
LANCE: A C Compiler Platform for
Embedded Processors

Dr. Rainer Leupers

University of Dortmund
Computer Science 12

Embedded Systems Group
44221 Dortmund, Germany

email: leupers@LS12.cs.uni-dortmund.de

Abstract

This paper describes LANCE, a software system for development of C compilers for
embedded processors. LANCE comprises an ANSI C frontend, a collection of machine-
independent code optimization tools, a C++ library for accessing and manipulating the
intermediate program representation, as well as a backend interface for assembly code
generators. The backend interface is compatible to standard code generator generator
tools and therefore allows for compiler development for application-specific embedded
processors at a relatively low implementation effort. LANCE is mainly intended to fa-
cilitate C compiler design for embedded processors, so as to eliminate the need for time-
consuming assembly programming. Embedded processors for which LANCE based C
compilers have been successfully built include both RISCs and DSPs. Initially designed
for research purposes only, LANCE is now also being used for production-quality com-
piler development. Due to its clear tool structure, simple intermediate program repre-
sentation, and machine independence, LANCE is particularly suitable for fast compiler
development for new application-specific1 processors.

1 Introduction

In today’s embedded system design flows, there is a trend towards system specification in
the C programming language. This can be observed both in the area of hardware design
and simulation (see e.g. the SystemC language and tools by Synopsys or C Level Design
Inc.), but in particular in software development, where C is step by step replacing assembly-
level programming. This is due to the numerous advantages of C over other specification
formalisms: C is largely machine-independent, it is a widespread and well-tried high-level
programming language, and it offers very high simulation speed as compared to VHDL

1Publication: Embedded Systems/Embedded Intelligence, N¨urnberg (Germany), Feb 2001



or Verilog. In addition, C offers enough flexibility to specify low-level, hardware-oriented
operations, which is usually a necessity in embedded software development.

As embedded software is getting more and more complex, high-level language program-
ming of embedded processors in C is becoming common. In particular this holds for modern
DSP processors, whose architectural features make assembly programming increasingly dif-
ficult and time-consuming. This creates a need for efficient C compilers for embedded pro-
cessors. For standard ”off-the-shelf” embedded processors, C compilers are usually available
from the processors vendors or from third party providers. However, also an increasing num-
ber of low-volume, application-specific processors (frequently DSPs) are being designed
by system and intellectual property companies, for which in-house compiler development
know-how and resources are usually not available. Therefore, application-specific proces-
sors mostly still have to be programmed in assembly. In fact, the need for assembly-level
programming of embedded processors is frequently a very significant bottleneck in the de-
sign of embedded hardware/software systems.

In order to overcome this problem, the Embedded Systems Group at the University of
Dortmund has been concentrating on compiler development for application-specific embed-
ded processors. Focus is on effective code optimization techniques for processors with ir-
regular data path architectures and VLIW-like instruction-level parallelism. As a common
platform for the development of C compilers for new processors and research on code op-
timization techniques, the LANCE system has been developed. LANCE mainly covers the
machine-independent parts of a C compiler in order to allow for a maximum degree of reuse.
In comparison to similar compiler platforms (e.g. GNU gcc, lcc, SUIF, or Trimaran) LANCE
is relatively easy to use, it already performs a number of code optimizations, and it is not
restricted to specific processor classes. The LANCE system comprises the following com-
ponents:

ANSI C frontend: The C frontend analyzes the C source code and generates a low-level
intermediate representation. In case of syntax or semantical errors in the C code,
error messages similar to those of GNU gcc’s messages are emitted. The intermediate
representation is largely machine-independent, only the bit width of the C data types
and their memory alignment have to be specified in the form of a configuration file.

Intermediate representation (IR): The IR consist of so-called three address code, i.e. code
with at most three operands per statement. This simple format strongly facilitates the
implementation of tools operating on the IR, e.g. machine-independent optimizations.
A special feature of the LANCE IR is the fact that the IR itself is kept in a low-level,
assembly-like C syntax. Therefore, the IR can be compiled just like the original C pro-
gram. This feature makes the IR easy to understand for new developers and it strongly
supports validation of the C frontend and new IR optimization tools: By compiling
both the C source and the corresponding IR code, and executing the resulting pro-
grams for test input data, their behavioral equivalence can be easily checked. Naturally,
there is no proof of correctness, but by using this pragmatic validation methodology,
LANCE has reached a high degree of stability.

IR optimization tools: LANCE contains a library of common machine-independent code
optimizations, such as constant folding, dead code elimination, as well as jump and



loop optimizations. Dependent on the required optimization level, the optimization
tools can be called separately or can be executed via a shell script.

Flow analysis: Control and data flow of a C program can be analyzed and visualized by
means of a graph display tool. This helps in understanding the structure of a C program
and facilitates the design of backends for assembly code generation.

