
VARIABLE PARTITIONING FOR DUAL
MEMORY BANK DSPS

Rainer Leupers, Daniel Kotte

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany

ABSTRACT

DSPs with dual memory banks offer high memory bandwidth,
which is required for high-performance applications. How-
ever, such DSP architectures pose problems for C compil-
ers, which are mostly not capable of partitioning program
variables between memory banks. As a consequence, time-
consuming assembly programming is required for an efficient
coding of time-critical algorithms. This paper presents a new
technique for automatic variable partitioning between mem-
ory banks in compilers, which leads to a higher utilization of
available memory bandwidth in the generated machine code.
We present experimental results obtained by integrating the
proposed technique into an existing C compiler for the AMS
Gepard, an industrial DSP core1.

1. INTRODUCTION

It is a well-known problem in embedded system design that
C compilers for digital signal processors (DSPs) still have
problems with code quality. Compiler-generated code usually
shows a significant overhead in terms of performance and/or
code size as compared to manually written assembly code.
This has been quantified in empirical studies [1, 2] for a num-
ber of different DSPs. As a consequence, DSP programmers
frequently have to resort to time-consuming assembly pro-
gramming whenever tight real-time or code size constraints
have to be met. Essentially, this bottleneck in embedded soft-
ware development is caused by the distortion between the
machine-independent source code language (such as C) and
the very specialized architectures of DSPs: High-level C data
types and language constructs are not easily mapped into ded-
icated DSP machine instructions.

One major problem arises for C compilers for DSPs with
dual memory banks. Such DSPs, e.g. the Motorola 56k and
Analog Devices ADSP-210x series, are equipped with two
separate memory banks (frequently denoted by X and Y) ac-
cessible in parallel. This is to accommodate the fact that many
DSP routines, e.g. FIR filters, require the convolution of two
data arrays as a kernel operation.

In order to make efficient use of the bandwidth increase
offered by dual memory banks, the C program variables have
to be appropriately partitioned between X and Y. For instance,
for a typical array operation such as

for (i=0;i<N;i++) y += A[i] * B[N-i];

1Publication: ICASSP , Salt Lake City (USA), May 2001,c
IEEE

it must be ensured that arraysA andB are placed in mem-
ory banks X and Y, respectively, only in which case the en-
tire loop body can be efficiently mapped to a single multiply-
accumulate instruction on a DSP. Also for scalar variables the
assignment to either X or Y plays an important role for code
quality.

Many existing C compilers, e.g. the GNU gcc versions for
Motorola 56k and ADSP-210x, cannot cope well with dual
memory banks, but all program variables are assigned to just
one bank. It is obvious that this naive strategy implies an
enormous performance loss, since potential instruction-level
parallelism is largely neglected.

The reason that dual memory banks are poorly exploited
by compilers is a lack of suitable optimization techniques.
The variable partitioning problem itself is difficult, since it
requires a good balancing of the X/Y memory bandwidth
among an entire program. As variables may have multiple
occurrences in a program, different code segments may show
contrary demands on assigning a certain variable to either X
or Y. In addition, the X/Y assignment of variables has side
effects on other modules of a compiler: Some data path input
registers might not be available for both X and Y, which in-
fluences register allocation, and the potential parallelism gen-
erated by a certain variable partitioning must eventually be
exploited in a dedicated scheduling phase.

The goal of this paper is to present a new technique for the
variable partitioning problem for dual memory bank DSPs,
which results in a significant code quality improvement at
comparatively low computation time requirements. The tech-
nique has been integrated into a C compiler for a real-life
DSP. We provide experimental results both in terms of per-
formance and code size for a number of DSP routines.

The structure of the paper is as follows. In section 2 related
work is discussed. Our target architecture, the Gepard DSP
core designed by Austria Mikrosysteme International (AMS).
is described in section 3. Section 4 gives an overview of the
compiler environment, which the variable partitioning tech-
nique has been integrated into. The partitioning technique is
presented in section 5. Section 6 provides experimental re-
sults obtained with our Gepard C compiler. Finally, conclu-
sions are given.

