Low-Energy DSP Code Generation
Using a Genetic Algorithm*

Markus Lorenz, Rainer Leupers, Peter Marwedel
Dept. of Computer Science 12
University of Dortmund, Germany
email: {lorenz, leupers, marwede®LS12.cs.uni-dortmund.de

Thorsten Dager, Gerhard Fettweis
Mannesmann Mobilfunk Chair For Mobile Communications Systems
Technische Universat Dresden, Germany
email: {draeger, fettweis@ifn.et.tu-dresden.de

Abstract constraints while minimizing area and energgnsumption.

)]] Thus designers try to meet the given timing constraints by
This paper deals with low-energy code generation for aadding instruction level parallelism to processors [11]. Un-
highly optimized digital signal processor designed for mo- fortunately, the use of heterogeneous register files for reduc-
bile communication applications. We present a genetic algoing chip area and power consumption leads to irregular pro-
rithm based code generator (GCG), and an instruction-leve¢essor architectures (our example in this paper is the M3-
power model for this processor. Our code generator is capapSP [6]) which can be rarely handled by traditional compil-
ble of reducing the power dissipation of target applicationsers. This forces the industry to develop new compilers for
by means of two techniques: First, GCG minimizes the num-each processor familyugporting their particular features.
ber of memory accesses by using a special list-scheduling alEompilation is done by transforming the given source pro-
gorithm. This technique makes it possible to perform graphgram into an intermediate representation (IR) and perform-
based code selection and to take into account the high ining machine independent standard optimizations. The source
terdependencies of the subtasks of code generation by phaggogram consists of several basic blocks which can be repre-
coupling. In addition, GCG optimizes the scheduling of pro- sented as a set of DFGs (data flow graphs). After this trans-
cessor instructions with respect to the instruction-level poweformation the code generator has to map the IR to assembly
model based on a gate level simulation. Experimental recode by solving the following subtasks:
sults for several benchmarks show the effectiveness of our

approach. e CS (code selectioncovers the nodes of a DFG using

suitable processor instructions.

. ¢ IS (instruction schedulingdetermines the execution or-
1 Introduction der of the processor instructions.

In the recent years the field of mobile communication be- ¢ RA (register allocatior) determines which variables
came more and more a growing market. Especially the bat- have to reside in registers or have to be spilled to mem-
tery lifetimes have a greatimpact on whether a mobile device ory.

is successful on the market. Until now most research effort

in reducing power consumption has focused on the field ofD ; : .
; : L . ue to the strong interdependencies of CS, RA and IS it
low-power design of integrated circuits (for an overview see;g important for efficient code generation (particularly for

e.g. [18], [19]). But there is also a need for low-poweft- SPs) to :
L : . perform all subtasks simultaneously by means of
ware optimizations because of the increasing trend towardée:l)completqahase coupling

mapping embedded applications to programmable proces-
sors. Recent results indicate that power consumption can i©ptimization should be possible for different criteria like ex-
fact be reduced at the software level. Known techniques inecution time, energy dissipation or code size. A big chal-
clude reordering of processor instructions [22, 13], speciallenge concerns the handling of the trade-off between these
instruction and data encoding [22], and avoiding power in-objectives. For instance, in the field of mobile communica-
tensive processor instructions like memory accesses [7]. Arion it is essential to generate assembly code which meets
overview of low-power optimizations is given in [23, 16]. the real-time constraints and minimizes the energy consump-

. tion. However, it is often difficult to find a suitable compro-
Embedded processor based systems have to meet real-timigise hetween these two goals because energy consumption

*Publication: ICCD, Austin, Texas (USA), September 20B1EEE 2In contrast to the term "power”, "energy” additionally considers the
1This work has been sponsored by the German Research Foundationumber of clock cycles of the program, and is more interesting for battery-
(DFG) and Agilent Technologies, USA. driven embedded systems.

not only depends on the number of processor instructiong single value), so that live values cannot be kept in regis-
but also on their schedule. Thus, it is important that low- ters during several instruction cycles. Sometimes DSP reg-
energy optimizations are performed under given real-timeisters even cannot be spilled at all, so that from a compiler
constraints. viewpoint, the memory is the only "safe” resource for stor-