Backend interface: The backend interface transforms the three address code IR into so-
called data flow trees (DFTs). Each DFT represents of piece of computation in the C
code and comprises arguments, operations, storage locations, as well as data depen-
dencies between those. The DFT format generated by LANCE is fully compatible to
widespread backend design tools like IBURG and OLIVE. In this way, operational
backends for generating machine-specific assembly code can be designed quickly.

The remainder of this paper describes further details of the different LANCE components
and outlines their application in research and industrial compiler design.

2 ANSI C frontend

The compilation of C source code into assembly code is usually organized into different
phases (fig. 1). After an optional source-level optimization phase, an analysis of the source
code is performed by the C frontend.

IR 
optimizations

source
code

source-level
optimizations

source code
analysis

code
selection

address code
generation

assembly
code

instruction
scheduling

register
allocation

Figure 1:Phase organization in a compiler

The frontend performs syntactical and semantical correctness checks on the C source
code and emits error messages if required. Otherwise, the C code is translated to a low-level
intermediate representation (IR).

In LANCE, parsing of the C code is performed by means of anattribute grammar. It is
well-known that ”almost” context-free programming languages like C can be parsed accord-
ing to a context-free grammar plus an additional semantical analysis. Parsers for context-free



languages can be constructed by means of the widespread ”lex” and ”yacc” tools, which gen-
erate parser source code in C for given grammar specifications. The main problem is that
the semantical analysis (which e.g. checks for correct declaration of identifiers and operand
types in expressions) as well as the IR generation cannot be easily integrated into a yacc-
based parser, but require a additional passes over the source program.

In contrast, using an attribute grammar for parsing allows to integrate syntactical and
semantical analysis and also IR generation virtually into a single pass. This makes the im-
plementation of the frontend very clean and modular. This feature is particularly important
whenever C language extensions are required, which is frequently the case for DSP compil-
ers.

The basic idea is that arbitrary information (such as variable types or declaration scopes)
can be attached to the grammar symbols (terminals and nonterminals) in the form ofat-
tributes. The attribute values can be used to perform semantical analysis as a ”by-product”
of syntax analysis, i.e. each time a grammar rule is applied during parsing all corresponding
semantical checks can be executed at the same time. For instance, when parsing a vari-
able name within an arithmetic expression, it can be checked whether the variable has been
declared at an earlier program point.

specification C.L
attributed lex

specification C.Y
attributed yacc

OX

lex specification 
oxout.l

yacc specification
oxout.y

lex

yacc

code lex.yy.c
scanner source

parser source
code yy.tab.c

C compiler
object code for

"yyparse" function

Figure 2:Generation of C frontend source code using OX

The largest part of the frontend source code in LANCE is automatically generated from
an attribute grammar specification of ANSI C using the attribute grammar compiling system
OX (fig. 2). OX reads two specification files, one for lexical and one for syntactical and
semantical analysis. The files are essentially usual lex and yacc specifications, augmented
by the required attribute definitions. From this specification, OX generates real lex and yacc
specifications, which in turn are transformed into C source code by lex and yacc. Finally, a
C compiler such as GNU gcc can be used to generate the object code for the frontend.

The use of generator technology in the form of OX, lex, and yacc results in a large source
code reduction for the frontend, which in turn strongly improves reliability and maintain-
ability of the code. In case of LANCE, the OX frontend specification consists of about 7400
lines of code, which are automatically expanded into more than 23000 lines of real C code.

The LANCE ANSI C frontend is almost completely machine-independent and thus can
be reused in C compilers for arbitrary target processors. Only a few numerical parameters
about the target machine have to be specified in a configuration file. These are the bit width of
C types (e.g. short, int, long, float) as well as their alignment in memory. As the C language
standard does not specify the exact bit width of types, the corresponding values are usually
chosen by the compiler designer based on the characteristics of the target processor.



3 Intermediate representation

LANCE uses a widespread format for the intermediate representation (IR):three-address
code. This format consists of a sequence of statements, each of which references at most
three variables: two arguments and one result. Examples areassignmentswith arithmetical
or logical operators such asa = b + c , or copy operations likea = b . In addition, three
address code may comprise control flow statements.

The main motivation for using three address code is its simple structure. All high-level
C constructs, such as for and while-loops, nested if-then-else-statements, switch-statements,
complex arithmetic expressions and conditionals, and implicit address arithmetic for array
and structure access are no longer present in the IR, but are broken down into sequences
of simple statements. Additionally, all implicit type conversions in the original code are
translated into explicit cast operations, and code for initialization of local variables is au-
tomatically inserted. This strongly facilitates the implementation of tools for processing C
programs, such as IR optimization passes or compiler backends.