2. RELATED WORK

An early approach for exploiting dual memory banks in com-
pilers is [3], which deals with the Motorola 56k DSP archi-
tecture. Here, functional blocks of a DSP program are im-
plemented in a meta-assembly language with symbolic mem-
ory references. Complete programs are composed of these

Fig. 1. Gepard DSP architecture,c
AMS Austria Mikrosys-
teme International AG

blocks, which can be instantiated from a library. After a peep-
hole optimization of the composed programs, scheduling and
register allocation take place. The assignment of program
variables to the X/Y banks takes place using a greedy method:
Variables are assigned to X and Y in an alternating fashion,
according to their access sequence in the program code. The
efficacy of this simple approach strongly relies on the hand-
coding of the meta-assembly blocks, and the greedy partition-
ing may produce inferior results for complex programs.

In [4], a variable partitioning technique for a hypothetical
VLIW DSP architecture is presented. The central data struc-
ture in that approach is aninterference graph, whose nodes
represent the program variables, while any edge between two
nodes represents a potentially parallel memory access to the
corresponding nodes. Each node has to be assigned to either
X or Y in order to find a valid partitioning. The quality of
a certain partitioning is measured by the sum of the graph
edges, whose nodes have been not been assigned to differ-
ent banks, which reflects the fact, that a potentially parallel
access cannot be implemented according to that partitioning.
The partitioning itself is performed heuristically. Although
the experimental results are quite good, a major problem with
the approach from [4] is that it is not clear how the technique
performs for a real-life DSP with an irregular architecture in-
stead of a synthetic VLIW.

A more practical partitioning technique has been described
in [5], which also deals with the Motorola 56k DSP. After
a pre-compaction step of the input program, given as sym-
bolic assembly code, memory bank allocation and register
allocation take place in a single phase. These problems are
mapped to aconstraint graphlabeling problem. The con-
straint graph nodes represent variables to be mapped to X/Y
memory banks or registers. The graph edges are used to re-
flect both the costs associated with a certain labeling and the
code generation constraints imposed by the target DSP. The
labeling takes place with a simulated annealing optimization
algorithm. For the DSPStone benchmarks [1], typical code
size reductions between 5 and 10 % have been achieved as
compared to machine code without exploitation of dual mem-
ory banks. A problem with the simulated annealing approach
is the huge runtime requirement, which might be in the range
of minutes or even hours.

3. TARGET DSP ARCHITECTURE

The variable partitioning technique presented in this paper
has been integrated into an existing ANSI C compiler for
the AMS Gepard DSP [6, 7], an industrial parameterizable
DSP core with dual memory banks. The coarse architecture
is shown in fig. 1. There are two parallel memory banks (X
and Y), each one equipped with an address calculation unit.
The data path unit shows input registers for a hardware mul-
tiplier, an ALU, as well as an accumulator file. The Gepard
instruction set comprises most typical DSP instructions, such
as LOAD, STORE, arithmetic and logical operations, as well
as address modifications.

For our purpose, the most interesting feature is that up to
two memory accesses to X and Y can be issued in parallel to
any arithmetic instruction in each cycle. Two parallel memory
accesses always must take place on different memory banks.
There are also constraints on register allocation: In case of
two parallel memory accesses, the targets of LOAD opera-
tions are restricted to arithmetic registers. Additionally, ad-
dress modifications within the same instruction cycle have
to take place via index registers, while post-increment and
decrement are not available in this mode. Under these restric-
tions, the goal of our optimization technique is to partition
program variables in such as way, that the most effective use
of parallel accesses to X and Y is ensured.

4. SYSTEM OVERVIEW

Our work builds on a C compiler for the Gepard DSP that has
been provided by a third party. The compiler accepts ANSI
C source code, which is first analyzed and translated into
a three-address code intermediate representation (IR). The
IR is optimized using machine-independent standard tech-
niques such as constant folding and loop invariant code mo-
tion. Then, the Gepard backend translates the IR into assem-
bly code.

The original compiler does not include any variable par-
titioning technique, but simply assigns all variables to the
X memory bank. Therefore, instruction-level parallelism is
hardly exploited. In principle, there are two points in the com-
pilation flow, at which variable partitioning can take place:
either as anearly partitioning on the IR or as alate par-
titioning on the assembly code. The first variant shows the
advantage, that the IR is machine-independent, so that early
partitioning can be reused in a number of different backend.
However, the IR provides no exact information on the set of
memory accesses in the final assembly code, since not all vari-
ables might be assigned to memory, but some might be kept
in registers. In addition, the backend can insert additional
memory accesses due to spill code, which is not visible in the
IR. Therefore, the early partitioning information passed to the
backend may be either incomplete or overconstrained. In con-
trast, when using late partitioning, the exact set of variables
is already known. However, if all variables are initially as-
signed to X, then the late partitioning, which reassigns a sub-
set of variables to the Y bank, generally leads to violation of
processor-specific constraints on register allocation. In order
to meet such constraints, a significant amount of code restruc-
turing would be required.