In order to compare different instruction schedules with re-ing CSEs. Therefore it is very common in DSP compilers

spect to the energy consumption itis very important to have ahat CSEs are stored in memory right from the beginning and
suitable cost model that allows for a quick evaluation. For in-are reloaded into registers only at the time of further CSE
stance, Lee et al. published an instruction-level power modelses [15, 1].

based on measurement of the energy consumption of a singig ., , :

: y o e ery recently techniques have beesed that are

instruction pase energy copaind of the switching activities cap)ellble Béf keepir?/g (at Iegst some) CSEs Finr?special-purpose

?r: srucc\?vss;n:ﬁ |gs|trut<):t|onds(errt1ﬁatd enirgy c%s[lfS]. IZur— . registers [4, 14] by means of graph based (instead of tree
er power models based on that work can be found €.9. Ihhased) code selection. The code generation technique de-

[21, 20]. scribed in this paper uses a similar approach, but in contrast
It is already known (and is also confirmed by our power to earlier work focuses on energy optimization.

estimation for the M3-DSP in section 3) that the number hase coupled code generation techniques based on integer

of memory accesses has a more significant contribution t : ;
power consumption than other processor instructions. How-mfi?;;f rgglha}[irgnms:r}gr(lth?g(isgﬁ r[ﬁgaeﬁzl)l_%\lﬁglse?iﬂgri‘g&q

ever, most traditional code generation techniques are bas exity of the ILP-solver allows computation of optimal so-

on tree based code selection algorithms [24]. These arg .
. > A ; tions only for small benchmarks or only for some code gen-
runtime-efficient, but one of the main disadvantages is that, oo 5 htasks. A heuristic phase coupled code generation

using a tree based technique usually results in superfluou ; 1 : ' :
memory accesses. This is due to the decoiit f graphs chnique (AVIV) for VLIW-architectures is presented in [8].

into trees and performing separate code selection for eackenetic algorithms have been proven very effective in find-
tree. Spill code is then added in a subsequent phase. Wiag optimal or near optimal solutions in huge searchcgs.
briefly compare the graph based and the tree based code sEeor this reason we are using a special list-scheduling algo-

lection for the following exampled = (a + b) * ¢ * (a + b) rithm in combination with a genetic algorithm. In contrast
to earlier work using genetic algorithms for scheduling prob-
graph based CS tree based CS lems (e.g. [5, 26]) we solve the code generation subtasks CS,
a b c a b IS and RA.
N/ N/ t The remainder of this paper is organized as follows: The
X & N, next section gives an overview of the architecture of the M3-
* decomposing | * DSP. In section 3 we introduce the instruction-level power
S A= > L ~t | model that we use for low-energy optimization. The new
/ DFG into trees \ low-energy code generation algorithm GCG is described in
& & section 4. We demonstrate the effectiveness of our approach
A d‘ in section 5 and conclude the paper with a summary.
regl = Mem|[a] regl = Mem[a] reg4 = Mem(t]
reg2 = Mem[b reg2 = Mem[b regS = Mem|[c H
rei} =regl £r]eg2 re§3 =regl J[rr]egz re§6 =reg4 ’[‘ r]egS 2 ArChIteCtu re Of the MS-DSP
22‘5‘ - rl\gggnfr]eg . Mem(t] = reg3 ;Zg; - fﬁ;;nf]reg6 The M3-DSP is an instance of the scalable DSP platform for
reg6 = reg3 * regs Mem[d] = reg8 mobile communication applications described in [6]. In or-
Mem[d] = reg6 der to ensure constraints with respect to real-time processing,
chip area, and energy dissipation, the M3-DSP architecture
(@) (b) has some special features (fig. 2): It consists of 16 data paths
7 instructions 10 instructions (slices) which allow for processing either on a single data
4 memory accesses 7 memory accesses path or on all 16 data paths in parallel according to the SIMD

(single instruction multiple data) principle. For demonstrat-
Fig. 1: Graph based and tree based code generation ing the basic technique of GCG and our instruction-level

