.1

Table 1: Maximum variation in results for various benchmark programs

Table 1 shows the maximum percentage increase in performance
and reduction in power and energy due to an increase of one regis-
ter in each of the application programs. We also indicate where this
takes place. This table establishes the importance of register file
size as an architectural feature as a single register increase results
in a performance improvement of up to 57.5% and energy reduc-
tion of 62.9%. The power is relatively insensitive to the changes
in the number of registers. Furthermore, there is a high degree of
correlation between the register file size which gives optimum per-
formance and optimum energy consumption.

4. CONCLUSION AND FUTURE WORK
We changed the number of registers for theARM7TDMI proces-
sor. A new instance of theencccompiler was generated with the
specific number of registers. This generated compiler was used
for compiling the benchmark programs. We studied the results ob-
tained for number of instructions executed, cycle time taken for ex-
ecution, spilling information, power and energy consumption. An
increase in the number of registers by one can result in up to 57.5
% of performance improvement and up to 62.9 % reduction in en-
ergy consumption. Further there is a high degree of correlation
between performance improvement and energy reduction. In the
process we found that power does not strongly depend on the num-
ber of registers. We have generated spilling information for these
application programs in the same range of number of registers on
LEON processor as well. There is a reasonable correlation in the
data generated.

The cost of varying register file size in an ASIP is not linear due to
its effect on instruction encoding, instruction bit-width and required
chip area. For an effective area-time-power tradeoff, we propose to
develop an area model as well. Future work will be to identify
and extract application characteristics so that an early estimation of
number of ‘optimal’ registers may be possible.

5. ACKNOWLEDGEMENTS
We acknowledge the guidelines and help provided by Professor
Anshul Kumar and Dr. Rainer Leupers. This research work is
supported by DST-DAAD cooperation project (Project code MCS-
216).

6. REFERENCES
[1] Aditya, S.; Rau, B.R. : “Automatic architectural synthesis

and compiler retargetting for VLIW and EPIC processors ”,
Technical report No. HPL-1999-93, Hewlett-Packard
Laboratories.

[2] Advance RISC Machines Ltd.

http://www.arm.com/

[3] Binh, N.N.; Imai, M.; Shiomi, A.; Hikichi, N. : “A
hardware/software partitioning algorithm for pipelined
instruction set processor ”, Proceedings of the Design
Automation Conference, 1995, with EURO-VHDL,
EURO-DAC ’95, 18-22 Sept. 1995, pp. 176-181.

[4] Childers, B.R.; Davidson J.W. : “Application Specific
Pipelines for Exploiting Instruction-Level Parallelism ”,
University of Virginia Technical Report No. CS-98-14, May
1, 1998.

[5] Ghazal, N.; Newton, R.; Jan Rabaey. : “Retargetable
estimation scheme for DSP architecture selection ”,
Proceedings of the Asia and South Pacific Design
Automation Conference 2000 (ASP-DAC 2000), 25-28 Jan.
2000, pp. 485-489.

[6] Gupta, T.V.K.; Sharma, P.; Balakrishnan, M.; Malik, S. :
“Processor evaluation in an embedded systems design
environment ”, Proceedings of Thirteenth International
Conference on VLSI Design 2000, 3-7 Jan. 2000, pp.
98-103.

[7] Hoon Choi; In-Cheol Park; Seung Ho Hwang; Chong-Min
Kyung : “Synthesis of application specific instructions for
embedded DSP software ”, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
1998. ICCAD 98. Digest of Technical Papers 1998, 8-12
Nov. 1998, pp. 665 - 671.

[8] Jain M.K.; Balakrishnan, M.; Anshul Kumar : “ASIP
Design Methodologies : Survey and Issues ”, Proceedings
of fourteenth International Conference on VLSI Design,
2001, 3-7 Jan. 2001, pp. 76-81.

[9] LANCE System.
http://ls12-www.cs.uni-dortmund.de/�leupers/lanceV2/

[10] Sato, J.; Imai, M.; Hakata, T.; Alomary, A.Y.; Hikichi, N. :
“An integrated design environment for application specific
integrated processor ”, Proceedings of the IEEE
International Conference on Computer Design: VLSI in
Computers and Processors 1991, ICCD ’91, 14-16 Oct.
1991, pp. 414-417.

[11] Tiwari, V.; Malik, S.; Wolfe A. : “Power Analysis Of
Embedded Software: A First Step Towards Software Power
Minimization ”, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
1994, ICCAD ’94, 6-10 Nov. 1994, pp. 384-390.