In order to overcome the phase-coupling problems asso-
ciated with early and late partitioning, we have extended the
compilation flow of the original compiler by the phases shown
in the shaded area in fig. 2. An initial run of the backend is
used to determine the exact set of memory accesses, while

variable partitioning

Gepard backend

representation
intermediate

IR generation and
 optimization

C source code

back-annotated IR

Gepard backend

code compaction

assembly code

Fig. 2. Compilation phases in the Gepard C compiler

taking into account register variables and spill code, and plac-
ing all memory values into the X bank. Based on this in-
formation, the variable partitioning for maximizing parallel
memory accesses is performed, and the IR is back-annotated
with the X/Y bank assignment information for all variables.
Then, a second run of the backend takes into account the par-
titioning information, and places variables into either X or
Y, while meeting the corresponding register allocation con-
straints. Finally, a code compaction phase packs pairwise
scheduling-independent operations into parallel assembly in-
structions. Details are given in the next section.

5. VARIABLE PARTITIONING

Similar to [4], our partitioning technique is based on the no-
tion of aninterference graph. However, in contrast to [4], this
graph is not constructed for basic blocks only, but globally for
entire functions, so as to reflect the potentially contrary vari-
able assignment requirements of different blocks. In addition,
we use an exact partitioning approach instead of a heuristic
one.

First, for each assembly code function generated in the first
run of the Gepard compiler backend, a data dependency graph
is constructed:

Definition A data dependency graph(DDG) is a directed,
node-labeled graphG = (V;E; l), where each nodev 2 V
represents a memory access in the assembly code, and each
edge(v; w) 2 E denotes a scheduling precedence between
v andw. A node labell(v) denotes the name of the variable
accessed byv.

For a given DDG, the interference graph is constructed in
such a way, that potential parallelism is reflected by graph
edges:

Definition For some DDGG = (V;E), the interference
graph is an undirected graphI = (V 0; E0) with V 0 = V .
There is an edge(v; w) 2 E0, if and only if v andw are not
reachable from each other via a path inG.

In order to reduce the interference graph size, we also apply
a folding step: Each node setv1; : : : ; vn � V 0 representing
accesses to the same variable is merged into a single nodev,
and all edges containingv1; : : : ; vn are redirected tov. Fi-
nally, all edges ine = (v; w) 2 E0 are assigned a weight
A(e) denoting the sum of the total number of accesses to the
variables represented byv andw in the function. The weight
A(e) is used to reflect the gain achieved by assigningv andw
to different memory banks.

Obviously, the best partitioning is achieved if the interfer-
ence graph is divided into two disjoint node sets X and Y, such
that the sum of the edge weights between X and Y is maximal,
since in this case the highest number of parallel memory ac-
cesses can be obtained. For a given folded and edge-weighted
interference graphI = (V;E;A), we use anInteger Linear
Programming(ILP) approach to solve this NP-hard optimiza-
tion problem. The ILP comprises the following solution vari-
ables:

8vi 2 V : Zi =
n

1; if vi is assigned to bank X
0; if vi is assigned to bank Y

8vi; vj 2 V : Uij =
n

1; if vi 6= vj
0; if vi = vj

8e = (vi; vj) 2 E;A(e) = gij : Wij = Uij � gij

The Zi variables account for the X/Y assignment of
the graph nodes, while the auxiliary variablesUij indicate
whethervi and vj have been assigned to different banks.
These variables are used to compute theimplemented weight
Wij of vi andvj : In case thatUij = 1, up to gij parallel
accesses tovi andvj can be achieved. Thus, the sum ofWij

over allvi andvj needs to be maximized as the objective func-
tion.

The setting of theUij = 0 in case thatvi andvj are as-
signed to the same bank is enforced by the following con-
straint pairs:

Uij � Zi + Zj

Uij � 2� Zi � Zj

The ILP corresponding to a given interference graph can be
solved with existing tools. The setting of theZi solution vari-
ables accounts for the X/Y assignment of variables used in the
second run of the compiler backend (see fig. 2). It should be
noted that, although the ILP itself is solved optimally, the par-
titioning in general is only an approximation of the optimum,
since only thepotential parallelismis maximized. Whether or
not a potentially parallel access can actually be implemented,
is only determined during code compaction.