. . . power model it is sufficient to focus on code generation for
Fig. 1 represents the corresponding DFG (a) and its decomg, o single slice mode (shaded area in fig. 2).
position into two trees (b). The resulting instructions are

listed below. In this case splitting into trees is done after In order to enable an effective use of all data paths in parallel
identifying the common subexpressions (CSE) (here: the "+'the memory is organized asgaoup memory Hence, each
node). memory address refers to group of 16x16-bit words. The
: addressed group is loaded into the intermediate (buffer) reg-
On general-purpose processors with large homogeneous regsiar v from which the values are routed to the registers in
ister files, CSEs would normally be kept in registers, andyne gata paths by an application specific interconnection net-
the register allocation phase in the compiler would aim at,, ok " The use of the special-purpose registers A, B, C, D

avoiding register spills and reloads. However, this approac ; : ;
usually does not work for DSPs with an irregular, special-h"j‘nd Accu is allowed for the following operatichs

purpose register architecture. The reason is that DSP regis- sror the sake of simplicity we assume that subtractions are realized by
ter files show a very small storage capacity (frequently onlyadding with complemented registers.

We do not distinguish betweeasymmetridransitions (tran-
sitions where the power dissipation of the transitiptol I,

is not equal to the dissipation of to I;). Differentiation is
only possible with a high effort since onlyertical simula-
tionin time can be performed, i. e. the status of the processor
is examined in each clock cycle. Thus, symmetric titdoss

are assumed. Fig. 3 illustrates the pipeline during the verti-
cal simulation process and the mixed transitions between two

Wide Data Memory

Intermediate Reqister M
i
Intfer Communication Unit

é % % clock cycles. U indicates an undefined instruction.
5 MA 5 ssimnacct
£ C £ £ Pipeline Filling ! Simulation B
sl ALU |3 S]
ke ke g Clock Cycle [i-4 i-3 i-2 i-11i i+1 i+2 i+3
8| Accu |8 3 — i
slice Pipeline Stageg I
Fetch b el fml A |
. . 2,1 1,2
Fig. 2: Coarse architecture of the M3-DSP Decode | U iy digls 25 25y |y
Decode || Uu-u 1L
2,1 1,2
ADD: Accu ={A, B, Accu} + {A, C, D, Accu} Execute UUU Ib> =5k

MUL: Accu ={A, B} * {A, C, D, Accu}
MAC: Accu ={A, B, Accu} + {A, B} * {A, C, D, Accu}

For instance, Accu = B + A is a valid instruction whereas
Accu = D * Alis invalid. Further processor instructions are
load and store instructions for memory (Mem) accesses an
immediate load for constants (Int) and also data transport
between registers.

LD: M =Mem

Fig. 3: Pipeline during simulation
As a first step a cost model is developed which does not con-
ider state dependencies, i.e. during the simulation the in-
gtructions should not change the state of the processor. For
ake of simplicity, all operand values of an instruction have
been set to zero. Table 1 shows a part of the obtained cost
model. The upper half of table 1 comprises costs if the cur-

ST: Mem ={A, B, Accu}
LDI: {A,B,C,D}=Int
DT: {A,B,C,D} =M
DT: {A, B} ={Accu}

rent instruction { is equal to the subsequent one IHere

the high power dissipation of memory accesses (LD, ST) is
remarkable. In the lower half of the table both instructions
differ (I, # 1;). Comparing the upper and the lower half sup-

plementary costs for transitions to a different instruction are

evident.

3 Instruction-level power model [Ins.1 Ins.2 Average Power Dissipation [mV}]
An accurate cost model is needed in order to obtain power o MAC MAC Cprpr= 17.66
energy optimized code. Such a model is used to estimate the LD LD Cprpr= 2576
consumed power or energy of a program. Itis represented by ST ST Grpr= 2172
values of average power dissipation of certain combinations NOP NOP rpr= 1751
of instructions. In our case the power dissipation is not phys DT DT pr.pr = 17.56
ically measured but simulated at the gate level with a zerq DT ADD Cprapp= Capppr= 2472
delay model using Synopsys Power Tools. According to thg DT MUL Cprmur= Cyurpr= 24.85
reference manual [10], the accuracy is within 10 - 25 % off DT MAC prmac= Cumacpr= 2473
SPICE simulation. DT LD DT,LD = Lppr = 25.70

.) DT ST DT, ST = ST, DT = 38.16
Following Lee et al. [13] the cost model is based on result§ DT NOP Cornop= Cyoppr= 20.18

obtained by simulating pairs of instructions. In contrast,
however, our power model does not rely on base and over-
head costs. Just using the simulation results, as described in
the following, yields much better approximationsin our case.