The IR file generated by the LANCE C frontend is structured intosymbol tablesand
functions. The IR functions directly correspond to the functions in the original C code, i.e.,
there is one IR function for each C function. Each function is a list ofIR statements, which
exist in five types:

Assignments: An assignment is a three address code C statement with a destination and at
most one operation or a function call on its right hand side.

Jumps: A jump is a C ”goto” statement with a target label.

Branches: A branch is a C if-statement of the general formif (c) goto label , where
the conditionc is a variable or a constant.

Labels: Labels are directly represented as C labels.

Return statements: A return from a function call is either a ”void” return statement, or a
return with a value of the formreturn x; for some variable or a constantx .

For each rule of the C language grammar there is one function that translates a certain C
construct into an equivalent sequence of three address code statements. The general concept
is simple: complex statements are split into three-address code by insertion of auxiliary
variables and appropriate ”goto” constructs. However, care must be taken in the ordering of
IR statements and translation of implicit address arithmetic. We exemplify IR generation for
the following piece of C code:

void f()
{

int i,A[10];
i = A[2]++ > 1 ? 2 : 3;

}

For the IR for functionf , we need 8 auxiliary variables, denoted ast1 to t8 . These are
declared in the local symbol table off , together with the original local variablesA and i .
The symbol table in C syntax looks as follows:



int A[10];
char *t1,*t3;
int i,t2,t5,t6,t7,t8;
int *t4;

The first step in IR generation is to compute the value ofA[2] . If we assume that an
integer value occupies four memory words, the array index 2 needs to be scaled by 4 and
must be added to the base address of arrayA in order to obtain the effective address ”A +
8” of A[2] . When implementing this scheme in three address code, it is important to know
that in C all constants added to pointers are implicitly scaled, e.g., adding a constantc to
some integer pointerp actually incrementsp by 4 * c . Therefore, we perform all address
arithmetic in the IR exclusively onchar pointers, since characters are guaranteed to occupy
only a single memory word. This leads to the following IR code segment:

t3 = (char *)A; // cast base to char*
t2 = 2 * 4; // compute offset
t1 = t3 + t2; // compute effective address
t4 = (int *)t1; // cast back to int*
t5 = *t4; // load value from memory

The post-increment ofA[2] is implemented as follows. The address stored int4 can
be reused. Note that auxiliary variablet5 still contains the original value ofA[2] . This is
necessary, since its valuebeforethe increment is required in the comparison.

t6 = t5 + 1; // increment
*t4 = t6; // store back into A[2]

Next, the conditionA[2] > 1 is evaluated and the result is stored in another auxiliary
variablet7 . The conditional expression itself is translated by means of a branch and two
labels. Depending on the comparison result, auxiliary variablet8 is loaded with either 2 or
3. When control flow joins (labelL2), variablei finally gets its correct value fromt8 . In
total, the IR for this looks as follows:

t7 = t5 > 1; // compare
if (t7) goto L1; // jump if >
t8 = 3; // load 3 if <=
goto L2; // goto join point

L1: t8 = 2; // load 2 if >
L2: i = t8; // move result into i

The C to IR translation process is very efficient. On a 600 MHz Linux PC, our C frontend
emits up to 10,000 IR statements per CPU second, including file I/O. Due to the insertion of
new variables and statements, the size of the generated IR is typically about twice as large as
the original C source.

One key point in the LANCE IR is that the C language allows to express all IR constructs
directly in C syntax. Therefore, as can be seen from the above example, any valid IR is
simultaneously a valid (low-level) C code. This feature can be used for compiler validation
(fig. 3).



original C source IR generation IR C source

C compiler C compiler

executable 1 executable 2test input data

output 1 output 2comparison

Figure 3:Validation methodology

For validation, both the original C program and the IR generated by the frontend are com-
piled with a usual C compiler on the host machine. The equivalence of the two executables
is checked by means of a comparison between their outputs for some test input data. Any
difference in the outputs indicates an implementation error. By using a large and representa-
tive suite of C programs and test inputs, a sufficient reliability can be ensured. For regression
tests, the validation process can also be easily automated.

Also all IR optimization passes mentioned in the following section can be validated with
the same methodology. For this purpose, some unoptimized IR is compared to the optimized
IR using the same flow as in fig. 3. In this way, a C compiler can be validated down to the
level of the optimized IR, which forms the basis for assembly code generation.

4 IR optimization tools

The IR generated by the frontend can be optimized independent of the target processor.
IR optimizations essentially eliminate redundancies from the IR, which are incurred by the
human C programmer or by the IR generation process itself. In LANCE, all IR optimizations
are implemented as separate tools operating on a common IR format. In this way, new
optimization tools can be easily added as ”plug-and-play” components to the system, and
the amount and execution order of IR tools can be adjusted by the compiler user, according
to the required optimization level. Currently, the LANCE system comprises the following
IR optimization tools, all of which rely on standard techniques from compiler construction.
Further, more machine-specific, optimizations are currently under development.