The code compaction phase packs potentially parallel in-
structions, so as to minimize the schedule length. In our ap-
proach, we use an efficientlist schedulingalgorithm [8]. First,
a data dependency graph is built for the assembly code result-
ing from the second pass of the backend. Then instructions
are scheduled step-by-step in accordance with the scheduling
constraints imposed by the target processor (see section 3).

6. EXPERIMENTAL RESULTS

The partitioning and compaction techniques described above
have been empirically evaluated by compiling the DSPStone

D

A B

C

E

D

A B

C

E

D

A B

C

Ea) b) c)

Fig. 3. Graph models for variable partitioning: a) Example data dependency graph, b) corresponding interference graph, c)
optimum partitioning into two setsfA;C;Eg andfB;Dg. All edge weights are one in this simple example.

C benchmarks [1] into assembly code for the Gepard DSP. As
a platform, we have used a 333 MHz Pentium II Linux PC.

The exploitation of parallel accesses to the X/Y memory
banks leads to code quality improvements both in terms of
code size and performance. Code size is affected, since two
originally separate memory accesses may be encoded into a
single instruction for the Gepard DSP. The performance in-
crease naturally is due to the better exploitation of memory
bandwidth.

Fig. 4. Code size reduction (%)

Fig. 4 shows the percentage of code size reduction for
the compiled benchmarks, as compared to the original, un-
optimized assembly code. The gain ranges from 3.85 %
(real update) to 9.38 % (ncomplexupdates). This is com-
parable to the results for the Motorola 56k reported in [5].
However, the compilation time is dramatically lower: The
CPU times for partitioning (including ILP solving) and code
compaction have been within 2 seconds for all benchmarks.
This is due to the fact that we employ a relatively simple ILP
formulation for the core partitioning problem, while the re-
maining code generation tasks are solved with fast standard
techniques in the existing compiler framework. The ILP ap-
proach at least works well for small time-critical DSP kernel
routines. For very large programs, the ILP partitioning tech-
nique might need to be replaced by more efficient heuristics,
though.

Even higher code quality improvements are obtained w.r.t.
performance. Fig. 5 gives the percentage of speedup as com-
pared to the unoptimized assembly code without exploitation
of parallel memory accesses. Here, the gains range between
4.11 % (realupdate) and 17.12 % (matrix1).

Fig. 5. Execution time speedup (%)

7. CONCLUSIONS

We have presented a new technique for variable partitioning
in C compilers for DSPs with dual memory banks. The goal
of this technique is to enable compilers to exploit the avail-
able memory bandwidth in such DSPs without the need for C
language extensions or assembly programming. Experimen-
tal results for the Gepard DSP show that the code quality is
improved for realistic DSP routines. The key contributions of
this paper are twofold: For the DSPStone benchmarks, sim-
ilar improvements as reported in previous work are obtained
at much lower computation time requirements. In addition,
we have shown how an existing compiler infrastructure can
be enhanced by a variable partitioning technique without the
need for an extensive compiler redesign.

8. REFERENCES

[1] V. Zivojnovic, J.M. Velarde, C. Schl¨ager, H. Meyr: DSPStone – A
DSP-oriented Benchmarking Methodology, Int. Conf. on Signal Pro-
cessing Applications and Technology (ICSPAT), 1994

[2] M. Coors, O. Wahlen, H. Keding, O. L¨uthje, H. Meyr:TI C62x Per-
formance Code Optimization, DSP Germany, 2000

[3] D.B. Powell, E.A. Lee, W.C. Newman:Direct Synthesis of Opti-
mized DSP Assembly Code from Signal Flow Block Diagrams, Proc.
ICASSP, 1992

[4] M. Saghir, P. Chow, C. Lee:Exploiting Dual Data-Memory Banks
in Digital Signal Processors, 7th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
1996

[5] A. Sudarsanam, S. Malik:Simultaneous Reference Allocation in Code
Generation for Dual Data Memory Bank ASIPs, ACM TODAES, vol.
5, no. 2, 2000

[6] A. Gierlinger, R. Forsyth and E. Ofner:Gepard – A Parameterisable
DSP Core for ASICs, Proc. ICSPAT, 1997

[7] Austria Mikro Systeme International:
asic.amsint.com/databooks/digital/gepard.html, 2000

[8] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett:Some Ex-
periments in Local Microcode Compaction for Horizontal Machines,
IEEE Trans. on Computers, Vol. 30, No. 7, 1981