Table 1: Part of the power cost model

Gate-level simulations are very time consuming. Therefore iin order to estimate the energy dissipation of a sequence of
is preferred to simulate short instruction sequences. The M3instructions the sequence is separated into pairs. For each
DSP comprises a four-stage-pipeline. Hence, simulating gair the power costs are added. But then the first and the
pair of instructions is done after filling the complete pipeline last instruction have been considered only once whereas all
with this pair to avoid transitions other than those betweenother instructions have been considered twice. Thus, one half
the two instructions. All instructions of the M3-DSP run of the costs of the instruction at the start and at the end are
through the same pipeline stagesich stage requiring one added. This causes a small error because theiticansosts
clock cycle. Hence, the pipeline is filled after four clock cy- for the first and the last instruction are inprecise. This error
cles and a pair of instructions always takes two clock cycles.is small for longer instruction sequences, the predicted power

cost for a sequence afinstructions is: Prediction
1 n_1i 1 average average
_ schedule a) power [mW] schedule b) power [mW]
PowerCost preq. = (QCIDJDJFZCfufz+1+§cfmfn)/” 10.5 * 17.51 10.5 * 17.51
i—0 Nop Nop
i= - } 23.46 - } 23.46
M=Mem[a] }2570 M=Mem[a] }2570
The particular costs £, of the instruction pair;land |; can C=M 12570 O M 12570
be found in the cost model (table 1). M=Mem[b] V2570 L MemlP] } 25.70
5o 12570 oM 12472
Pipe. F. Simulation Virtual X:ﬁem el }25.70 ﬁic;e;]?g]c } 28.08
Pipe. e = . Accu=B+C J2472 4y) 25.70
F N N\| |\\[\\|\N N N B=Accu) 24.72 B=Accu) 17.56
N \1\ " NS Accu=B*A } 24.85 Accu=B*A j 24.85
DI N N\L\I \I\l' I J\\I\N N Accu=B*Accu y 17.66 Accu=B*Accu ;1766
DIl N[N NWNU... LoNWN|[N N Mem[d] =Accu i;‘ggg Mem[d] =Accu %;“égg
\\ BN N N . N .
E N/N N N N<y... [;5N|N N N Ngg 11751 08 11751
1 17.51 P 1 17.51
Nop s Nop
Nop }17.51 Nop 1 17.51
. : 0.5 * S*
Fig. 4: Simulating an instruction sequence to compare with i 1751 1051751
predicted power costs = 390.64 = 385.86
average power = 24.415mW average power = 24.116 mW
energy = 19.532 % 10°T energy = 19.293 * 10°J
To compare the predicted costs with the simulation result the Simulation
pipeline has to be considered. In fig. 4 the inner trapezium B b . 16
comprises the sequence for which a prediction is to be made. "8 = 196141077 energy = 193821077

Unfortunately, it is not possible to simulate just this trapez-

ium. Since the pipeline is filled with undefined instructions Fig. 5: Energy consumption for different schedules
before and after the sequence, the instructions at the begin-

ning and at the end cannot be predicted properly. In order to

avoid prediction inaccuracies due to vertical simulation, we

add defined instructions. Initially the pipeline is filled with IR. At this level of abstraction the source program is given
the same instruction e. g. the NOP (N) instruction and at thedy a set of DFGs which are then separately mapped to as-
end of the sequence the same instruction is added as often aembly code. This is done by performing the subtasks IS,
the pipeline depth defines (in our case four times). If we cutCS, and RA of code generation. One of the main problems
out the inner trapezium and merge the two outer triangles ass that there are strong interdependencies between these sub-
fig. 4 illustrates, we would get another trapezium consistingtasks. For instance, finding an optimal instruction schedule
of NOPs only. Thus, no inaccuracies are calculated at theloes not necessarily result in optimal code with respect to all
beginning or at the end anymore. subtasks together. Hence, GCG is capable of revising (poor)
In order to exemplify the use of the power model, fig. 5 d€cisions made in an early optimization step.