Constant folding: Arithmetic expressions with a constant result are replaced by the corre-
sponding constants already at compile time.

Constant propagation: Variables with a constant value are replaced by the respective con-
stants.

Copy propagation: Variables with identical values are unified so as to avoid superfluous
copy operations.



Common subexpression elimination:Recomputation of already known temporary results
is avoided by keeping those results in registers.

Dead code elimination: Instructions whose results are never used are removed.

Induction variable elimination: Loop variables that are computed as a linear function of
another loop variable are simplified, so as to remove costly multiplications from loop
bodies.

Loop invariant code motion: Computations independent of loop variables are moved out-
side of the loop body, so as to reduce loop execution time.

Jump optimization: Eliminates redundant jumps as well as jump chains.

Since the execution of of of the above optimizations frequently enable new opportunities
for other tools, LANCE permits to iterate all (or a subset of) optimizations until no more
improvement can be achieved.

5 Flow analysis

The LANCE system comprises a C++ library for accessing, analyzing, and manipulating
the IR. Among the most important functionalities for code generation and optimization is
analysis of control and data flow in a C program. Both types of information can be visualized
in the form of graphs (fig. 4).

The control flow graph (CFG) indicates the basic block structure of C functions, while
the data flow graph (DFG) represents the mutual dependence of values generated and used
by IR statements inside blocks. On one hand, the graph display facilities are very helpful
during debugging, e.g. when implementing new IR optimization tools. On the other hand,
DFGs form the basic data structure required for assembly code generation. This is due to the
fact, that the code generation process can partially be transformed to the problem of covering
a given DFG by available instruction patterns. In order to reduce the problem complexity,
it is common to first split the (general) DFGs into sets ofdata flow trees(DFTs), i.e. DFGs
without common subexpressions. In contrast to DFGs, DFTs can be covered optimally with
linear runtime complexity.

6 Backend interface

After IR generation and optimization, IR files are normally passed to a processor-specific
backend for assembly code generation. In order to bridge the gap between the three-address
form of the IR and the DFTs usually required by popular code generator generators such as
OLIVE or IBURG, the LANCE system also comprises a backend interface. This interface
transforms a three-address code IR into a behaviorally equivalent sequence of DFTs. The
operator set of the DFTs is fixed and machine-independent. Therefore, the backend interface
can be reused for all different target processors, and the generated data structures are fully
compliant with the formats required by OLIVE or IBURG.



Figure 4:Control flow graph and data flow graph generated by LANCE

The basic technique in DFT generation issubstitution: Under certain conditions, uses of
variables can be substituted by their corresponding definitions, which is a simple application
of data flow analysis. In this way, expressions are step-by-step enlarged, so as to form DFTs
of maximal size. However, care must be taken during determination of DFT boundaries, in
order to prevent undesired side effects. For instance, any DFT should contain at most one
function call, since function calls may modify global variables. The sequential ordering of
DFTs thus has to reflect the original sequence of function calls in the source code and the IR
code.

The graphical output capabilities of LANCE facilitate backend design since the compi-
lation process is made transparent. As an example, fig. 5 shows the user interface of the
LANCE V1.0 system, which in this case has been retargeted to a TI ’C6201 DSP. The differ-
ent windows show the C source code, IR code, as well as generated (symbolic and sequen-
tial) assembly code. A mouse-click on a line within one window automatically highlights
the corresponding line(s) in the other windows.

7 Applications and availability

The LANCE system is implemented in C++. The C frontend and the IR optimization
tools are available as separate executables, while the functions for IR access and manipu-
lation, as well as the backend interface are available in the form of an object code library



Figure 5:LANCE V1.0 graphical user interface

that can be linked to any C or C++ application programs. The LANCE software (current
version: V2.0) is available for Solaris and Linux platforms viahttp://LS12-www.cs.uni-
dortmund.de/�leupers. Licensing is free for research and evaluation purposes.

The LANCE system has been successfully applied in numerous university projects, in-
cluding C compiler projects for several DSPs (including Texas Instruments ’C2x, ’C5x, and
’C6x) and core processors (including AMS Gepard and ARM7 RISC). By means of the
built-in backend interface, LANCE allows for a quick development (typically within a few
man-weeks) of working compiler prototypes for new processors. Naturally, more effort has
to be spent for development of highly optimizing backends, which typically involve machine-
specific code optimizations that are not covered by LANCE.

Besides its use in research projects, LANCE is also the basis for industrial C compiler
projects carried out at the ICD (Informatik Centrum Dortmund) technology transfer com-
pany. Recently, ICD has delivered a C compiler for an application-specific network RISC
processor designed by Infineon Technologies (Munich). Currently, an optimizing C com-
piler for the OnDSPTM DSP core architecture designed by Systemonic AG (Dresden) is
under development.