shows the graph based example from fig. 1 using two dif-AS We have seen in the last section, memory accesses have
ferent schedules. The difference is marked gray. Using thé More significant contribution to the energy consumption

power cost model to calculate the average power Consump_han other processor instructions. In order to minimize these
tion of the sequence leads to the energy dissipation by dividPOWer intensive instructions GCG uses a graph based code

in he clock f e PR - selection technique. Unfortunately, the problem of mapping

m?mbbyeE Oef %gﬁuc{%%%e.ncy’ x and multiplying with the graphs to optimal assembly code means solving an NP-hard
' problem. Thus, there is a need for an optimization algorithm

EnergyCost predicted = PowerCost predicted*n | feiock capable of finding optimal or near optimal solutions in poly-

In our case the clock frequency is equal to 20 MHz. Fig. 5nom|al tme.

shows the difference of energy consumption between schedsenetic algorithms (GA) have proven to solve complex op-
ule (a) and schedule (b). Comparing the predicted valuegimization problems by imitating the natural evolution pro-
and the simulation result of this example shows that the dif-cess (see e.qg. [9, 2] for an overview). A population of a GA
ferences are less than 0.5%. Several comparisons of oth@onsists of several individuals, each of them representing a
sequences confirmed this error range, which indicates sufpotential solution of the optimization problem. The repre-
ficient accuracy of sequence prediction for code generatiorsentation of an individual is given by éaromosomevhich
purposes. is subdivided intggenes The genes are used to encode the
variables of the optimization problem. This means that find-
ing a suitable combination @fleles(concrete values) for the
4 Genetic code generator (GCG) genes is the same as finding good solutions of the optimiza-
tion problem. By applying genetic operators likelection
The code generation process of GCG is started after thenutation and crossoverto the members of the population
source program is transformed into a machine independerthe fitness of the individuals will increase in the course of the

generations. Dest: B
An overview of the main steps of the optimization process of (Des=®50) (Desi=D50) (Dest— D 50) f)’lfj e
genetic algorithms is given in fig. 6. CS: 4
Dest=Src1 + Src2 RUEREECTD
At first all individuals of the Dest: Accu
population are initialized (1) S;ﬁié
and evaluated (2). Individu- S 5 Op: +
als which should inherit their est=5rc1@ Src CS: 3
genes to the next generation Swapped: yes
are selected probabilistically in T
the following step (3). The Srel: B
crossover operator (4) performs ST A
a recombination of the ge- 8spj6
netic information by choosing Swapped: no

two individuals and swapping

e 6. Evaluation
genes between these individu- vauat

=

als. Afterwards mutation (5 indivi

creates new gene material(t);y best individual Fig. 7: DFG and chromosomal representation of a possi-
changing alleles. The result- Fig. 6: Optimization ble mapping to machine code

ing individuals are evaluated steps of a GA

(6) again.

GCG the method of initializing an individual is based on the
The optimization process is iterated until a termination con-well-known list-scheduling algorithm [3]. But in contrast to
dition (e.g. maximum number of generations or conver- traditional variants performing a heuristic selection we prefer
gence) is met. Itis a very important characteristic of genetica probabilistic selection of the next executable graph node.
algorithms that suitable gene material is passed to the subBoing this for all individuals of the population we obtain a
sequent generations. This permits one to revise unfavorablget of different potential solutions.

decisions made in a previous optimization phase. For thisThe following steps are performed iteratively while there are
reason genetic algorithms are adequate for solving non-lineagraph nodes which have not been scheduled:

optimization problems like phase-coupled code generation.
However, one of the main problems using genetic algorithms
is finding a suitable representation of the underlying opti-
mization problem and using genetic operators which can be
executed very quickly (because they are used several times). 2. Performcode selectiorfor the scheduled graph node.

In the next section we first describe the coding mechanism At this time it is possible to take into account complex
and then the initialization, evaluation, crossover, and muta- operations like MAC (multiply-addccumulate) by pat-
tion steps of GCG in more detail. tern matching. If the selected graph node can be covered
by more than one processor instruction we perform a
probabilistical choice.

1. Select the next graph node to be schedutestruction
scheduling.

Chromosomal representation
The goal of the chromosomal representation is to encode all 3. Determine source and destination locatiargiéter al-
information which is essential for code generation. We as- location). This is done by determining the set of alleles
sume that the given source program is decomposed into a whose selection leads to a valid solution. This set can be
set of basic blocks, each represented by a DFG. In our ap- determined with knowledge of the actual set of registers
proach the graph nodes of the intermediate representation are in use, actual locations (registers or memory) of argu-
mapped to special genes of the chromosome (fig. 7) which ments and the set of registers which can be used by the

are stored in a sequential order. processor instruction. If there is need for a data trans-
Thus, each gene of the chromosome represents an operation POrt of an argument to the selected register or a need for
like a load or an addition. The values of a gene (allele) ex- spilling a variable the required instructions are inserted

press all information which are necessary for code genera- (and will lead toadditionalcycles.

tion. These are for example used registers, performed pro-

cessor instruction, execution cycle, and binding of argumentd.et |V| and |E| be the number of graph nodes and edges
to special ports of the functional uhitSwapped input vari- respectively. The complexity of this step is théx|V| +
ables are depicted in fig. 7 by crossing edges (inputs of théZ|).

add node). Fig. 8 shows an example for an individual of the given DFG
after performing the initialization stép The encoded exe-
Initialization cution cycles are given by the relative execution order of the

The aim of thenitializationis to establish an initial popula- 9€nes. Thus, inserted instructions which are not encoded on
tion from which the optimization process can be started. In@ Separate gene (additional cycles) have no influence of the
allocated time steps.
“4Due to the restricted combination of the special-purpose registers in the
data path it is very important for commutative operations to make use of the 5In this representation we denote M = Mem followed{#y, B, C, D} =
opportunity of swapping the input variables. Mas{A, B, C, D} = Mem.

invalid solutions we combine the subsequent mutation oper-

1 ator with a correctness check.
So, the main tasks of thautationoperator are to check the

2 correctness of the actual allele and to generate the new gene
material by changing alleles. Performing mutation for an in-

3 dividual is nearly the same task as initializing an individual.
In analogy to the initialization step we determine a new allele
of a gene by choosing an allele whose selection potentially

4 (Cc=(o Mem) leads to a valid solution. Thus, the complexity of the muta-
tion step iO(|V| + |E|).

additional A—Accu

cycle

5 (Accu=Ax O) 5 Experimental results

additional ‘ Experimental results obtained with our M3 code generator

cycle B=Accu are shown in table 2. The results refer to five real DSP

e routines (complex multiplication, IIR, lattice filter, FFT and

6 of m‘;}‘fﬂ variobes FIR) as well as two pure test programs with large data flow
graphs (DFG1, DFG2). Columns 2 and 3 give some charac-
teristics about the number of common subexpressions in the

7 DFGs and their uses, respectively.
Columns 4 and 5 show the number of instructions generated

Fig. 8: Example of an initialized individual with the traditional tree based code generation technique vs.
our graph based technique, while column 6 gives the relative

Evaluation improvement. As already explained in section 1, we com-

Thefitnessfunction of a genetic algorithm represents the ob- pared to the tree based technique, since it s still common in
jective function of the ur?derlying gptimizatio% problem. The compilers for DSPs with irregular register architectures and
individual with the highest fitness is the best solution. Thethere Is no reference compiler for the M3-DSP.

fitness function has an essential impact on the optimizatiorfColumns 7-9 indicate the differences in the number of mem-
progress of the genetic algorithm because the fitness valuesry accesses between the tree and graph based techniques.
serve as a basis for the subsequent selection step. Hencéhe reduction in the number of memory accesses ranges be-
GCG allows code generation according to different objec-tween 18 and 58 %.

tives by specifying a suitable fitness function: This is also reflected in the comparison of energy consump-
o o tion of the generated machine programs in columns 10-12.
e Minimization of execution time can be done by count- As compared to the tree based technique, the graph based
ing the number of execution cycles. A high number of algorithm generates code with 18-36 % lower energy con-
cycles corresponds to low fitness. sumption. Note that this is not only due to the reduction of
memory accesses, but also due to the dedicated instruction

¢ Low-energy optimization is possible by computing the scheduiling for low power.

energy consumption with respect to our instruction-
level power model for the respective individual, or sim- Finally, columns 13-15 give the number of graph nodes in

ply by counting the number of memory accesses. the test programs, the number of generations (= 20 * num-

ber of graph nodes) simulated in the genetic algorithm, as

Furthermore low-ener TR £ forwell as the CPU time requirements of our code generator on
urthermore low-energy optimizations can be performed Ora 333 MHz Ultra-10 workstation. All results are generated

given real-time constraints (e.g. maximum number of exe- . , . . A
cution cycles of a basic block) by adding a penalty for every PY Using asteady-statgenetic algorithm with the following

constraint violation. Thus, solutions not meeting the con-ParametetS population size: 30; number of individuals in

straints will be assigned a lower fitness than others. the population to be repted by the offspring: 10; mutation
rate: 1/(number of graph nodes); crossover rate: 0.6.

. In the worst case, of course, the energy savings obtained may

%qossover and mut?tlog Is with i individu. 2€ over-compensated by inaccuracies of the gate-level power
aIseb?%?gg;%mggéglg/rsvsgp% |vr\1”g ggr?gserbaeltr\;v%gr?\;vvdg slevlleéjt_e ii]mulation that forms the basis of our instruction-level power
als L) . - odel. However, the predicted energy savings are typically
mﬁ_lwhduals. '?htr;'s case we p;]erf%m wniform CLOSbS1Q¥e{ plarger than the expected inaccuracy of gate level power sim-
\évxc!ﬁar:gzgnsThig s?\efgrﬁ gpegr?dsatl)snly%rﬁhm:npl:r?lbae rlclnyg?ap lation (10—25 %). Therefore, in general real energy savings

: 4 . ay strongly be expected. Ongoing work deals with mea-
nodes (genes) and can be don@ifjV'|). The resultis two g, inq the real energy consumption of the generated machine
individuals consisting of recombined information of the par- -4e%or an existing M3-DSP prototype chip
ents. However, the large number of constraints (e.g. data '
dependencies, or resource constraints) which have to be han- eéthe implementation of the base genetic algorithm uses the genetic al-
dled can lead to invalid solutions. In order to avoid such gorithm library PGAPack [17].

#CSE #instructions #mem energy (0~° [J]) #graph

source|| #CSEs| uses || tree | graph| % || tree | graph| % tree | graph | % || nodes | #gen| CPUJs]
cmult 4 8 23 15 35| 10 6 40 || 35.06 | 26.63 | 24 12 240 3
IR 3 7 34 24 29 || 16 10 38 || 52.65 | 36.39 | 31 19 380 8
lattice 8 16 55 34 38| 24 10 58 || 84.03 | 53.81 | 36 22 440 13
FFT 10 26 76 48 37| 36 22 39 || 109.75| 76.57 | 30 32 640 29
FIR 15 30 156 | 128 | 18| 78 64 18 || 238.01| 196.29| 18 80 1600 256
DFG1 14 43 127 78 39| 56 28 50 || 181.89| 116.97| 36 41 820 57
DFG2 23 80 245| 166 | 32 || 106 60 43 || 351.89| 252.95| 28 69 1380 192

Table 2: Comparison of tree based and graph based code generation results

6 Conclusions

This paper focuses on a relatively new topic: compilation

[7] C. H. Gebotys. Low Energy Memory and Register Allocation Using

Network Flow. InProc. 34th Design Automation Conference, Ana-
heim California USAACM, June 1997.

for low energy consumption. For our driver application, the [8] S.HanonoandS. Devadas. Instruction Selection, Resource Allocation,

M3-DSP, we have first developed an instruction-level power
model that has been shown to be very accurate (within 0.5
%) as compared to an underlying gate-level power simula-

tion. Although there still may be accuracies w.r.t. the en-

and Scheduling in the Aviv Retargetable Code Generatd?rdceed-
ings of the 35th DAC’'981998.

[9] J. H. Holland.Adaption in Natural and Artificial SystemMIIT Press,

1992.

[10] Synopsys IncPower Products Reference Manus998.

ergy consumption of the real hardware, using such a hight11] Texas InstrumentsIMS320C60 Instruction Set Manyab97.
level power model is very useful in compilers due to the need[lZ] D. Kastner and M. Langenbach. Integer Linear Programming vs.

for efficient estimations. The main contribution of this paper
is a phase-coupled, genetic algorithm based code generation

Graph-Based Methods in Code Generation. Technical Report Tech-
nical Report A/01/98., Universit des Saarlandes, 1998.

technique that aims at minimizing energy consumption of the[13] M. Lee, V. Tiwari, S. Malik, and M. Fujita. Power Analysis and Low-

generated machine programs. This is achieved by reducing
the number of memory accesses and a dedicated low-power
scheduling technique. Experimental results indicate that thi
is a promising approach. Energy savings between 18 an
36 % as compared to a previous code generation technique

Power Scheduling Techniques for Embedded DSP Softwar@rdn
ceedings of the International Symposium on System SyntBegis
1995.

4] R. Leupers. Register Allocation for Common Subexpression in DSP

Data Paths. Isia and South Pacific Design Automation Confergnce
2000.

have been observed, which is very significant for our tar-[15] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection

get domain, mobile embedded DSP systems. This also justi-
fies higher compilation times than in compilers for general-
purpose systems. For demonstrating the basic technique
GCG we have focused on code generation for the special sin-

Using Binate Covering for Code Size Optimization. lii. Conf. on
Computer-Aided Design (ICCAP)}995.

(ng] E. Macii, M. Pedram, and F. Somenzi. High-Level Power Modeling,

Estimation, and Optimization. [firans. on CAD of ICs and Systems
IEEE, Novembe998.

gle slice mode of the M3-DSP. Future work will deal with €x- [17] PGAPack Parallel Genetic Algorithm Library

ploitation of all data paths, optimizing global data transfers
between basic blocks, extension of our power model to non-

http://iwww-fp.mcs.anl.gov/CCST/research/repgmts1998/-
compbio/stalk/pgapack.html.

measurements using an M3-DSP evaluation board.

References

[1] G. Araujo, S. Malik, and M. Lee. Using Register Transfer Paths in
Code Generation for Heterogeneous Memory-Register Architecture

In 33rd Design Automation Conference (DACY96.

[2] T. Back. Evolutionary Algorithms in Theory and PracticeOxford
University Press, 1996.

[3] K.R. Baker.Introductionto Sequencing and Scheduliiigley, New
York, 1974.

[4] S. Bashford and R. Leupers. Constraint driven Code Selection for

Fixed-Point DSPs. Ir86th Design Automation Conference (DAC)
1999.

[5] S. J. Beaty.Instruction Scheduling Using Genetic AlgorithmBhD

thesis, Department of Mechanical Engineering, Colorado State Uni-

versity, Fort Collins, Colorado, Fall991.

[6] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broad-

band mobile multimedia modem DSP. Rroc. of ICSPAT'98pages
1547-1551, Toronto, Canada, 1998.

gies Kluwer, 1996.

[19] K. Roy, A. Raghunathan, and S. Dey. VLSI-Design-Tutorial: 12th In-

ternational Conference on VLSI Design: Low-Power Design Method-
ologies for Systems-on-Chips - Full Day Tutorial. January 1999.

[20] A.Sama, M. Balakrishnan, and J. F. M. Theeuwen. Speeding up Power

Estimation of Embedded Software. Rroceedings of International
Symposium on Low Power Electronics and Desfi00.

s[21] G. Sinevriotis and T. Stouraitis. Power Analysis of the ARM 7 Em-

bedded Microprocessor. IAroc. 9th Int. Workshop Power and Tim-
ing Modeling, Optimization and Simulation (PATMOS), Oct. 6-8 1999
October 1999.

[22] C. Su, C. Tsui, and A. M. Despain. Low Power Architecture De-

sign and Compilation Techniques for High-Performance Processors.
In IEEE COMPCON Februar 1994.

[23] V. Tiwari, S. Malik, and A. Wolfe. Compilation Techniques for Low

Energy: An Overview. IrProceedings of the 1994 IEEE Symposium
on Low Power Electronics, San DiegOctober 1994.

[24] R. Wilhelm and D. MaurerCompiler Design Addison Wesley, 1995.
[25] T. Wilson, G. Grewal, B. Halley, and D. Banerjii. An Integrated Ap-

proach to Retargetable Code Generation.Ptoceedings of the 7th
International Symposium on High-Level Synthebé94.

[26] T. Zeitlhofer and B. Wess. Operation scheduling for parallel func-

tional units using genetic algorithms. Rroceedings of International
Conference on Acoustics, Speech, and Signal Proce498§.

